Physics of Extra Dimensions (in Field and String Theory) Plan: - Kaluza- Klein theory

We take the latter approach and study phenomenology first and put everything together in the end in string-theory motivated example.

Note: no string theory needed, will phrase everything in field theory language.

1) Kaluza - Klein Compactifications

Will look at 5d example My x 51 (My: ordinary 4d spacetime, Sicircle):

$$=\frac{1}{M_4}$$

1.1) Scalur Fields

Look at real, massless, free scalar field in 5d
$$S_{5d} \left[\phi \right] = \begin{cases} d^{5}x & \left(-\frac{1}{2} \partial_{m} \phi(x^{m}) \partial^{m} \phi(x^{m}) \right) \\ M_{y}xs^{n} \end{cases}, \quad m = 0, \dots, 4.$$

Split the coordinates into x^{μ} on M_4 , $\mu=0,...,3$, & $y=x^{\mu}$ on S^{1} S^{1} is defined by a relation $y \simeq y + 2\pi R$.

For \$\phi\$ to be well-defined, we need

$$\Phi(x^{\mu},y) \doteq \Phi(x^{\mu},y+2\pi R)$$

$$\phi(x^{\mu},y) = \sum_{n \in \mathbb{Z}} \phi_n(x^n) e^{i\frac{ny}{R}}$$

Reality requires
$$\phi^* = \phi = 0$$
 $\phi_{-n} = \phi_n^*$

$$\Rightarrow \phi(x^{\mu},y) = \phi_{o}(x^{\mu}) + \sum_{n=1}^{\infty} (\phi_{n}(x^{n})e^{inx^{n}} + \phi_{n}(x^{n})e^{-inx^{n}})$$

With this, we now compactify explicitly. That is, we integrate out the S1-dimension to find a 4d spectrum.

I some preliminary calculations:

$$\partial_y \phi(x^{\mu}, y) = O + \sum_{n=1}^{\infty} (i \frac{n}{R}) \left(\phi_n(x^{\mu}) e^{i \frac{n y}{R}} - \phi_n^*(x^{\mu}) e^{-i \frac{n y}{R}} \right)$$

$$(\partial_{y} \phi)^{2} = \underbrace{\underbrace{\underbrace{\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} (-\frac{nm}{R^{2}})}_{n=1} (\Phi_{n} e^{i\frac{ny}{R}} - \Phi_{n}^{*} e^{-i\frac{ny}{R}})}_{n=1} (\Phi_{n} e^{i\frac{ny}{R}} - \Phi_{n}^{*} e^{-i\frac{ny}{R}})$$

$$= \sum_{n=1}^{\infty} 2 \frac{n^2}{R^2} \phi_n \phi_n^* + (\text{terms } w/e^{\frac{i}{R}}, k \neq 0).$$

$$\int_{0}^{2\pi R} dy \ (...) \ e^{iky} = 0 \quad \text{for any } k \neq 0 \quad \left(\begin{array}{c} \text{integral of periodic } \text{fct. over} \\ \text{entire period} \end{array} \right)$$

We put the general form of a 5d solution into the action:

$$S_{5d} \left[\phi \right] = \left[\int_{\mathcal{M}_{x} \times S^{4}} d^{5}x \left[-\frac{1}{2} \partial_{m} \phi(x^{m}, y) \partial^{m} \phi(x^{m}, y) \right] \right]$$

insert
$$\int_{\text{above}} \int_{\text{My}} \int_{\text{S}^{1}} \int_{\text{N}} \int_{\text{N}^{2}} \int_{$$

$$\int_{M_{4}}^{dy} \int_{M_{4}}^{d^{4}x} \left(2\pi R\right) \left[-\frac{1}{2} \partial_{\mu} \Phi_{0} \partial^{\mu} \Phi_{0} - \sum_{n=1}^{\infty} \left(\partial_{\mu} \Phi_{n} \partial^{\mu} \Phi_{n}^{*} + \frac{n^{2}}{R^{2}} \Phi_{n} \Phi_{n}^{*}\right)\right]^{3}$$
rescule
$$\int_{M_{4}}^{d^{4}x} \int_{M_{4}}^{d^{4}x} \left[-\frac{1}{2} \left(\partial_{\mu} \widetilde{\Phi}_{0}(x^{\mu})\right)^{2} - \frac{1}{2} \sum_{n=1}^{\infty} \left(|\partial_{\mu} \widetilde{\Phi}_{n}(x^{n})|^{2} + m_{n}^{2} |\widetilde{\Phi}_{n}(x^{\mu})|^{2}\right)\right]$$

$$= S_{4d} \left[\widetilde{\phi}_n \right]$$

 \Rightarrow tower of 4d fields \tilde{Q}_n w/ masses $m_n^2 = \frac{n^2}{R^2}$, $n \in \mathbb{N}_0$.

