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1 Standard Model effective field theory for the Higgs sector
The discovery of a scalar particle with a mass of mh = 125 GeV at the LHC [1,2] and subsequent pre-
cision analyses of this new boson suggest that it is indeed the Higgs boson of the Standard Model [3–5]
or behaves very similar to it. Apart from confirming our ideas about the role of symmetries in theories
of fundamental interactions, findings to date – or more so their absence – have led to a shift in the
focus of experimental analyses [6]. Increasingly, targeted searches for new particles or effects relying
on ”smoking gun” signatures are replaced by more holistic precision tests of Standard Model dynamics
in ever more extreme phase space regions. Confronted with a large abundance of models describing
new physics at the TeV-scale on the one side and a plethora of experimental precision measurements
on the other side, our aim is to describe deviations from the Standard Model expectations in a model
independent and reproducible way. A framework apt to address this challenge of a comprehensive
description of new physics is effective field theory (EFT) [7–11]. In Higgs physics, effective field
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1 Standard Model effective field theory for the Higgs sector

theories can be used to model the low energy effects of TeV-scale theories, describing not only small
deviations from the SM couplings in magnitude, but also modifications of their Lorentz structures.

This chapter is loosely based on Refs. [12, 13] and is organized as follows: We will first introduce
the Higgs sector of the SM in Section 1.1 to establish the notations and give an overview of the
dominant Higgs-production modes at the LHC and its decays. In Section 1.2, we will introduce the
EFT framework from the top-down using Fermi’s theory of the muon decay as an example. Then, in
Section 1.3 we will take the opposite approach and construct a basis of dimension-six operators from
the bottom up. We will discuss the phenomenology of the dimension-six operators relevant for Higgs
physics in Section 1.4 and describe the relevant physical processes constraining our set of dimension-six
operators in Section 1.5. In Section 1.6, we will introduce the ∆–framework as an alternative approach
to describe deviations from the SM Higgs couplings.

1.1 The Higgs sector of the Standard Model
The electroweak sector of the SM is described as a gauge theory with an SU(2)L×U(1)Y symmetry [14–
17] which is broken to U(1)Q by the presence of the scalar SU(2)L Higgs doublet φ [3–5]. The SM
Higgs sector is described by the following Lagrangian

LHiggs = (Dµφ)†(Dµφ)− V (φ) + LYukawa ,
V (φ) = µ2φ†φ+ λ(φ†φ)2 ,

LYukawa = −
∑

generations

(
yu

(
u

d

)
L

φ̃ uR + yd

(
u

d

)
L

φdR + y`

(
ν

`

)
L

φ `R + h.c.
)
, (1)

with real parameters µ2 < 0 and λ in the Higgs potential, complex Yukawa couplings yi which are
matrices in flavor space and φ̃ = iσ2φ

∗. The covariant derivative is defined as

Dµφ =
(
∂µ + ig

σa

2 W a
µ + i

g′

2 Bµ
)
, (2)

with W a
µ and Bµ denoting the gauge bosons of the SU(2)L and U(1)Y gauge groups their respective

coupling constants g and g′ and σa being the Pauli matrices. The Higgs doublet can be written in terms
of the physical Higgs field h, the vacuum expectation value (vev) of the Higgs potential v = −

√
µ2/λ

and the would-be Goldstone bosons wi resulting from the spontaneous symmetry breaking [18, 19] of
the electroweak sector as

φ = 1√
2

(
−w2 − iw1

v + h+ iw3

)
. (3)

The Goldstone bosons provide the longitudinal degrees of freedom of the massive gauge bosons and we
can write the Higgs doublet in the Lagrangian in Eq. (1) in unitary gauge φ = 1√

2 (0, v + h)T . With
this replacement we directly see that the same terms that induce the couplings of fermions and the
weak bosons to the Higgs will also generate their masses. Therefore, there is a proportionality between
the couplings of the Higgs boson to other SM particles x (which obtain their masses via electroweak
symmetry breaking) and their masses gx ∼ mx. The triple and quartic couplings of the Higgs boson
are proportional to the parameter λ, rendering those couplings sensitive to the structure of the Higgs
potential in Eq. (1).

Higgs production and decays
As the Higgs boson predominantly couples to heavy particles, its dominant production modes involve
the top quark and the weak Z andW bosons. At the LHC, the main production processes of the Higgs
boson are gluon fusion (ggF), weak boson fusion (WBF), associated production with a Z or W boson
and production in association with a pair of top quarks. The Feynman diagrams for the dominant
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1 Standard Model effective field theory for the Higgs sector

(single) Higgs production modes at the LHC are shown in (the upper panel of) Fig. 1. We list their
production cross section at a

√
s = 13 TeV pp-collider in Tab. 1.

We can probe the Higgs self-coupling λ and obtain insight on the structure of the Higgs potential in
Eq. (1) by measuring di-Higgs production. The relevant Feynman diagrams for this process are given
in the lower row of Fig. 1. Di-Higgs production is not only phase space suppressed by the mass of the
Higgs bosons, it suffers in addition from the negative interference between the two diagrams, rendering
its cross section accidentally small. In fact, its cross section is around a factor 17 smaller than for Higgs
production in association with a top quark pair, see Tab. 1, despite the fact that tt̄h production suffers
from an even stronger phase space suppression and di-Higgs production only involves one additional
coupling of λ ∼ 0.13 or yt ∼ 0.7. The strong negative interference of the two diagrams contributing to
di-Higgs production makes this process especially sensitive to new physics with modified Higgs sectors
which might reduce such cancellations and enhance its cross section.

Figure 1: Feynman diagrams of the dominant production modes of the Higgs boson at the LHC. Upper
row: gluon fusion (left), weak boson fusion (middle left), associated production with a weak boson
(middle right) and tth production (right). Lower row: Di-Higgs production.

production channel cross section [pb]
ggF 48.58

WBF 3.782
Wh 1.373
Zh 0.8839
tth 0.5071
hh 0.03105

Table 1: Production channels of the Higgs boson and their SM cross section predictions for LHC Run II
(
√
s = 13 TeV) [20].

Since the Higgs boson couples to all massive particles of the SM, it has a broad spectrum of decay
modes. It prefers to decay into a pair of the heaviest particles allowed by phase space which is a pair
of bottom quarks, see Fig. 2. The decay to a pair of Z or W bosons is suppressed by one of the bosons
having to be off-shell due to their masses. The decay of a Higgs boson to a pair of gluons, photons
or Zγ is only possible via loop diagrams. Given the large QCD backgrounds at a hadron collider,
the dominant (hadronic) decay modes of the Higgs boson are not the most sensitive experimental
signatures. Despite their low branching ratios of 0.2 % and 0.3 % respectively, the di-photon γγ and
ZZ∗ → 4` decay modes of the Higgs boson are considered its golden channels.

1.2 Effective field theory
Effective field theory provides a flexible and theoretically sound framework to describe new physics in
an (almost) model independent way [6]. It is based on the assumption of a hierarchy of scales, i. e. the
idea that new physics appears at a scale Λ much larger than the scale of the physical process E under

3
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bb, 58.2 %

WW ∗, 21.4 %
gg, 8.2 %
ττ , 6.2 %
ZZ∗, 2.6 %
Zγ,γγ, ∼ 0.2 % each

Figure 2: SM predictions for the branching ratios of the Higgs boson [20].

consideration (and accessible by experiments). An effective field theory aims at describing all effects
relevant at a given scale, while neglecting those which only play a role at a significantly different
scale. Applied to particle physics, this means that an effective field theory describes the effects of
new particles and structures at an energy scale where these can not (yet) be resolved. Heavy degrees
of freedom of a new physics theory are integrated out and their low-energy effects are described by
fixing the (propagating) particle content and the underlying symmetry structure and constructing new
operators with mass-dimension d > 4 from it.
As the action S =

∫
d4x L(x) of a quantum field theory is dimension-less, all terms in a Lagrangian

need to have mass dimension d = 4. Therefore, in an effective field theory all operators of mass
dimension d > 4 need to be suppressed by powers of a (new physics) scale Λ which is usually assumed
to be universal. The Lagrangian of an effective field theory is thus given by [7–11]

LEFT =
∑
i

ci
Λd−4O

(d)
i , (4)

where ci denote the Wilson coefficients corresponding to the higher-dimensional operators Oi. The
contribution of each operator O(d)

i to amplitudes of physical processes at an energy scale of order
O (E) has a maximum scaling of (E/Λ)(d−4). When we assume a large new physics scale Λ, this ratio
is small E/Λ � 1 by construction and the effective field theory describes small deviations from the
SM predictions, except for observables that vanish or are suppressed by small parameters within the
SM [21]. Given a large new physics scale Λ, it is often justified to truncate the effective theory at a given
dimension, typically dimension six for EFTs based on the SM field content, since higher-dimensional
terms are suppressed and rendered irrelevant by additional powers of Λ.

