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Lecture 1

ML history

e Main idea of ML: learn statistical patterns from data in order to perform tasks without
explicit programming
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Driving force: continually dropping cost of computation and data (Two
Centuries of Productivity Growth in Computing, Nordhaus 2007)
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Nvidia GeForce price performance history
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o Especially good at hard-to-define tasks that work in high-dimensional spaces,
e.g. classifying an image
o Software 2.0: rather than programming a function (software 1.0), provide data
that defines the input -> output pair
m It turns out that for many interesting problems it's significantly easier to
collect the data than to define the program
o “Every time | fire a linguist, the performance of our speech recognition system
goes up” (Fred Jelinek from 1985)
e Invention of transistor (1947) and Shannon’s theory of information (1948)
o Events which kicked off the information age
e Perceptron (1957)
o Linear model which is updated iteratively to find a decision boundary
o Sketch of perceptron update:
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Backpropagation (first described 1970, rediscovered 1986)
o Allows training of multiple-layer neural networks

Example of three-layer network: 1D input to 1D output with 2 hidden layers of
6 neurons each
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first linear layer nonlinearity

1 T lz -
10 1
I] -
0.5 -
-1 - 0.6 1 ,,.-"'
0.4 1 /
-7
0.2 1
0.0 -
-3 T T T T T T T T T T
-1.0 -0.5 0.a 05 14 -1.0 -0.5 0.a 05 14
second linear layer nonlinearity

104

0.0 A

-1.0 1

-1.5 ~

e Convolutional neural net (LeNet 1989)
o Efficient image processing
o Exploits translational symmetry of images
o Sketch of stacked convolutional layers:
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e Deep Blue beats Kasparov (1997)
e Development of GPUs (2000s)
e Deep neural nets (2010s)

o ImageNet (2009)

m Huge labeled dataset which kicked off deep learning

o AlexNet (2012)

m The model which made it clear that neural nets are the most powerful
models around (at least for computer vision)
m Used custom CUDA kernels to speed up convolutional nets

o ResNet (2015)

m Allowed very deep models, template for what followed

m Sketch of residual blocks:

% residual blod

£(x)
e AlphaGo (2016)

x + F(x)

o Maturation of reinforcement learning through self-play in discrete

perfect-information games
o AlphaZero a year later



e Transformer (2017)

o General purpose model which can be applied to almost any type of data

o Extensive use of attention mechanisms:
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o Attention is powerful because it allows for the expressive modeling of

interactions within a sequence or set of data. Most data can be expressed as
a sequence or a set (e.g. an image is a sequence of small patches)




o Sketch of transformer structure:
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GPT-3 (2020)
o Large language model with surprisingly good fluency in natural language and
ability to generalize and perform logical tasks
AlphaFold 2 (2021)
o Protein folding prediction to unprecedented accuracy
The basics remain the same: sequential computations based on large matrix
multiplications, trained via gradient descent on lots of data
Interactive tool: see effect of NN layers and play around at

https://playground.tensorflow.org/


https://playground.tensorflow.org/

Lecture 2

Applications to jet physics
Symmetries

e Symmetry is ubiquitous in physics
e In ML it is known that respecting the symmetries of the system in question means
you need less data and compute
Convolutional neural nets (translational symmetry in images)
Set and graph networks (permutation symmetry)
Molecular modeling (isometries: translations, rotations)
If you have enough data and compute you can actually learn the symmetries,
often ends up with better performance than hard-coding symmetries (e.g. ViT,
i-GPT). But you need a lot of data and compute...
o Can also learn to be invariant to symmetries using data augmentation and
contrastive learning
e Difference between invariance and equivariance under symmetry
o Invariance: the output doesn’t change under a given symmetry (e.g. image
classification)
m Sketch:
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o Equivariance: the output changes according to the same symmetry as the
input (e.g. bounding boxes)
m Sketch:
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Representation learning
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You can take a classifier trained on a large labeled dataset, cut off the final layer and

use it as a feature space to perform other tasks

Is it possible to do the same thing without labeled training data? (labeled data is

expensive to collect)

Self-supervised learning (now one of the most important paradigms in deep learning
due to the availability of unlabeled data)