The Compare: energy levels of periodic solutions in infinite potential nell: $E_n^2 \sim \frac{n^2}{R^2}$ $= \frac{1}{100} \cdot \frac{1}{100} \cdot$

At energies $E \ll \frac{1}{R}$, all massive fields $\widehat{\Phi}_n$, $\widehat{\Phi}_2$,... are not observable. We only probe $\widehat{\Phi}_0$, the theory seems like an ordinary 4d theory.

If $\phi(x^{\mu},y)$ was massive w/ mass M, the spectrum would be $m_n^2 = M^2 + \frac{n^2}{R^2}$, $n \in \mathbb{N}_0$.

What do we make of this? Take $\Phi_0(x^\mu)$ as, e.g., the Higgs. We have not observed heavier scalar fields at $E \sim 10 \, \text{TeV}$.

=> m, m2, ... > 10 TeV

 \ll R < $\frac{1}{10\text{ TeV}} \sim 10^{-20} \text{ m}$ in this simple model.

For contractions in both 4d & 5d we implicitly used metrics. Let's consider them in more detail:

- In a curved space, the metric can be in general different at every spacetime point: $g_{\mu\nu} = g_{\mu\nu} (x^{\mu})$. \Rightarrow It is a field!
- GR tells us that its dynamics is governed by a very specific Lagrangian: $S_{EH} = \frac{M_{C}^{2}}{2} \int d^{4}x \, \left[-\frac{1}{9} \, R \, \left[\frac{1}{9} \right] , \, R \, \left[\frac{1}{9} \right] = g^{\mu\nu} \partial_{\mu} \left(\frac{9}{9} \, \partial_{\nu} \, g_{g\mu} \right)^{+} ...$

It will suffice to consider schematically

$$S[gpv] = \frac{4p^2}{2} \int d^4x (\partial_g)^2$$
.

Here, $M_p^2 = \frac{1}{8\pi G}$ is the Planck muss measuring the strength of gravity.

The same is true for the metric G_{mn} of 5d-spacetime: $S[G_{mn}] = \frac{M_5^2}{2} \int d^5x (2G)^2$, $M_5:5d$ Planck mass.

For $M_{y} \times S'$ we have again: $G_{mn}(x^{\mu}, y) = \sum_{k \in \mathbb{Z}} G_{mn}(x^{\mu}) e^{i\frac{ky}{R}}$

=D We have a 4d massless field Gmn (x").

From a 4d perspective the indices $\{m,n\}$ should be decomposed into $\{p,v\}$, $\{p,4\}$, $\{4,v\}$, $\{4,4\}$, i.e.

$$G_{mn}^{\circ}(x^{\mu}) = \begin{pmatrix} G_{\mu\nu} & G_{4\nu} \\ G_{\mu\mu} & G_{4\mu} \end{pmatrix} = : \begin{pmatrix} g_{\mu\nu}(x^{\mu}) & A_{\nu}(x^{\mu}) \\ A_{\mu}(x^{\mu}) & e^{2\sigma(x^{\mu})} \end{pmatrix}$$

= > 4d massless metric gro (x"), vector Ap(x"), scalar o(x").

Interpretation of o:

(Infinitesimal) lengths are measured in 5d by the (square roof of the) line element:

 $ds_{5d}^{2} = G_{mn} dx^{m} dx^{n} = g_{\mu\nu} dx^{\mu} dx^{\nu} + e^{2\sigma} dy^{2} + (non-diag.)$ $\sim ds_{4d}^{2} + ds_{5}^{2}$

-> dsgs is the proper measure of lengths along the St-direction.

For example, the 5'-circumference is given by

 $V_{0}I(S^{1}) = \int_{S^{1}} ds_{s^{1}} = \int_{S^{1}} V_{G_{11}1} dy = \int_{S^{1}}^{2\pi R} e^{-t} dy = 2\pi R e^{-t}$

=> o rescales volume of S1.