An illustrative top down example for an effective theory, i. e. starting from a full, UV-complete new
physics model and integrating out the heavy degrees of freedom, is Fermi’s theory of the muon de-
cay [22]. We display the corresponding Feynman diagrams in Fig. 3. At energy scales much lower than
the mass of theW boson, E � Λ = mW , theW boson can be integrated out and the decay of the muon
is effectively described by a four-point interaction of fermions. This is equivalent to approximating the
W boson propagator in the decay for low momenta p

g2

p2 −m2
W

→ g2

m2
W

, (5)

which at an energy scale of the mass of the muon is a very good approximation m2
µ/m

2
W ≈ 10−6.

The effective Lagrangian of the Fermi theory of the muon decay in terms of a dimension-six operator
reads [21]

LEFT ⊃ c(6) (ēγαPLνe) (ν̄µγαPLµ) + h.c., c(6) = − g2

2m2
W

= − 2
v2 . (6)

At energies E � mW , this four-point contact interaction of the muon decay is a valid approximation
for the full electroweak process described by the SM.
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Figure 3: The muon decay as described by the full theory of weak interactions (left) and by an effective
theory after integrating out the W boson (right).

1.3 Constructing SMEFT from the bottom-up
In the previous section, we have seen the textbook example for the construction of a top-down EFT,
the Fermi theory of the muon decay. Starting from a full theory, in this case the electroweak sector
of the SM, we have constructed an effective low-energy description of this theory, valid for E < mW ,
describing the muon decay with an effective four-fermion operator at dimension six.
In this section, we want to go the opposite way and construct an effective field theory bottom-up. If we
restrict ourselves to the field content of the SM, the only operator that we can construct at dimension
five is the Weinberg operator (LLφ̃∗)(φ̃†LL) which, however, violates lepton number conservation.
Consequently, if we want to preserve baryon and lepton number conservation, operators need to be at
least of dimension six. Our aim for this section is to construct a complete basis of operators based
only on the following five assumptions:

1. Field content: We will build new operators from the SM fields only.

2. Symmetries: We will only allow operators which are invariant under the SM gauge group
SU(3)C × SU(2)L × U(1)Y and under proper orthochronous Poincaré transformations. In addi-
tion, we require lepton and baryon number conservation.

3. Counting scheme: We only keep operators up to mass dimension six.

4. Flavor: We assume a universal flavor structure, i. e. we will not distinguish between the different
fermion families.

5. Higgs sector: We assume the Higgs boson h and the would-be Goldstone bosons to form an
SU(2)L doublet as given in Eq. (3), limiting ourselves to SM EFT (or linear EFT ) in contrast
to non-linear Higgs EFT which is often simply denoted Higgs EFT (HEFT).

Respecting those assumptions and barring Hermitian conjugation, we can construct 59 operators [7–
11,23–29] and our effective Lagrangian is given by

LEFT = LSM +
59∑
i

ci
Λ2O

(6)
i . (7)

The definition of an operator basis is not unique, as operators can be translated into one another
using field redefinitions, Fierz identities and integration by parts. Popular basis choices include the
Warsaw basis, the Strongly interacting Little Higgs (SILH) basis and the Hagiwara-Ishihara-Szalapski-
Zeppenfeld (HISZ) basis. Here, we will use a convention based on the latter and will follow the approach
of Ref. [30,31] for its definition, starting from a larger set of operators and explicitly using the equations
of motion to remove operators with blind directions to electroweak precision data.

We can classify the 59 operators in our basis according to their field content in terms of gauge fields
strength tensorsX, Higgs doublet φ and fermion fields ψ as well as derivatives ∂/D and their properties.
In the following, we will list the categories of dimension-six operators and restrict ourselves to a subset
of those which we will discuss in more detail. We can loosely classify the operators into two sets, see
Tab. 2: operators containing bosonic fields only (17 operators) and those containing fermionic fields
as well (42 operators).

5



1 Standard Model effective field theory for the Higgs sector

bosonic # fermionic #
gauge only X3 2 4-fermion ψ4 25
Higgs only φ6, φ4∂2 2 Higgs-fermion φ3ψ2 3
Higgs-gauge φ2X2, φ2XD2 (8) 7 Higgs-gauge-fermion φ2ψ2D (8) 6
CP -odd φ2XX̃, φ2X̃D2 6 dipole φψ2X 8

Table 2: Overview of dimension-six operator ordered by field content and structure. We have grayed
out operators which are mostly irrelevant for Higgs physics. We also list the number of operators of a
given structure (before using the equations of motion).

Out of the 17 purely bosonic operators, 6 are CP violating. We will refer to them as φ2X2 and
φ2XD2 or φ2XX̃ and φ2X̃D2 using the tilde to denote the dual field strength. The remaining CP -
even operators can further be subclassified into operators containing gauge fields only (X3, 2 operators),
operators containing the Higgs field only (φ6 and φ4∂2, 2 operators) and operators consisting of both
gauge and Higgs fields (φ2X2 and φ2XD2, 7 operators). The set of fermionic operators consists of 4-
fermion operators (ψ4, 25 operators), operators containing fermions and the Higgs (φ3ψ2, 3 operators),
fermionic Higgs-gauge operators (φ2ψ2D, 6 operators) and fermionic Higgs-gauge operators with a
tensor Lorentz structure (φψ2X, 8 operators) which we will also refer to as dipole operators.

Not all of the operators in Tab. 2 are relevant for Higgs physics and we will therefore only consider a
subset of them in the following. Since we expect CP violation to be measured in a dedicated analysis
rather than a global fit [32, 33], we restrict the set of operators to the P -even and C-even ones and
only list CP -odd operators in Eq. (56) for completeness. We also neglect all operators describing four-
fermion contact interactions except OLLLL defined in Eq. (13). 4-fermion operators do not contribute
to any of the main Higgs-production modes, see Section 1.1, and we only keep OLLLL because of
its influence on the well measured Fermi constant GF which is relevant for our study of electroweak
precision data in Section 1.5. Dipole operators flip the fermion chirality due to their Lorentz structure.
Their interference with the SM amplitudes is hence small. As they are also expected to be suppressed
by the fermion Yukawa, we will generally neglect all dipole operators except OtG which we will come
back to in Eq. (15). For current constraints on dipole operators involving light or heavy quarks see
e. g. Refs. [34–36].
We will now discuss the bosonic, Higgs-fermion and Higgs-gauge fermion operators in more detail,
focussing especially on the vertices they are contributing to. In Section 1.4, we will focus on the
phenomenology of the operators on the Lagrangian level and then discuss processes which are capable
of setting meaningful limits on those in Section 1.5.

Bosonic operators

We start our discussion of the dimension-six operators by listing the operators containing Higgs or
gauge fields only. There are six CP -odd bosonic operators in our basis, see to Eq. (56), which we
neglect in our analysis. We explicitly write down 12 CP -conserving operators and will later use the
equations of motion, Eq. (14), to remove one of them. There are two operators which consist of gauge
fields only

OWWW = Tr
(
ŴµνŴ

νρŴµ
ρ

)
OG= fabcG

ρ
aνG

ν
bλG

λ
cρ (8)

and eight operators containing Higgs and gauge fields

OGG = φ†φ GaµνG
aµν OW = (Dµφ)†Ŵµν(Dνφ) Oφ1 = (Dµφ)†φφ†Dµφ

OWW = φ†ŴµνŴ
µνφ OB = (Dµφ)†B̂µν(Dνφ) Oφ4 = φ†φ (Dµφ)†Dµφ

OBB = φ†B̂µνB̂
µνφ OBW = φ†B̂µνŴ

µνφ . (9)
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The covariant derivative acting on the Higgs is defined in Eq. (2) and the hatted field strengths are
rescaled with extra coupling factors B̂µν = ig′Bµν/2 and Ŵµν = igσaW a

