
Machine Learning for Jet Physics
RTG Student Lecture

Peter Sorrenson

Contents

Lecture 1 – ML history and present (13.05)

● Machine learning history and important models

Lecture 2 – Applications to jet physics (20.05)

● Symmetries
● Representation learning
● Anomaly detection

Lecture 3 – Tricks and trends (03.06)

● Practical tips for a successful ML project
● Current trend: large language models
● A glimpse into the future



Lecture 1

ML history

● Main idea of ML: learn statistical patterns from data in order to perform tasks without
explicit programming

○ Driving force: continually dropping cost of computation and data (Two Centuries
of Productivity Growth in Computing, Nordhaus 2007)



○ Especially good at hard-to-define tasks that work in high-dimensional spaces,
e.g. classifying an image

○ Software 2.0: rather than programming a function (software 1.0), provide data
that defines the input -> output pair

■ It turns out that for many interesting problems it's significantly easier to
collect the data than to define the program

○ “Every time I fire a linguist, the performance of our speech recognition system
goes up” (Fred Jelinek from 1985)

● Invention of transistor (1947) and Shannon’s theory of information (1948)
○ Events which kicked off the information age

● Perceptron (1957)
○ Linear model which is updated iteratively to find a decision boundary
○ Sketch of perceptron update:



● Backpropagation (first described 1970, rediscovered 1986)
○ Allows training of multiple-layer neural networks
○ Example of three-layer network: 1D input to 1D output with 2 hidden layers of 6

neurons each



● Convolutional neural net (LeNet 1989)
○ Efficient image processing
○ Exploits translational symmetry of images
○ Sketch of stacked convolutional layers:



● Deep Blue beats Kasparov (1997)
● Development of GPUs (2000s)
● Deep neural nets (2010s)

○ ImageNet (2009)
■ Huge labeled dataset which kicked off deep learning

○ AlexNet (2012)
■ The model which made it clear that neural nets are the most powerful

models around (at least for computer vision)
■ Used custom CUDA kernels to speed up convolutional nets

○ ResNet (2015)
■ Allowed very deep models, template for what followed
■ Sketch of residual blocks:



● AlphaGo (2016)
○ Maturation of reinforcement learning through self-play in discrete

perfect-information games
○ AlphaZero a year later

● Transformer (2017)
○ General purpose model which can be applied to almost any type of data
○ Extensive use of attention mechanisms:

○ Attention is powerful because it allows for the expressive modeling of interactions
within a sequence or set of data. Most data can be expressed as a sequence or a
set (e.g. an image is a sequence of small patches)



○ Sketch of transformer structure:

● GPT-3 (2020)
○ Large language model with surprisingly good fluency in natural language and

ability to generalize and perform logical tasks
● AlphaFold 2 (2021)

○ Protein folding prediction to unprecedented accuracy
● The basics remain the same: sequential computations based on large matrix

multiplications, trained via gradient descent on lots of data
● Interactive tool: see effect of NN layers and play around at

https://playground.tensorflow.org/

https://playground.tensorflow.org/


Lecture 2

Applications to jet physics

Symmetries

● Symmetry is ubiquitous in physics
● In ML it is known that respecting the symmetries of the system in question means you

need less data and compute
○ Convolutional neural nets (translational symmetry in images)
○ Set and graph networks (permutation symmetry)
○ Molecular modeling (isometries: translations, rotations)
○ If you have enough data and compute you can actually learn the symmetries,

often ends up with better performance than hard-coding symmetries (e.g. ViT,
i-GPT). But you need a lot of data and compute…

○ Can also learn to be invariant to symmetries using data augmentation and
contrastive learning

● Difference between invariance and equivariance under symmetry
○ Invariance: the output doesn’t change under a given symmetry (e.g. image

classification)
■ Sketch:

○ Equivariance: the output changes according to the same symmetry as the input
(e.g. bounding boxes)



■ Sketch:

Representation learning

● You can take a classifier trained on a large labeled dataset, cut off the final layer and use
it as a feature space to perform other tasks

● Is it possible to do the same thing without labeled training data? (labeled data is
expensive to collect)

● Self-supervised learning (now one of the most important paradigms in deep learning due
to the availability of unlabeled data)

● Create a task from data
○ Mask part of an image and predict the missing pixels
○ Predict the next word in a sequence of text
○ Jigsaw puzzle: cut an image into pieces, mix them up and learn how to

reconstruct them. Sketch:



○ Rotate an image and learn to predict the rotation
● In order to complete the task the model has to extract non-trivial features from the data.

The hope is that these features are useful for other tasks
● Type of self-supervised learning: contrastive learning

○ Create pairs of data points (called augmentations) which represent the same
underlying object

○ E.g. images in which rotations, blurring, noise and other distortions added
○ The model maps these pairs to a space (called the representation space) where

they should be close together
○ At the same time any representation should be far away from other

representations which do not correspond to the same object
○ Sketch:

● JetCLR: contrastive learning for jets
○ Jets represented by sets of (eta, phi, pT) coordinates
○ Augmentations defined by translations and rotations in (eta, phi) plane, addition

of soft radiation, collinear splitting of particles
○ Augmentations define the learned invariances. Permutation invariance is

hard-coded
○ Use a transformer (permutation equivariant) followed by a sum (permutation

invariant) and feedforward nets to map to representation space. Sketch:



● JetCLR representations allow for a simple linear classifier to perform well on a
supervised classification task (tag top quark jets in a QCD background)

○ Better than a hand-crafted baseline (energy flow polynomials)
○ Hope is that representations can be used for other downstream tasks, e.g.

anomaly detection

Anomaly detection

● At the LHC there is a huge stream of data. Rare events corresponding to new physics
might be present in the data but haven’t be found yet because the search space is too
large

● Traditional methods are model based, e.g. testing a model hypothesis against the data,
e.g. a bump hunt

● It would be useful to also have model-free methods, that can flag anomalies without
making assumptions about the processes that generate them

● Proposal in jet physics: autoencoders
● Autoencoders try to reconstruct inputs while passing them through a bottleneck

dimension. This forces the model to learn the most important features of the input and
discard unneeded information. Sketch:

● If we train autoencoders on normal, background data, we might be able to detect
anomalies by looking for events with a high reconstruction error

○ This would suggest the features of the input are not similar to those of the
training data, something expected of anomalies

● However, this doesn’t always work as expected
○ If we train on QCD background, top jets are tagged as anomalous



○ But if we train on a top jet background, QCD jets are not tagged as anomalous,
even though they are not seen during the training

○ The main problem seems to be that the autoencoder is still able to reconstruct
signals of lower complexity than those it was trained on

● Solution (tentative): normalize the autoencoder
○ Don’t just train the autoencoder to reconstruct inputs, but train it so that it fails to

reconstruct inputs not in the training set
○ This training method is more expensive but more effective
○ We can improve the ability of the autoencoder to detect QCD jets as anomalous

when trained on top background
○ Also shows promise in detecting dark matter jets which have lower complexity

than normal QCD background