With some calculation, we arrive at

 $S_{5d} [G] = \frac{M_5^2}{2} \int_{0}^{4} d^5x \left(\partial G\right)^2 = \dots$ as before, more involved now ...

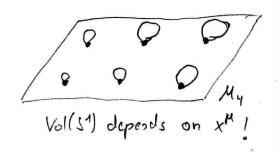
= M3 TR Sd'x [(2g)2 - 2 2p - 2 0p - 2 Fpo Fpo]

= The 4d massless scalar field $\sigma(x^{\mu})$ is dynamical ('modulus' or 'radion' in this special case)

-> internal spacetime (51) is dynamical due to gravity!

By comparison w/ 4d action for guo, one finds:

 $M_p^2 = 2\pi R M_5^3$.



The strength of Ygravity decreases w/ growing volume of extra dimensions

6

Can have e.g.
$$M_5 \sim m_{\text{Higgs}} \sim 100 \text{ GeV}$$
.

$$M_p^2 \sim R M_5^3 \quad \text{requires} \quad R \sim \frac{M_p^2}{M_5^3} \sim \frac{\left(10^{18} \text{ GeV}\right)^2}{(100 \text{ GeV})^2} \sim \frac{10^{20}}{\text{GeV}} \sim 10^{14} \text{m}$$

Do same thing in 6 extra dimensions:
$$R \sim \left(\frac{M_p^2}{M_{40}^8}\right)^{1/6} \sim \left(\frac{\left(10^{18} \text{ GeV}\right)^2}{\left(100 \text{ GeV}\right)^8}\right)^{1/6} \sim \frac{10^{2}}{\text{GeV}} \sim 10^{-13} \text{ m}$$

Simmary

Extra dimensions lead to

- tower of states $m_n^2 \sim \frac{n^2}{R^2}$
- · moduli o (x") determining shape and size of extra dimensions
- · dilution of gravity: $M_p^2 \sim Vol_d(\text{extra dimensions})$ M_{4+d}^{2+d}

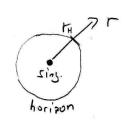
2) Warped Compach fications

Motivation: Matter backreacts on full geometry. The general ansatz capturing this are warped products. We look at this in the following example:

2.1) Bluch Brunes

We look at Black Hole solution of Einstein's equations: vacuum with a singularity at r=0.

$$ds^{2} = -\left(1 - \frac{r_{H}}{r}\right) dt^{2} + \left(1 - \frac{r_{H}}{r}\right)^{-1} gij(\vec{x}) dx^{i} dx^{j}$$
time dilatation/
metric on
spatial slices of
constant time



$$= e^{-A(r)} \left(-dt^2\right) + e^{A(r)} \left(g_{ij}(\vec{x}) dx^i dx^j\right)$$

The 2nd line is just a rewriting with $e^{-A(r)} := 1 - \frac{r_H}{r}$.

... but why only a singular point and not a singular surface?

Solution:

$$ds^{2} = e^{-A(y)} \left(-dt^{2} + dx^{2}\right) + e^{A(y)} g_{ij}(\bar{y}) dy dy$$

$$metric along metric orthogonal$$

$$black string to black string$$

$$y = \sqrt{\sum_{y=1}^{2}} e^{-A(y)} = (1 - \frac{y^{2}}{y^{2}})$$

Finally: Black p-Brane dis
$$^2 = e^{-A(y)} \left(-dt^2 + d\vec{x}^2 \right) + e^{A(y)}$$

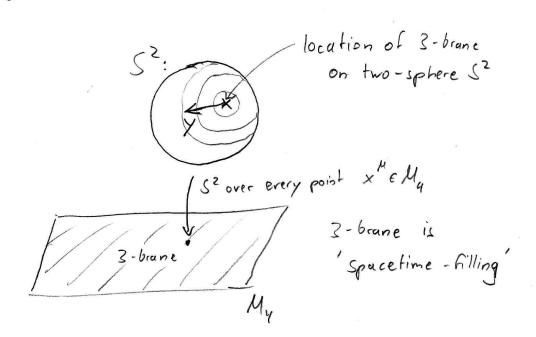
$$\frac{g_{ij}(\vec{y}) dy}{(p+1)-dim. \ metric}$$

$$\frac{g_{ij}(\vec{y}) dy}{metric \ orth. \ to}$$

$$\frac{g_{ij}(\vec{y}) dy}{metric \ orth. \ to}$$

$$\frac{g_{ij}(\vec{y}) dy}{metric \ orth. \ to}$$

E.g.
$$p=3$$
 on M_4 of $M_y \times S^2$:



Note the appearance of a y-dep. fet. e-Aly) in front of y-indep. metric of space parallel to p-brane.