µν/2 to ensure that they
contribute to vertices with the same coupling orders as their SM counterparts. This rescaling is
motivated by our expectations from known UV-completions. It has, however, no effect on our analysis
or its interpretation. Two operators contain the Higgs field only

Oφ2= 1
2∂

µ(φ†φ)∂µ(φ†φ) Oφ3= −1
3(φ†φ)3 (10)

The effect of the operators in Eqs. (8)-(10) on Higgs and gauge interactions is summarized in Tab. 3.
All operators in Eqs. (9) and (10) affect Higgs interactions. Moreover, many of the operators in Eq. (9)

operator Hff̄ HHH HV V V V V

Oφ1 × × × ×
Oφ2 × × ×
Oφ3 ×
Oφ4 × × ×
OWW ×
OBB ×
OW × ×
OB × ×
OBW × ×
OWWW ×

Table 3: List of bosonic operator and their effect on couplings. Some of the operators also con-
tribute to HHHH, HV V V , HHV V or V V V V , but we limit ourselves to a list of interactions that is
phenomenologically relevant for the processes studied in the following.

and the operator OWWW lead to anomalous triple gauge couplings and can therefore be constrained
using diboson measurements. We will discuss this source of constraints in more detail in Section 1.5.
For a more detailed discussion of the bosonic operators, including an analysis of their (non-SM) Lorentz
structures, see Ref. [31,37–39]. We will discuss the limits on the operator OG in Eq. (12) in Section 3.
Some of the operators in Eq. (9) contribute to the two-point functions of the electroweak gauge bosons.
For the operatorsOWW andOZZ these additional contributions can be removed by a trivial redefinition
of the fields and couplings. For Oφ1 and OBW however, the situation is more involved and their
additional contributions to the kinetic terms or mass terms of the electroweak gauge bosons cannot
be fully removed by redefinitions of the fields, as explained e. g. in Ref. [31]. The operator OBW
contributes to W 3–B mixing, while the operator Oφ1 contributes to the Z boson mass, but not the
W boson mass. They are therefore constrained by the S oblique parameter and ∆ρ, or the T oblique
parameter, respectively [40, 41]. We will discuss electroweak precision data as a source of constraints
on dimension-six operators in Section 1.5. The operator Oφ2 contributes to the kinetic term of the
Higgs field and requires a redefinition of the field, if we want to keep the canonical form of the kinetic
term. We will discuss its phenomenology, a global shift of the Higgs couplings to other particles and
the introduction of a momentum-dependent Higgs self-coupling, in Section 1.4. The operator Oφ3 is
particularly relevant because of its modification of the Higgs potential. We will come back to it in
Section 4, when we are including the Higgs self-coupling in a global fit. Using the equations of motion
for the Higgs and gauge bosons [10] will allow us to remove three operators from our basis, see Eq. (14).
To avoid blind directions to electroweak precision data [30, 31], we will later choose to remove Oφ4
from our set of operators.

Fermionic operators
After the discussion of operators involving only the Higgs and the electroweak gauge fields, we will
now study a second group of operators containing fermionic (and bosonic) fields. We will distinguish
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between operators containing fermions and the Higgs only, operator containing fermions, the Higgs
and gauge fields with SM-like Lorentz structures, four-fermion operators and finally dipole operators,
containing fermions, the Higgs and gauge fields and non-SM like Lorentz structures.
We begin with fermionic operators affecting the coupling of the Higgs to fermions and result in Yukawa-
like interactions. Restricting ourselves to the third family of fermions, there are three such operators

Oeφ,33 = φ†φ L̄3φeR,3 Ouφ,33 = φ†φ Q̄3φ̃uR,3 Odφ,33 = φ†φ Q̄3φdR,3 (11)

In addition we consider the group of fermionic Higgs-gauge operators. Assuming flavor universality, we
start from a list of eight operators and will reduce their number to six using the equations of motion

O(1)
φQ = φ†(i

↔
Dµφ)(Q̄γµQ) O(3)

φQ = φ†(i
↔
Da

µφ)(Q̄γµσa2 Q)

O(1)
φL = φ†(i

↔
Dµφ)(L̄γµL) O(3)

φL = φ†(i
↔
Da

µφ)(L̄γµσa2 L)

O(1)
φu = φ†(i

↔
Dµφ)(ūRγµuR)

O(1)
φd = φ†(i

↔
Dµφ)(d̄RγµdR)

O(1)
φe = φ†(i

↔
Dµφ)(ēRγµeR)

O(1)
φud = φ̃†(i

↔
Dµφ)(ūRγµdR) (12)

The operator O(1)
φud contains the charged current ūRγµdR [42–45]. Given the known flavor physics

constraints and the fact that it has no equivalent Standard Model structure to interfere with, we will
ignore it in our analyses.
An important phenomenological consequence of the operators in Eq. (12) is the generation of anoma-
lous weak boson couplings to fermions, see Tab. 4. In this table, we have also included the bosonic
operators Oφ1 and OBW because of their influence on weak boson couplings to fermions after the
field redefinitions. The operators in Eq. (12) leave the Higgs coupling to fermions unchanged. They
do, however, introduce point-like HV ff interactions and therefore contribute to Higgs production in
association with an electroweak boson, see also the discussion in Sec. 3.
25 of the 59 dimension-six operators describe four-fermion contact interactions. Here, we only consider
one of them, as it induces a shift in the Fermi constant and is therefore relevant for the description of
electroweak precision data

OLLLL = (L̄1γµL2) (L̄2γ
µL1) . (13)

The equations of motion [10] for the Higgs field and the electroweak gauge fields provide equivalence

Hff̄ Zqq Wqq′ HZqq HWqq′ Zll̄ Wlν

Oφ1 × × × × ×
OBW × × × ×
O(3)
φQ × × × ×
O(1)
φQ × ×
O(1)
φu × ×
O(1)
φd × ×
O(1)
φe ×

Table 4: List of operators affecting electroweak precision observables and their effect on fermionic
couplings testable at the LHC.
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relations between (the sums of) dimension-six operators that allow us to eliminate three operators
from the set that we have defined so far [12,13]

2Oφ2 + 2Oφ4 =
(
ye33(Oeφ,33)† + yu33Ouφ,33 + yd33(Odφ,33)† + h.c.

)
− ∂V (h)

∂h

2OB +OBW +OWW + g2
(
Oφ4 −

1
2Oφ2

)
= −g

2

4
∑
flavor

(
O(3)
φL +O(3)

φQ

)
2OB +OBW +OBB + g′2

(
Oφ1 −

1
2Oφ2

)
=

− g′2

2

(
−1

2O
(1)
φL + 1

6O
(1)
φQ −O

(1)
φe + 2

3O
(1)
φu −

1
3O

(1)
φd

)
. (14)

We choose to eliminate the leptonic operators O(1)
φL and O(3)

φL and the bosonic operator Oφ4 to avoid
blind directions to electroweak precision data [30,31] .

The last category of dimension-six operators that we want to discuss is that of dipole operators,
fermionic Higgs-gauge operators with a tensor Lorentz structure. In the HISZ basis, there are eight
such operators which we list explicitly in Eq. (58). Due to their non-SM Lorentz structure, their tree-
level interference with the SM is helicity suppressed. In general, we will therefore not consider them
in our analysis. In Chapter 3 we will however discuss the effect of the operator

OtG = (Q̄σµνT auR) φ̃ Gaµν (15)

on tt̄h production. For bounds on dipole operators from partial–wave unitarity violation, the top sector
or measurements of the electric and magnetic dipole moments see Refs. [34–36,46].

This completes the discussion of the set of dimension-six operators included in our studies. Altogether,
we have identified 21 operators which are potentially relevant for our study of Higgs physics

{OG, OWWW , Oφ1, Oφ2, Oφ3, OGG, OWW , OBB , OBW , OB , OW } bosonic{
Ouφ,33, Odφ,33, Oeφ,33, O(3)

φQ, O
(1)
φu , O

(1)
φd , O

(1)
φe , O

(1)
φQ, OtG, OLLLL

}
fermionic, (16)

with the operator definitions given in Eqs. (9)–(12). We will later discuss in Section 3 how additional
precision constraints from multi-jet production and the top sector on the operators OG and OtG
respectively and the current reach for Oφ3 at the LHC will render them irrelevant for current global
studies of the Higgs sector at 13 TeV. The maximum number of operators included in our LHC Higgs
fits is therefore 18 operators. In addition, we will include an invisible Higgs branching ratio as an
additional free parameter.