Create a task from data

o Mask part of an image and predict the missing pixels
o Predict the next word in a sequence of text

o Jigsaw puzzle: cut an image into pieces, mix them up and learn how to

reconstruct them. Sketch:
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o Rotate an image and learn to predict the rotation
In order to complete the task the model has to extract non-trivial features from the

data. The hope is that these features are useful for other tasks
Type of self-supervised learning: contrastive learning
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o Create pairs of data points (called augmentations) which represent the same
underlying object
E.g. images in which rotations, blurring, noise and other distortions added
The model maps these pairs to a space (called the representation space)
where they should be close together

o Atthe same time any representation should be far away from other
representations which do not correspond to the same object

o Sketch:
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e JetCLR: contrastive learning for jets

o Jets represented by sets of (eta, phi, pT) coordinates

o Augmentations defined by translations and rotations in (eta, phi) plane,
addition of soft radiation, collinear splitting of particles

o Augmentations define the learned invariances. Permutation invariance is
hard-coded

o Use a transformer (permutation equivariant) followed by a sum (permutation
invariant) and feedforward nets to map to representation space. Sketch:
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e JetCLR representations allow for a simple linear classifier to perform well on a
supervised classification task (tag top quark jets in a QCD background)
o Better than a hand-crafted baseline (energy flow polynomials)



o Hope is that representations can be used for other downstream tasks, e.g.
anomaly detection

Anomaly detection

e Atthe LHC there is a huge stream of data. Rare events corresponding to new
physics might be present in the data but haven’t be found yet because the search
space is too large

e Traditional methods are model based, e.g. testing a model hypothesis against the
data, e.g. a bump hunt

e |t would be useful to also have model-free methods, that can flag anomalies without
making assumptions about the processes that generated them
Proposal in jet physics: autoencoders
Autoencoders try to reconstruct inputs while passing them through a bottleneck
dimension. This forces the model to learn the most important features of the input
and discard unneeded information. Sketch:
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e |f we train autoencoders on normal, background data, we might be able to detect
anomalies by looking for events with a high reconstruction error
o This would suggest the features of the input are not similar to those of the
training data, something expected of anomalies
e However, this doesn’t always work as expected
o If we train on QCD background, top jets are tagged as anomalous
o Butif we train on a top jet background, QCD jets are not tagged as
anomalous, even though they are not seen during the training
o The main problem seems to be that the autoencoder is still able to reconstruct
signals of lower complexity than those it was trained on
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e Solution (tentative): normalize the autoencoder

o

Don’t just train the autoencoder to reconstruct inputs, but train it so that it fails
to reconstruct inputs not in the training set
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This training method is more expensive but more effective

We can improve the ability of the autoencoder to detect QCD jets as
anomalous when trained on top background

Also shows promise in detecting dark matter jets which have lower complexity
than normal QCD background



Lecture 3

Tricks and trends

Practical tips for a successful ML project

e |t's not easy to get ML working on a physics application out of the box. It takes time
and effort for cutting-edge results
o Budget six months for a PhD to complete a project, plus plenty of compute
time (GPUs)
e |t's more of an art than a science. There is no prescriptive formula for what will work.
You need to know the tools available to you and try them out methodically
e However, there is a standard “bag of tricks” you can draw upon. Some combination of
these will usually get your model working
o Hyperparameter search: often most efficient to keep the number of free
hyperparameters as low as possible and do a grid search
o Regularization, particularly weight decay
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Normalizations, e.g. BatchNorm
Learning rate schedules: warmup, LR decay, cyclic learning rates
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e The following also usually help but require more resources:
o Increased model size
o More training iterations
o More data
o Better data (e.g. less noisy)

e Tools available today which are of general scientific interest:
o Surrogate models for simulations
o Inverse models



Current trend: large language models

Large language models: trained to predict the next word on a huge corpus of text
Show remarkable, unexpected abilities, approaching human levels

o Generating text in a specific style

o Mathematical problem solving

o Common sense reasoning

o Explaining jokes

Important application: Github Copilot code completion tool

o Best feature: give explanation of the behavior of a function as a comment and
Copilot can write the function for you (or at least will try)

o For physics PhDs: could greatly speed up the ability to work with legacy
codebases passed down from student to student (a common and very
time-consuming problem)

These models are interesting because it shows how flexible language is as an
interface with ML models

o Example: Flamingo is a text and image model which can interactively answer
questions about the contents of an image.

o Similar models for less human-readable forms of data could become very
important in data exploration and analysis

In the future we will possibly see natural language become the standard interface for
interacting with machine learning models