=> more than a simple product.

Generally, one can show: Any matter that respects

4d Poincaré invariance leads to a solution of Einstein's equations.

of a 'warped product' form $ds^2 = e^{-A(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + e^{A(y)} g_{ij} dy^i dy^j$ $e^{-A(y)}: 'warp factor'$

2.2) Randall-Sundrum model

Buch to 5d. Now compactify 5th dimension on an intervall. [0,L]

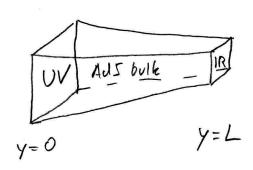
General form of metric:

$$ds^{2} = e^{-A(y)} \max_{q_{x}} dx^{M} dx^{U} + dy^{2}$$

$$e^{\widetilde{A(y)}} d\widetilde{y}^{2}$$

We add 2 3-branes (of opposite tension) on 4d space dt y = 0 & y = L. One finds solution

$$ds^2 = e^{-2\gamma/k} \eta_{NV} dx^M dx^V + dy^2 , \quad l = \frac{M_s^3}{T}$$



5d 'bulh' is AdS $W/L = -\frac{T^2}{M_5^2}$ ± T: tension of brunes

Can have matter live on the IR brane only:

$$S_{5d} = \frac{M_5^3}{2} \int d^5x \int g^{-1} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(-\frac{1}{2} \frac{g}{g} |_{y=L} \frac{\partial \mu}{\partial \rho} \partial \rho \partial \rho - \frac{1}{2} m^2 \phi^2 \right)$$

$$= \frac{M_5^3}{2} \int d^5x \int g^{-1} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(-\frac{1}{2} \frac{g}{g} |_{y=L} \frac{\partial \mu}{\partial \rho} \partial \rho \partial \rho - \frac{1}{2} m^2 \phi^2 \right)$$

$$= \frac{M_5^3}{2} \int d^5x \int g^{-1} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(-\frac{1}{2} \frac{g}{g} |_{y=L} \frac{\partial \mu}{\partial \rho} \partial \rho \partial \rho - \frac{1}{2} m^2 \phi^2 \right)$$

$$= \frac{M_5^3}{2} \int d^5x \int g^{-1} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(-\frac{1}{2} \frac{g}{g} |_{y=L} \frac{\partial \mu}{\partial \rho} \partial \rho \partial \rho - \frac{1}{2} m^2 \phi^2 \right)$$

$$= \frac{M_5^3}{2} \int d^5x \int g^{-1} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(-\frac{1}{2} \frac{g}{g} |_{y=L} \frac{\partial \mu}{\partial \rho} \partial \rho - \frac{1}{2} m^2 \phi^2 \right)$$

$$= \frac{M_5^3}{2} \int d^5x \int g^{-1} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{y=L}} \left(\frac{\partial g}{\partial y} \right)^2 + \int d^4x \sqrt{-g|_{$$

insert

metric

metric

determinants

Ms

d'xdy

l-n

e

-2y/e

(2n)

2

$$+\int_{TR}^{d'} \sqrt{-\eta'} e^{-2L/2} \left(-\frac{1}{2}e^{2L/2}\eta^{MD}\partial_{D}\phi - \frac{1}{2}m^{2}\phi^{2}\right)$$

$$S_{4d,TR} = \frac{M_{p^2}}{2} \int_{TR} d^4x \int_{-\frac{\pi}{2}}^{-\frac{\pi}{2}} (\partial \eta)^2$$

$$+\int_{TR}d^{4}x\sqrt{-n^{2}}\left(-\frac{1}{2}2^{m}\partial_{\mu}\phi\partial_{\nu}\phi-\frac{1}{2}m_{tR}^{2}\phi^{2}\right)$$

We end up w/ 4d theory of gravity and matter with
$$M_p^2 = \int_0^L dy \ e^{-2y/\varrho} M_5^3 = \frac{1}{2} M_5^3 \, l \, \left(1 - e^{-2L/\varrho}\right)$$

$$\frac{2}{m_{tR}} = \frac{-2L}{e} \qquad \frac{2}{m}$$

For e.g.
$$M_5 = M_p = \frac{1}{2} = m$$
, one needs

The UV-brane theory would have

$$m_{uv}^2 = m^2$$
, $M_p^2 = as above$

=)
$$\frac{m_{IR}^2}{m_{vv}^2} = e^{-2L/\varrho}$$
 redshifting of IR quantities

Moving a particle from UV- to IR-brane has same effect as moving a particle towards black hole horizon!