1.4 Phenomenology of dimension-six operators
In this section, we want to examine the phenomenology of new interactions induced by dimension-six
operators in more detail. Starting from a short summary of the vertices and field shifts of dimension-six
operators, we will take the operator Oφ2 as an example and study its effects explicitly.
A first, obvious result of dimension-six operators is the introduction of new vertices with higher-order
contact interactions. We have already seen this effect in our analysis of Fermi’s theory example in
Section 1.2 in the form of a four-fermion vertex not present in the SM. Besides, dimension-six operators
can also contribute to vertices already present at dimension-four: For two operators with dimension d
and d+ 2 to contribute to the same vertex at tree-level, they need to have the same field content after
electroweak symmetry breaking. To achieve this, the higher-dimensional operator must either contain
two additional powers of the Higgs doublet or two more derivatives compared to its lower-dimensional
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counter part. The vertices thus obtain additional contributions which can roughly be described as [21],
respectively,

v2

Λ2 or p2

Λ2 . (17)

The first type of operators with a v2 proportionality will leave the Lorentz structure of the vertex
unchanged and only contribute to the total rate without influencing the kinematics of the interaction.
This is true, for instance, for the fermionic operators with Higgs couplings in Eq. 11. After electroweak
symmetry breaking the operator Ouφ,33 leads to contribution of the form

Ouφ,33 = φ†φ Q̄3φ̃uR,3 → v2 Q̄3φ̃uR,3 (18)

which has the exact same structure as the Yukawa terms in the SM Lagrangian in Eq. (1).
The second type of dimension-six operators, however, containing extra derivatives, will induce extra
momentum dependences in a vertex. It will therefore change the kinematics of interactions and its
effects will be more pronounced at high energies as we will shortly see for the contribution of the
operator Oφ2 to the Higgs self-interaction.
Finally, as we already discussed in Section 1.3, dimension-six operators can contribute to the two-point
functions of the SM fields. In order to restore the canonical form of the kinetic terms, we therefore
need to redefine our fields. This leads to global changes of the couplings of the physical fields or a
change of their masses. Such changes are for instance induced by the operators Oφ1, Oφ2 and OBW .

The operator Oφ2: As an example to show the effects of a dimension-six operator on two-point
functions and kinematics, we will now study the phenomenology of the operator Oφ2. It leads to a
rescaling of all Higgs couplings and introduces new kinematic structures to the triple Higgs coupling.
For convenience, we repeat its definition

LEFT = LSM + fφ2

Λ Oφ2 , Oφ2 = 1
2∂

µ(φ†φ)∂µ(φ†φ). (19)

In order to study the effects of Oφ2 on the physical fields, we rewrite the products of the Higgs fields
in unitary gauge by φ†φ = (v2 + 2vh̃+ h̃2)/2 where we use h̃ for the Higgs field, because it is not yet a
mass eigenstate. Explicitly writing out the SM contributions to the kinetic Higgs term and the Higgs
self-coupling as given in Eq. 1, we obtain the following form for Eq. (19)

LEFT ⊂
1
2 ∂

µh̃ ∂µh̃− λ
(
v h̃3 + h̃4)+ fφ2

8Λ2 ∂
µ
(
v2 + 2vh̃+ h̃2) ∂µ (v2 + 2vh̃+ h̃2)

= 1
2

(
1 + v2fφ2

Λ2

)
∂µh̃ ∂µh̃− λvh̃3 + vfφ2

Λ2 h̃ ∂µh̃ ∂µh̃− λh̃4 + fφ2

2Λ2 h̃
2 ∂µh̃ ∂µh̃. (20)

The first term of the above Lagrangian rescales the kinetic term of the Higgs boson by a factor
(1 + v2fφ2/Λ2) while the third and fifth term introduce new momentum-dependent triple and quartic
Higgs self-couplings respectively. There are hence two important modifications of Higgs couplings due
to the operator Oφ2: First, a rescaling of the Higgs field h̃ is necessary to restore the canonical form
of the kinetic term

h =
√

1 + v2fφ2

Λ2 h̃, (21)

which induces a universal shift of all couplings of the Higgs to other particles x

gx = 1√
1 + v2fφ2

Λ2

gSMx . (22)

The second important result is the appearance of a new Lorentz structure contributing to the triple
(and quartic) Higgs self-coupling

6vλ → 6vλ+ 2vfφ2 (p1 · p2 + p1 · p3 + p2 · p3) . (23)

This new Lorentz structure will become relevant in Section 4 when we study the Higgs self-coupling
at a potential 27 TeV upgrade of the LHC.
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1 Standard Model effective field theory for the Higgs sector

1.5 Constraining SMEFT operators
Having fixed the set of operators which we will consider for our analyses of the Higgs-gauge sector in
the SMEFT framework, we now want to discuss the physical processes which will provide meaningful
constraints on their Wilson coefficients. This includes rate measurements of different Higgs production
and decay channels and of the diboson sector at the LHC, as well as electroweak precision observables
at LEP.
Some of the operators in our set induce new Lorentz structures in vertices already present at dimension-
four, as we have seen in the previous Section 1.4. They will therefore not only modify total rate
measurements, but also influence differential distributions. Additional momentum-dependences of the
dimension-six operators often renders (momentum-related) kinematic distributions the most powerful
source of constraints for the Wilson coefficients of dimension-six operators.

Higgs sector

All of the operators in Eqs. (9)–(11) influence the couplings of the Higgs boson to other SM particles.
In addition, the fermionic Higgs-gauge operators in Eq. (12) affect quark-induced Higgs production
processes. We can therefore constrain their Wilson coefficients by measurements of the total rate of
different Higgs production processes and Higgs decays. As all of the measurements of Higgs production
with subsequent decays can potentially be affected by more than one dimension-six operator, the
constraints on the Wilson coefficients of the operators will be correlated.

h

g

g

Z

Z
h

g

g

Z

Z

Figure 4: Feynman diagrams for the Higgs production and decay channel pp → h → ZZ∗. Blobs
indicate the insertion of a dimension-six operator.

Let us consider for instance the channel pp → h → ZZ∗: On the production side, it is influenced
by the operators OGG and Ouφ,33, contributing to the hgg and htt̄ vertices respectively. The decay
h→ ZZ∗ obtains modifications from all operators inducing hZZ vertices, i. e. from OBB , OWW , OB ,
OW , OBW , Oφ1 and Oφ2. In total, there are already nine operators influencing this one process,
all of which contribute to other Higgs production or decay processes as well. This demonstrates the
complexity of the correlations and motivates a global fit of all parameters and observables.
As a benchmark for current constraints on the Wilson coefficients of the considered dimension-six
operators from the Higgs sector, we quote the typical reach of LHC Run I Higgs measurements

Λ√
|f |

& 250 ... 500 GeV (pure Higgs analysis for LHC Run I [47]). (24)

Triple gauge vertices

Triple-gauge vertices (TGV) are probed at the LHC (and LEP) by studying di-boson production,
specifically W+W− and WZ production, testing the structure of the WWZ or WWγ vertices in
kinematic distributions. Example Feynman diagrams for diboson production are given in Fig. 5. Some
of the dimension-six operators in Eq. (9) contain V V V couplings and directly contribute to TGVs,
inducing new Lorentz structures of the self-interactions of the electroweak gauge bosons. We can
therefore use diboson production to constrain the Wilson coefficients of some of the bosonic operators in
our basis, see Tab. 3. In addition to the modification of the self-interaction of electroweak gauge bosons
by purely bosonic dimension-six operators, diboson production is also influenced by dimension-six
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W
q

q′

W

Z

Z/γ
q

q

W

W

q

q′

V

V

q

q′

V

V

Figure 5: Feynman diagrams for diboson production at the LHC. From left to right: SM production of
WZ and W+W−; contributions from dimension-six operators influencing ffV and V V V couplings.

operators with couplings qq′V or qq′V V on the production side at the LHC. The full set of dimension-
six operators influencing di-boson production at the LHC is therefore given by

LEFT ⊃
fW
Λ2 OW + fB

Λ2OB + fBW
Λ2 OBW + fφ1

Λ2 Oφ1 + fWWW

Λ2 OWWW

+
f

(1)
φQ

Λ2 O
(1)
φQ +

f
(1)
φd

Λ2 O
(1)
φd +

f
(1)
φu

Λ2 O
(1)
φu +

f
(3)
φQ

Λ2 O
(3)
φQ . (25)

In the remaining part of this section, we want to focus on modifications of the gauge-boson self-
interactions by bosonic dimension-six operators, i. e. those in the first line of the above Lagrangian,
and the new Lorentz structures induced by them.

The deviations from the SM gauge couplings and the new coupling structures are historically written
in terms of the parameters κγ , κZ , gZ1 , g

γ
1 , λγ , and λZ [48]. Fixing gγ1 = 1 by using electromagnetic

gauge invariance, the shifts are defined by

∆LTGV =− ie (κγ − 1) W+
µ W

−
ν γ

µν − ieλγ
m2
W

W+
µνW

−νργµρ −
igZλZ
m2
W

W+
µνW

−νρZ µ
ρ

− igZ (κZ − 1) W+
µ W

−
ν Z

µν − igZ (gZ1 − 1)
(
W+
µνW

−µZν −W+
µ ZνW

−µν) , (26)

where e = gsw and gZ = gcw. We can translate from one notational convention to the other using the
relations

κγ = 1 + g2v2

8Λ2 (fW + fB − 2fBW )

κZ = 1 + g2v2

8c2wΛ2

(
c2wfW − s2

wfB + 4c2W s2
W

c2W − s2
W

fBW

)
− 1

4(c2W − s2
W )fφ1

v2

Λ2

gZ1 = 1 + g2v2

8c2wΛ2

(
fW + 2 s2

W

c2W − s2
W

fBW

)
− 1

4(c2W − s2
W )fφ1

v2

Λ2

λγ = λZ = 3g2m2
W

2Λ2 fWWW . (27)

The appearance of extra derivatives in the new Lorentz structures of the self-couplings of the elec-
troweak gauge bosons leads to additional momentum-dependences of the vertices compared to the SM
ones. The analysis of (momentum-related) differential distributions will hence be crucial to constrain
dimension-six operators using measurements of diboson production [30,47].
For the more generic scenario of a non-linear or chiral effective Lagrangian [49–52], i. e. not assuming a
doublet structure for the Higgs sector, the above parametrization would be extended and the correla-
tions from gauge dependence are lost. Furthermore, the deviations generated by non-linear operators
in the TGVs and the Higgs interactions could be completely de-correlated from one another. For the
Higgs sector alone however, there exists a trivial mapping of the linear and non-linear analyses, as
shown in Refs. [37, 38].
To get a very rough idea of the constraints that diboson production (in combination with measurements
of the Higgs sector) can place on the Wilson coefficients fB , fW and fWWW , we quote the typical reach
of global Run I analyses,

Λ√
|f |

& 300 ... 500 GeV (Higgs-gauge analysis for LHC Run I [47]). (28)
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1 Standard Model effective field theory for the Higgs sector

Measurements of TGVs were already performed at LEP. However, we note that already the LHC Run I
di-boson measurements already clearly outperform the corresponding LEP measurements [47].

Electroweak precision data
The operators given in Eq. (12) affect the couplings of fermions to the weak gauge bosons, see Tab. 4.
This is also true for some of the operators in Eq. (9), for which, however, the couplings to fermions
only appear as a result of the redefinition of the fields to restore the canonical form of the kinetic
terms. The full set of dimension-six operators influencing ffV or four-fermion couplings is given by

LEFT ⊃
fφ1

Λ2 Oφ1 + fBW
Λ2 OBW + fLLLL

Λ2 OLLLL

+
f

(1)
φQ

Λ2 O
(1)
φQ +

f
(1)
φd

Λ2 O
(1)
φd +

f
(1)
φu

Λ2 O
(1)
φu +

f
(1)
φe

Λ2 O
(1)
φe +

f
(3)
φQ

Λ2 O
(3)
φQ . (29)

The couplings of the electroweak gauge bosons to fermions are well measured at LEP, the Tevatron
and at the LHC, forming the set of so-called electroweak precision data on Z-pole and W -observables.
At LEP, they were measured in the processes

e+e− → Z/γ → ff and e+e− →W+W− → 4f . (30)

We depict the Feynman diagrams relevant for the Z-pole observables in the SM and the contributions
from dimension-six operators in Fig. 6. They probe the couplings of the Z boson to fermions as well
as the two-point functions of the Z boson and the photon. For the properties of the W boson, the
precision of the measurements at the LHC is already at or beyond the level of the LEP and Tevatron
measurements. In the following, we will just briefly list the set of electroweak precision observables
and discuss their potential for constraining the operators in our basis.

e−

e+

f

f

e−

e+

f

f

e−

e+

f

f

e−

e+

f

f

Figure 6: Feynman diagrams relevant for electroweak precision Z-pole observables in the SM (left) and
contributions from dimension-six operators.

We include the Z-pole observables{
ΓZ , σ0

h, Al(τpol), R0
l , Al(SLD), A0,l

FB, R
0
c , R

0
b , Ac, Ab, A

0,c
FB, A

0,b
FB(SLD/LEP-I)

}
. (31)

with measurements and correlations taken from Ref [53]. See Tab. 5 for explanations. Furthermore,
we also include the W -observables {

mW , ΓW , BR(W → lν)
}
, (32)

with values taken from Ref. [54].
Due to their high precision, these observables provide strong constraints on dimension-six operators.
For the inclusion of electroweak precision data in our global fit performed in Chapter 3, we follow the
approach described in Ref. [46]. We use the SM predictions for above observables given in Ref. [55].
For the SM prediction of the W -mass this includes the full one- and two-loop EW and two-loop QCD
corrections of O(ααs) as well as some 3-loop contributions. The parametrization of the effects of our
dimension-6 operators can be found in Ref. [46], where we limit ourselves to linear contributions from
the higher-dimensional operators considered in our fit, i. e. we only take into account contributions up
to 1/Λ. As the typical energy scale of electroweak precision data is around mZ , this approximation is
justified as long as the dimension-6 corrections are small, i. e. fm2

Z/Λ2 � 1.
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1 Standard Model effective field theory for the Higgs sector

observable definition explanation
ΓZ Z boson total decay width
σ0
h Z boson production cross section

R0
l σhad/σll ratio of partial decay width w.r.t. hadronic decays

R0
q σqq/σhad

AFB (NF −NB)/(NF +NB) forward-backward asymmetries
Af 2 (gV f/gAf )/[1 + gV f/gAf ] asymmetries of left- and right-handed couplings

Table 5: Explanation of the Z-pole observables given in Eq. (31).

As a reference for the approximate size of the constraints on the Wilson coefficients of the dimension-
six operators due to electroweak precision data, we quote individual limits of the standard analyses of
the kind

Λ√
|f |

& 4 ... 10 TeV (electroweak precision data [55]). (33)

Comparing these limits with the expected sensitivity of the global LHC analysis from Eq. (28), we find
that the reach is significantly larger in the fermionic Higgs-gauge sector. Therefore, naively it might
seem that it is not necessary to combine the set of operators of the Higgs gauge sector with operators
constrained by electroweak precision data in a global fit. However, we will see in Section 4 that the
fermionic Higgs-gauge operators nevertheless lead to non-negligible effects at the LHC.

1.6 The ∆-framework
An arguably even simpler description of deviations from the SM in Higgs physics than effective field
theory is given by the κ-framework [56–58], or the closely related ∆-framework which describes new
physics effects by their influence on SM Higgs couplings. The framework relates the measured couplings
of the Higgs boson to a particle x, gx, to their SM values gSMx via

gx = κx g
SM
x = (1 + ∆x) gSMx . (34)

We recover the SM values for κx = 1 or, equivalently, ∆ = 0.
The simplicity of the κ/∆-framework comes with drawbacks. As this approach is not based on any
symmetries, there is no general convention for whether or not to include terms with non-SM-like
Lorentz structures in the Lagrangian. As a result, Lagrangians in the ∆-framework might break gauge
invariance, depending on the terms included. Furthermore, if we stick to SM-like coupling structures
exclusively, we can only describe modifications of total rates, while we cannot model the effects of new
physics on the kinematics as we will see, for instance, in Section 4. Finally, since the ∆-framework
describes modifications of Higgs couplings only, it cannot be used to combine Higgs measurements
with other precision measurements.
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2 Global Fits
In the last Chapter 1, we have introduced effective field theory as a theoretically sound framework to
describe new physics effects in a global and (almost) model-independent way. The next challenge that
we need to tackle is to find the set of Wilson coefficients of the dimension-six operators in our basis that
fit the experimental observations in the best way. More generally, we are facing the following problem:
On the one hand we have a model which provides predictions for physical observables in terms of a set
of free parameters. On the other hand we have a set of experimental data. Finding the configuration
of model parameters that describes the data in an optimal way may seem like a straight forward
task. However, it is complicated by the fact that no measurement is perfect. Any data set will suffer
from uncertainties, the shape of which depend on their sources. Statistical, systematic and theoretical
uncertainties lead to different probability distributions of the experimentally observed quantities or
their predictions. Moreover, observables often depend on secondary measurements in control regions
leading to correlations between the uncertainties of different measurements (sorry - actually we will
not be talking about correlations at all, because that section of my thesis was too rough to be printed
here). Taking all of the above effects into account, finding the optimal parameter values of a theory
prediction to describe a given data set is the aim of a global fit.
Fitting is a two step process: First, we need to define a measure for the goodness of a parameter
configuration, i. e. we need to define a quantity whose value defines the (relative) quality of a fit.
Second, we need to maximize (or minimize) that quantity.