3) Axions

3.1) From Gauge Potentials

Consider a 5d U(1) gauge theory on My × 51.

 $A_m(x^\mu, y) = \sum_{k \in \mathbb{Z}} A_m^k(x^\mu) e^{i\frac{ky}{R}}$

Consider 0-mode $A_m^o(x^m)$ and define $\alpha(x^n) \equiv A_5^o(x^m)$.

 $A_m^o(x^\mu) = (A_\mu(x^\mu), \alpha(x^\mu))$ 4d garge field 4d scular

 $\frac{\left(\begin{array}{c} A_{5}(x^{\mu}) \end{array}\right)}{\alpha(x^{\mu})} M_{4}$

In a theory wholf matter, Am only appears, due to gauge invariance, in the combination $\overline{T}_{mn}\supset \partial_m A_n^o-\partial_n A_m^o \ .$

We again compactify and truck the field a (x"):

 $S_{sd} = \int d^4x \int dy \left(-\frac{1}{4} + \overline{T}_{mn} + \overline{T}^{mn} \right) = -\frac{1}{4} \int d^4x \int dy \left(\partial_m A_n - \partial_n A_m \right) \left(\partial^m A^n - \partial^n A^m \right)$

collect of terms = -1 dy dy [Om An om Aon - Om An on Aon] mauless stuff

everything $\int -\frac{1}{2} \left[d^{\mu}x \right] dy \left[\partial_{\mu} \alpha(x^{\mu}) \partial^{\mu} \alpha(x^{\mu}) - \partial_{\mu} \alpha(x^{\mu}) \partial^{5} A^{0,\mu}(x^{\mu}) \right]$

 $= -\frac{1}{2} \int d^4x \int dy \left(\partial_\mu \alpha(x^\mu) \right)^2$

 $= \int d^4x \left[-\frac{1}{2} f_{\alpha}^2 \left(\partial_{\mu} \alpha \right)^2 \right] \qquad \text{w/} \qquad f_{\alpha}^2 = 2\pi R.$

Since only Fmn appears in original action, alx") will only ever appear as

Op a(x") in the 4d action => shift symmetry!

a is an axion, $a \rightarrow a + const.$, f_a : axion decay constant.

3.2) From p-Form Gauge Potentials

Instead of a vector gauge potential Am with field strength Fmn one can have '2-form' gauge potential Bmn with field strength Hmno:

	vector = 1-form	2-form
garge field	$A_{m} = A_{CmJ}$	Bmn = B[mn]
field strength	Fmn = O[m An]	Hmno = Olm Bno]
gauge transf.	Am + Om X	Bmn + am Xnj
action	Sdx Fmn Fmn	(de Hmno Hmno

Here, [] indicates antisymmetrization:

$$\overline{T}_{mn} = \partial_{Em} A_{n7} = \frac{1}{2!} (\partial_m A_n - \partial_n A_m)$$

or
$$H_{mno} = \partial_{Em} B_{noj} = \frac{1}{3!} \left(\partial_m B_{no} + \partial_n B_{om} + \partial_o B_{mn} - \partial_m B_{on} - \partial_o B_{nm} \right)$$

(An object w/ just one index is automatically antisymmetrized:

Aim = Am.

More general: p-form gauge potentials $C_{m_1...m_p}$:

Gauge transf. $C_{m_1...m_p} \rightarrow C_{m_1...m_p} + O_{[m_1} Y_{m_1...m_p]}$ leaves field strength $F_{m_1...m_{p+1}} = O_{[m_1} C_{m_2...m_{p+1}]}$ and therefore action $\int d^4x \, F_{m_1...m_{p+1}} \, F_{m_1...m_{p$

Note, that we often look at 2-form gauge theories in 4d:

Just like 1-form gauge theory has a dual description

Fun = Epusa For W/ Fun = DIM ANT

in terms of dual gauge recter Au, one can dualize

2 a = Epuga 2 H30]

The gauge symmetry of the gauge field a(x'') is then $a(x'') \rightarrow a(x'') + const.$

=D The electromagnetic dual to a 2-form gauge theory is an oxion theory!