In the following, we will present the SFitter framework for performing global fits, which is used for
the global analyses of the Higgs-gauge sector in the rest of these lectures. We will first discuss some
basics of statistics and introduce the likelihood as a measure of the quality of a fit in Section 2.1.
In Section 2.2 we will discuss the most commonly used algorithms for scanning the model parameter
space and finding the parameter configuration that maximizes the likelihood. Finally, in Section 2.3,
we will introduce the toy Monte Carlo method as an alternative concept to obtain best-fit points and
confidence intervals in a global fit. We will closely follow the approaches of Refs. [54, 59–62].

2.1 Likelihood
In order to find a model parameter configuration that suits experimental observables in the best way,
we first need to define a measure for the quality of a fit. We will now see that the likelihood is the
most powerful measure of goodness of fit and demonstrate how to construct and combine likelihood
functions in practice. In the next Section 2.2, we will then discuss how to optimize this measure to
examine the best-fit points of our model.
When we repeatedly perform the same experiment, we expect to see different outcomes each time.
Our expectation of the distribution of those different outcomes is encoded in a probability density
function f . Integrating it, we can determine the probability P for the measured value of x to be
within the interval [xmin, xmax] ∫ xmax

xmin

f(x)dx = P . (35)

The probability density function (pdf) reflects our expectation of the distribution of the observable x
in terms of model parameters α that we have suppressed in the above equation. In general, we should
write the pdf as f(x|α), i. e. the probability density of x given α. To clearly separate between measured
quantities and the parameters of our description, we will use Latin letters for measurements and Greek
letters for model parameters in the following. Our model is defined as the totality of the predictions
encoded by the parameters α and the assumption of the form of the pdf. The importance of the
latter should not be underestimated: A global fit does not only depend on the theoretical modelling
of observables, but is also influenced by our premises on the distribution of the data. We refer to a
specific representation of a model for fixed parameters α as a hypothesis H. For the case of an effective
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field theory description, the parameters α correspond to the Wilson coefficients fi of the considered
dimension-six operators. The complete model is given by the effective description of the expectation
values of the experimental observables as well as the assumptions that we make for the form of the
pdfs. Typical choices for the form of the pdf are a Poissonian, Gaussian or flat shape:

1. Poisson - statistical uncertainties
The Poisson distribution describes the statistical uncertainty intrinsic to each measurement, i. e.
the probability to observe d events when expecting νd events. It is the limit of the multinomial
distribution for a small probability p, a large number of tries N and a finite number of expected
events νd = N p. The probability density function for the Poisson distribution is given by

fPois(d|νd) = (νd)d

d! e−νd . (36)

Its variance is σ2
d = νd. As the significance of LHC measurements is typically given in terms of

the number of signal s and background b events as s/
√
b, the statistical significance increases

with the luminosity L as
√
L.

2. Gauss - systematic uncertainties
In the limit of large event numbers d and νd, the Poisson distribution in Eq. (36) turns into a
Gaussian distribution

fGauss(d|νd) = 1√
2πσd

exp
(
− (d− νd)2

2σ2
d

)
. (37)

In addition to statistical uncertainties, LHC observables are also subject to uncertainties arising
from external inputs, related to the apparatus used or assumptions made by the experimenter.
Those systematic uncertainties include uncertainties on the luminosity, on photon reconstruction
efficiency or the jet energy scale. Since these uncertainties are usually extracted from large data
sets, we will expected them to follow a Gaussian distribution. In principle, however, systematic
uncertainties could follow any distribution and the assumption of a Gaussian distribution is only
an approximation.

3. Flat - theoretical uncertainties
Flat uncertainty distributions are used for situations in which any outcome of a measurement
within a specific range σd around a central value νd is equally probable and we do not expect
the probability distribution to have any tails, d ∈ [νd − σd, νd + σd]. While this typically does
not apply to experimental uncertainties, it can be relevant for theoretical uncertainties on the
signal prediction, e. g. scale uncertainties. Scale uncertainties are usually estimated by varying
the central scale µ by a factor 2. The spread between the predicted number of signal events
obtained using the scales µ/2 and 2µ defines the width 2σd which in this framework has no
statistical interpretation. Within the range spanned by the two scale variations [νmin

d , νmax
d ] we

do no have a reason to favor any of the theoretical predictions and we make the conservative
approximation that they are all equally probable. Beyond the boundaries set by µ/2 and 2µ, we
do not expect our theoretical prediction to be valid at all. Hence, we do not want any tails for
the probability distribution. This behavior is represented in the probability density function for
flat uncertainties by a box shape

fFlat(νd|νmin
d , νmax

d ) = 1
2σd

Θ
(
νd − νmin

d

)
Θ (νmax

d − νd) , σd = (νmax
d − νmin

d ) , (38)

using the Heaviside function Θ. Notice that Eq. (38) describe the probability density function for
the prediction νd and not for the measurement d. Nevertheless, in SFitter, we often apply theory
uncertainties to the measured signal instead of the theory prediction. This is an approximation
made for convenience only.

The interpretation of the probability density functions f(x|α) as a function of α with fixed x is called
the likelihood L(α) = L(x|α) = f(x|α). It is important to notice that the likelihood cannot be
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interpreted as a probability in terms of α. Specifically, it is not normalized and it does not correspond
to the probability of a model parameter configuration given the data. For practical reasons, instead
of handling the likelihood directly, it is common to work with negative log-likelihood −2 logL(α).
This has the advantage that a product of likelihood functions becomes a simple sum of log-likelihood
functions.

Likelihood ratios and statistical tests
Our aim for this section was to find a measure that quantifies the level of agreement between the data
and a hypothesis. Let us now come back to this problem in a realistic environment: In practice, instead
of a single observable we are usually confronted with a set of measurements D = {x1, ..., xn} that we
will refer to as the data. Our theoretical description of the data is characterized by the parameters
α = {α1, ..., αk} which we want to fit, i. e. for which we want to find the optimal configuration. A
measure for the goodness of fit should map the data to a single real number. Such function is called a
test statistic T (D)→ R. The likelihood function is one example of a test statistic. It has been shown
by Neyman-Pearson that for a hypothesis test of the hypothesis H1 against the zero hypothesis H0
the test statistic leading to the most powerful test is the likelihood ratio [63,64]

TNP = L(D|H1)
L(D|H0) . (39)

In a way, our problem of trying to obtain an optimal parameter configuration for describing a given
data set is closely related to the problem of hypothesis testing. However, instead of comparing two
hypothesis explicitly, we want to quantify the level of agreement between the data and a hypothesis
without an explicit reference to an alternative. There exists no equivalent of the Neyman-Pearson
lemma in Eq. (39) for models with several free parameters. We can, nevertheless, generalize its idea
and construct the profile likelihood ratio. Before we discuss this test statistic, we should first introduce
the concept of nuisance parameters.
In many applications, the set of model parameters α consists not only of the parameters of interest, i. e.
the parameters that we ultimately want to fit, but also additional parameters which are relevant for an
accurate description of the model without being of intrinsic interest. We will refer to those parameters
as nuisance parameters, α = {αpoi, αnui}. Let us explain this concept using an explicit example relevant
for LHC physics: For LHC measurements, the quantities that we measure, i. e. our data d, will always
contain a combination of the signal s that we are interested in and an indistinguishable background b,
d = s+b. The predicted number of background events νb will hence enter our extraction of the signal as
a nuisance parameter. One way of dealing with these additional parameter in our likelihood function,
is to maximize the likelihood with respect to the nuisance parameters supαnui L(α). This process is
called profiling and we will write the corresponding profile likelihood as Lp(α) = L(α, ˆ̂αnui), where the
double-hat notation denotes the profiled values of the nuisance parameters.
As a test statistic which is particularly useful for limit setting, we can now introduce the profile
likelihood ratio

Tp(α) = L(α, ˆ̂αnui)
L(αbest)

= Lp(α)
L(αbest)

, (40)

i. e. the ratio of the profile likelihood and the likelihood at the best-fit point. Comparing the definition
of the profile likelihood ratio to the ratio used in the Neyman-Pearson lemma in Eq. (39), we find
that the parameter configuration maximizing the likelihood plays the role of the zero hypothesis.
The advantage of the profile likelihood ratio is that for large data sample sizes, the distribution of
−2 log Tp(α) follows a χ2 distribution with the number of degrees of freedom being given by the
number of parameters α [65, 66]. Using the profile likelihood as a test statistic therefore allows us to
make use of the known properties of the χ2 distribution for limit setting. For the application of fitting
Wilson coefficients of dimension-six operators, for instance, we can set limits on a Wilson coefficients
fx by treating all other coefficients as nuisance parameters and profiling over them. We can then treat
−2 log Tp(fx) with a single free Wilson coefficient fx as a χ2 distribution with one degree of freedom
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and obtain the 2σ limits by evaluating ∆χ2 = 4.

In order to motivate the concept of profiling, let us introduce the p-value, a common measure of the
significance of the data and a hypothesis H(α). It is defined as the probability of finding the test
statistic T in the region of equal or greater incompatibility with the hypothesis than the level of
compatibility observed with the actual data, characterized by Tobs. Assuming a large value of the test
statistics corresponds to poor agreement of data and hypothesis (as is the case for the log-likelihood),
the p-value is given by

p =
∫ ∞
Tobs

L(T |H) dT =
∫ ∞
Tobs

f(T |α) dT = P (T ≥ Tobs|α) . (41)

A small p-value signals a small probability of finding a test statistic as large as or greater than the
observed value Tobs. The concept of p-values is used to exclude null hypotheses. Let us now study the
influence of nuisance parameters on the p-value. In order to be conservative, i. e. in order not to exclude
a null hypothesis based on its small p-value, we should maximize the p-value of the hypothesis that
we are testing with respect to variations of the nuisance parameters. This corresponds to maximizing
the integrand in Eq. (41), the likelihood. Profiling over the nuisance parameters is hence the most
conservative approach we can take when working with p-values.
In particle physics, it is common to translate the p-value in Eq. (41) into an equivalent significance Z
defined such that a Gaussian distributed variable found Z standard deviation above its mean has an
upper-tail probability of p, i. e.

Z = Φ−1(1− p) , (42)

where Φ denotes the inverse of the cumulative distribution of the standard Gaussian. A significance
Z = 5 is typically used in particle physics to claim a discovery. This corresponds to a p-value of
p = 2.9× 10−7.

Combination of likelihood functions
We have found above that the likelihood is the most powerful measure for the goodness of a fit.
In Eqs. (36), (37) and (38), we have discussed the likelihood functions for statistical, systematic
or theoretical uncertainties respectively for a single measurement d and model parameters {νd, σd}.
In the real world, however, we usually have to construct a combined likelihood function for several
measurements which are subject to various types of uncertainties. When f are the probability density
functions of n independent and identically distributed measurements x in a data set D, then the
combined likelihood is given by

L(α) = L(D|α) =
n∏
i=1

f(xi|α) . (43)

In practice, the measurements whose likelihood we need to combine often depend on each other. As an
example of dependent measurements, let us come back to the discussion of backgrounds as a nuisance
parameter, see the paragraph below Eq. (39). Often, we do not have access to a signal measurement s
directly, but we need to extract it from a measurement d that contains an indistinguishable back-
ground b, s = d − b. The number of background events b is often measured in a control region and
enters our signal determination as a nuisance parameter. The combined likelihood is a convolution of
the measurements in the signal and control regions

LPois(νs, νb) = LPois(d|νs, νb)LPois(bCR|νb,CR) = (νs + νb)d

d! e−(νs+νb) (τνb)bCR
bCR! e−τνb , (44)

where τ = νb,CR/νb is a scale factor. It has been inserted to account for the fact that the expected
number of background events in the control region often differs from that in the signal region, as one
tries to reduce the statistical uncertainty by to extracting the number of background events in a larger
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region. The estimated number of background events νb is a typical example of a nuisance parameter.
It is irrelevant for our modelling of the signal which we ultimately want to constrain, but enters its
extraction from a measurement. As discussed in the paragraph below Eq. (39), we deal with nuisance
parameters by profiling over them, leading to the combined likelihood

LPois(νs) = max
ν∗
b

(νs + ν∗b )d

d! e−(νs+ν∗
b ) (τν∗b )bCR

bCR! e−τν
∗
b . (45)

In general, the we cannot perform the profiling analytically. While there exist analytical solutions for
the combination of likelihood functions based on flat and Gaussian probability density functions, the
likelihood combination for Poissonian distributions has to be performed numerically. In SFitter, we
combine of two Poisson likelihoods using the approximate formula [58]

1
logLcomb

≈ 1
logLPois,1

+ 1
logLPois,2

, (46)

which becomes exact in the Gaussian limit.

2.2 Fitting techniques
With the (log-)likelihood, we have defined a measure for comparing the quality of the agreement of a
parameter configuration with a given data set. The challenge for fitting tools like SFitter is now to
find best fit parameter configuration, i. e. to maximize the likelihood or to minimize the log-likelihood
or χ2. In the following, we will explain several techniques for likelihood maximization and discuss
their strengths and weaknesses. Starting from a simple grid fit, we will discuss more complex fitting
algorithms like Migrad which is using gradient descent and Markov Chain Monte Carlos. In the next
Section 2.3, we will present toy Monte Carlos as an alternative approach to obtain best-fit points and
confidence limits.
All of the above mentioned fitting techniques come with advantages and drawbacks for specific appli-
cations. Best-fit points and limits in a multidimensional parameter space can be obtained with toy
Monte Carlos in a computationally inexpensive way. For correlations and scans of complex likelihood
functions with multiple minima, however, a Markov Chain fit is potentially more suitable.

Grid
Arguably the most intuitive fitting technique for a model with n free parameters is to build an n-
dimensional grid of the parameter space and find the point in the grid with the largest likelihood.
Clearly, this is not only a very simple approach, but also a very inefficient one, since the density of
points tested in a grid is completely unrelated to the likelihood. The computation time grows as xn
with x being the number of points tested per parameter which makes it intractable for a large number
of fitting parameters.

Migrad
Migrad [67, 68] is a minimization algorithm based on gradient descent. Starting from a point αk in
parameter space, it chooses the next point αk+1 by moving along the gradient of the function l(α) that
we want to minimize (in our case the log-likelihood) using a predefined step size sk

αk+1 = αk − sk∇l(α). (47)

Following the gradient, the algorithm will lead eventually end up in a local minimum of the func-
tion l(α). The effective step size αk+1−αk will become smaller and the evaluation of the log-likelihood
more detailed close to the minimum as the gradient tends to zero in the vicinity of the minimum. In
contrast to a grid fit, the test point density in a Migrad fit will therefore be larger close to the best
fit point.
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The method of steepest descent that we have discussed so far only specifies the direction of the next
step, but not its length sk. For correlated parameters this methods will converge very slowly. To
overcome this issue, the Newton method uses the inverse of the Hessian matrix as the variable step
size

αk+1 = αk −Hl(α)−1∇l(α) = αk −
(
∂l(α)
∂αi∂αj

)−1
∇l(α) . (48)

The algorithm is effectively approximating l(α) as a quadratic function and the step suggested by
it is the step to the minimum of this quadratic approximation. Larger step sizes will therefore be
proposed further away from the minimum. While each step in the minimization is computationally
very expensive in the Newton method as it includes calculating the matrix of second derivatives and
the inversion of such matrix, the convergence of the algorithm is very efficient. If l(α) is in fact a
quadratic function, the algorithm converges in one step. Migrad is using a variant of this method.