One uses the latter description since it is simpler (just a scalar theory).

Back to axions from extra dimensions:

The axion discussed before comes from the internal component of a 1-form garge field.

It's shift symmetry comes from the fact that it always appears we derivatives, since only the field strength appears in 5d.

In e.g. 6d > 4d compactifications, a 2-form gauge field B_{mn} can also have a purely internal component $b(x^{\mu}) := B_{56}^{0}(x^{\mu})$

For the same reason as above, it also enjoys a shift symmetry.

= P-forms in d>4 dimensions + complicated internal geometry = plethory of axions!

3.3) Discrete Shift Symmetries

still shift symm. !

Non-pertubative effects (induced, e.g., by couplings a FF) will break the continuous shift symmetry by inducing a potential $V(\alpha) = L^4 \left(1 - \cos\left(\frac{\alpha}{f_a}\right)\right)$ 1 = µ e = Constanton action

Thome energy scale

3.4) Monodromies

Some effects can induce non-periodic potentials.

Take e.g. My x (I xs1)

Now consider 'cigar' instead of Ixst

5' is a boundary of the cigar E

We have :

The have:
$$\alpha(x^{\mu}) = \frac{1}{2\pi R} \int_{S^{1}} dx^{5} A_{5} = \frac{1}{2\pi R} \int_{\partial \Sigma} dx^{5} A_{5} \sim \frac{1}{2\pi R} \int_{S^{1}} dx^{5} dx^{6} \partial_{6} A_{5}$$

$$\sim \frac{1}{2\pi R} \int_{S^{1}} dx^{5} dx^{6} F_{56}$$
Shokes' theorem

=> $a(x^{\mu}) \neq 0$ induces $\neq 56 \neq 0$ on \leq

4) Calabi - Yau Compactifications (in type IB string theory)

String Theory requires 10 dimensions for consistency.

The 10d (vacuum) Einstein equation reads $R_{mn} [G_{mn}] = 0. \quad (vanishing 'Ricci-curvature')$

=> Need Six, Ricci-flat' extra dimensions to connect string theory with our universe.

These two (+ some other conditions) imply the extra dimensions to be 'Calabi-Yau' 3-manifolds CY3.

Some properties giving rise to the phenomena discussed:

· Characterized by integer numbers (han, hz,n), see graph below for a plot of these numbers for a class of C/z's

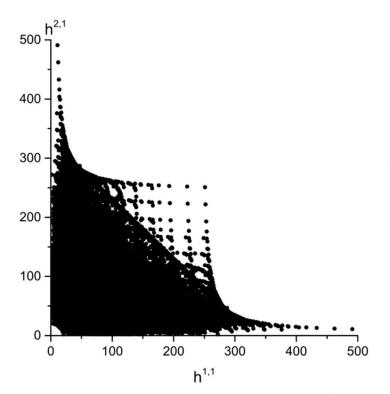
—D [2 han + 1] axions arise in a comp. on any of the C/z's.

(This does not include axions whose (discrete) shift symmetry is Groken)

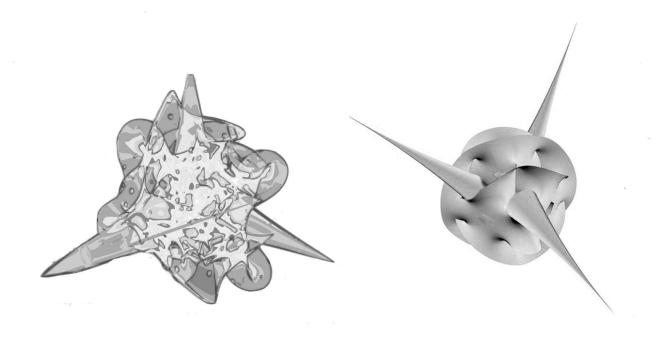
· Generically C/a's have singularities. Once one smoothers these by adding flexes (branes /matter), this leads to many

strongly wurped regions, so-called 'throats', see figure.

Mutter localized in these regions behaves as in the Randall-Sundrum model



The han-han-plane for Cys's on the Kreuzer-Skarke list. One finds up to han ~ 500.



A sketch of a CY3 with multiple 'throats, strongly warped regions.