Markov Chains
A Markov chain is a sequence of points in parameter space for which the conditional probability
distribution of choosing the next point αk+1 in parameter space depends only on the present point
αk and not on any previous part of the chain [69]. Markov chains are a well-established tool for the
maximization of likelihoods with complex functional dependencies, e. g. with multiple minima, or a
large number of parameters [70,71].
In practice, the probability distribution used as a criterion for the acceptance of new points is the
likelihood. We randomly choose a point αtest in parameter space and compare its likelihood to the
likelihood of the current point of the Markov Chain. If the likelihood of the test point is larger than
that of the current point, we directly accept it as the next element of the chain. Otherwise, we test if
the likelihood of the point fulfills the condition

L(αtest)
L(αk) ≥ r (49)

with r being a random number in the range [0, 1] and accept the point if the condition is fulfilled [72,73].
The algorithm will move towards the best fit point and explore the area close to it. In the ideal
case Markov Chains scale only linearly with the number of input parameters, allowing for fits of a
multidimensional parameter space.

To increase the performance of the Markov chain, we have two handles: We can either make the
generation of test points more efficient or we can modify the probability of accepting points as described
by Eq. (49). Taking the first of the two approaches, we can choose our test points from a random
distribution around the current element of the chain α instead of choosing αtest completely randomly.
As the likelihood is usually a continuous function of the fit parameters, points close to an element with
a (large) likelihood can be expected to have a similarly large likelihood. We can therefore choose test
points from e. g. a Breit-Wigner or a Gaussian distribution around the current point.
Alternatively, we can also increase the efficiency of the Markov Chain by modifying the acceptance
criterion for new chain elements. A common approach coined cooling reduces the probability of a point
with a smaller likelihood to be accepted as the next element of the chain depending on its position in
the chain [58,74]. For this, we divide the Markov chain into 100 segments numbered with j = 1 · · · 100
and replace the right hand side of Eq. (49) by

L(αtest)
L(αk) ≥ r

100
j·c , (50)

with a cooling factor c ∼ 10. At an early stage of the Makov chain, i. e. for small values of j, when our
aim is to perform a rough scan to make sure that we will find multiple minima, the right hand side is
close to zero and almost all points are accepted. With increasing j the threshold for a test point to be
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accepted as the next element of the chain is raised. Therefore, the Markov chain will focus on finding
better estimates of the best fit point during its the later stages.
Markov chains are useful for broader scans of the parameter space and for finding multiple minima. If
one is only interested in finding the best-fit point in parameter space, there are more efficient algorithms
like Migrad which are better suited for such problems. The breadth of the scanned parameter space
makes Markov Chains particularly useful for examining correlations.

2.3 Toy Monte Carlos
So far, the algorithms discussed to find the best fit points of a fit where based on the minimization of
the log-likelihood. Given a set of measurements, we were trying to find the point in parameter space
that best describes the data. The toy Monte Carlo method is a different way of obtaining best fit
points and confidence limits. It is also know under the name of Monte Carlo (replica) method in the
PDF fitting community [75–77]. The idea of the toy Monte Carlo method is to create large number of
artificial data sets, based on the experimental central values, uncertainties, and correlation associated
with each measurement. For each pseudo measurement, we shift the data within their uncertainties,
respecting the different nature of different sources of uncertainties (flat, Poissonian, Gaussian), and
their correlations. The resulting set of artificial replicas can then be analyzed using textbook methods.
We create a replica of measurement i with experimental value xexpi using

xtoyi = xexpi + ∆shift + sign(∆shift)∆flat

∆shift = ∆Gaus + ∆Pois + ∆syst (51)

where

∆Gaus = rGaus
√∑

j

(σGaus
j )2 ∆Pois = rPois(τxtoyi )

τ
− xtoyi (52)

∆syst =
Nsyst∑
j=1

rsystj σsystj ∆flat =
Nflat∑
j=1

σflatj (53)

rGaus, rsystj ∈ Gauss(0, 1) are random numbers drawn from a uniform distrbution. rPois(x) is a random
integer drawn from a Poissonian distribution with mean x and τ denotes the factor between the size
of the signal and control regions.
For each of those smeared pseudo data sets we calculate the best-fit point using an appropriate fitter
(e.g. Minuit). We then create one-dimensional histograms of the best-fit points of the toy Monte Carlo
data in terms of the model parameters, implicitly profiling over the other model parameters. For large
data sets, these histograms will follow a Gaussian distribution. We deduce the mean and confidence
limits of the model parameters using textbook methods.
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Figure 7: Invariant mass distribution mZh normalized to the Standard Model. The dashed lines
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|fB | = 380 GeV and Λ/

√
|f (1)
φu | = 2.6 TeV with fx > 0, while the solid lines

correspond to the negative values of the Wilson coefficients with the same magnitude. Figure taken
from Ref. [84].

3 Global fits for LHC Run II
See corresponding slides
We start from the effective Lagrangian defined in Refs [37,38,47]

Leff, 1 =− αs
8π

fGG
Λ2 OGG + fWW

Λ2 OWW + fBB
Λ2 OBB + fW

Λ2 OW + fB
Λ2OB

+ fφ2

Λ2 Oφ2 + fWWW

Λ2 OWWW

+ fτmτ

vΛ2 Oeφ,33 + fbmb

vΛ2 Odφ,33 + ftmt

vΛ2 Ouφ,33 + invisible decays , (54)

using the operator definitions in Eqs. (8)–11.
In addition, we explicitly include the operators with tree-level contributions to electroweak precision
observables, as we know that at the level of 13 TeV data the corresponding operators should not be
neglected [45,46,78–83]

Leff,2 =
f

(1)
φQ

Λ2 O
(1)
φQ +

f
(1)
φd

Λ2 O
(1)
φd +

f
(1)
φu

Λ2 O
(1)
φu +

f
(1)
φe

Λ2 O
(1)
φe +

f
(3)
φQ

Λ2 O
(3)
φQ

+ fφ1

Λ2 Oφ1 + fBW
Λ2 OBW + fLLLL

Λ2 OLLLL . (55)
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Figure 8: Dimension-6 contribution to Zh production. We show sample diagrams for the usual bosonic
corrections, the small fermionic corrections from a 3-point vertex, and the large fermionic corrections
from a 4-point interaction.
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after including the additional fermionic operators. Figure taken from Ref. [84].
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Figure 10: Allowed 68% and 95% CL ranges for individual Wilson coefficients fx/Λ2 from a one-
dimensional profile likelihood. All results include the Run II measurements combined with electroweak
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4 Global fits for a 27 TeV pp collider
See corresponding slides
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Figure 12: Feynman diagrams of the dominant modes for di-Higgs production including contributions
from the dimension-six operators in the effective Lagrangian in Eq. ??.
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Figure 13: Result from the global Higgs analysis in terms of dimension-6 operators, complementing
the high-luminosity and improved-error scenario of Fig. ?? with results for 95% CL or two standard
deviations. Figure taken from Ref. [?].
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A EFT basis
In Section 1.3, we have explicitly listed the operators relevant for our study of Higgs physics. Here,
we want to list the remaining operators in our basis for completeness. We will only list the opera-
tors including bosonic fields and refer to Table 1 of Ref. [87] for a complete list of four-fermion operators.

There are six bosonic CP -violating operators

OGG̃ = φ†φ GaµνG̃
aµν OBB̃ = −g

′2

4 φ†BµνB̃
µνφ OWW̃ = −g

2

4 φ
†WµνW̃

µνφ

OBW̃ = −gg
′

4 φ†BµνW̃
µνφ OWWW̃ = − ig

3

8 Tr
(
W̃µνW

νρWµ
ρ

)
OG̃ = fabcG̃

ρ
aνG

ν
bλG

λ
cρ , (56)

where we explicitly write out additional powers of the coupling strength g and g′ instead of using the
hatted fields as in Eq. (9) and the dual field strength tensors are defined as

Ṽµ,ν = 1
2εµνρσV

ρσ , (57)

for V = B, W, G.
There are eight dipole operators, fermionic Higgs-gauge operators with a non SM-like Lorentz structure

OuW = (Q̄σµνuR)τa φ̃ W a
µν OuB = (Q̄σµνuR) φ̃ Bµν OuG = (Q̄σµνT auR) φ̃ Gaµν

OdW = (Q̄σµνdR)τa φ W a
µν OdB = (Q̄σµνdR) φ Bµν OdG = (Q̄σµνT adR) φ Gaµν

O`W = (L̄σµν`R)τa φ W a
µν O`B = (L̄σµν`R) φ Bµν . (58)
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