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1 | Introduction

Dualities seem to play an increasingly important role in theoretical physics, for example in the pursuit of
understanding quantum gravity. It is however not a new phenomena, and has historical roots in for example
electromagnetism. So what are dualities in physics:

Dualities in physics (Heuristic definition):
When two seemingly distinct theories, either approximately or exactly, describe the
same dynamics, and there exists a map from one to the other.

These dualities most often reveal themselves as an underlying mathematical structure (symmetry) of the
theories.

The plan of these lectures is to describe prominent examples of dualities in field theory and their implica-
tions. This will lead us to finally describe examples of the appearance and use of dualities in superstring
theory. The main references on which the beginning of these notes are build are [1–3].

2 | Electromagnetic Duality and Monopoles

Maxwell equations (in differential form) in vacuum with units c = 1:

(i) ∇ ·E = 0 Gauss’s law

(ii) ∇ ·B = 0 Gauss’s law for magnetism

(iii) ∇×E = −∂B
∂t

Faraday’s law

(iv) ∇×B =
∂E

∂t
Ampère’s law

This set of equations are covariant under Lorentz transformations and conformal transformations and in-
variant under a duality transformation:

E 7→ cosφE− sinφB (2.1)

B 7→ cosφB+ sinφE (2.2)

In particular, we shall refer to the invariance under restriction of φ = −π/2 as the electromagnetic

duality, which is of the discrete form:
(E,B) 7→ (B,−E) (2.3)

We will comment on this restriction when discussing the Dirac quantisation condition. The covariance under
Lorentz transformations is only really manifest when we introduce the electromagnetic field strength tensor
Fµν with components defined by

Ei = F 0i = −F i0, Bi =
1

2
ǫijkF jk (2.4)
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where we use 4-vector notation µ = 0, i for i = 1, 2, 3. Note that Fµν is anti-symmetric and therefore has
precisely

(

4

2

)

= 6 independent components. The Maxwell equations in vacuum then take the simple form:

∂µF
µν = 0 Reproduces (i)+(iv) - Electric source equations (2.5)

∂µ ⋆ F
µν = 0 Reproduces (ii)+(iii) - Magnetic source equations (2.6)

where we use the definition of the hodge star operation

⋆ Fµν =
1

2
ǫµνλρFλρ. (2.7)

In this language the electromagnetic duality is simply:

Fµν 7→ ⋆Fµν ⋆ Fµν 7→ −Fµν . (2.8)

This duality can be preserved in the presence of sources as longs as both electric and magnetic sources are
introduced with appropriate transformations:

∂µF
µν = jν Transformation: Fµν 7→ ⋆Fµν and jν 7→ kν (2.9)

∂µ ⋆ F
µν = kν Transformation: ⋆Fµν 7→ −Fµν and kν 7→ −jν (2.10)

As to this day, no experimental evidence for magnetic monopoles exists, but neither is there any theoretical
reason for the non-existence available. Electrodynamics is fully compatible with the introduction of magnetic
monopoles, and restoring the electromagnetic duality leads to new conclusions about electromagnetism.

2.1 The Dirac quantisation condition

If we take the existence of magnetic monopoles seriously it immediately leads to non-trivial consequences
for the possible particle spectrum. A magnetic monopole would generate a magnetic field in analogy with
that of a point electric charge:

B =
g

4πr2
r̂. (2.11)

But now that the magnetic field is no longer divergence free, we can no longer globally define a vector
potential

B 6= ∇×A. (2.12)

In geometrical terms, this is a consequence of now having to define a U(1) gauge-bundle over R3 \{0} which
is homotopically equivalent to S2. We can however define two vector potentials on separate patches of the
space in spherical coordinates

A
+ =

g

4πr

1− cos θ

sin θ
êφ, for θ 6= π (Negative z-axis) (2.13)

A
− =

−g
4πr

1 + cos θ

sin θ
êφ, for θ 6= 0 (Positive z-axis) (2.14)

which on each of their non-singular region gives the magnetic field of the monopole. This inevitable line
(which could be in any direction) where the vector potential is singular is called the Dirac string. On
the common domain where the potentials are defined (R without the z-axis) they are related by a gauge
transformation:

A
− = A

+ +∇α, α =
g

2π
ϕ. (2.15)

Now place a particle with electric charge, q, in the presence of the field of the magnetic monopole. For the
wave function, ψ, the Schrödinger equation is invariant under a gauge transformation

A → A+∇α, ψ → eiqαψ (2.16)

But for a sensible interpretation of the wave-function, it must be a single-valued function. That, is we must
demand that

eiqα|ϕ=0 = eiqα|ϕ=2π (2.17)

which gives a condition on the electric and magnetic charge first given by Dirac [4]:
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Dirac quantization condition:

Assuming the existence of magnetic monopoles of charge, g, leads to a consistency
equation involving the electric charge q:

qg = 2πn, n ∈ Z (2.18)

Note that this condition is only invariant under the discrete electromagnetic duality.

The existence of magnetic monopoles could therefore potentially explain the observation that all particles
have charges which are integer multiples of the electric charge of the electron. Note that quarks are exempt
from this condition due to confinement.

The quantisation condition also easily generalises to particles with both electric and magnetic charge,
so-called dyons:

Dirac-Zwanziger-Schwinger quantization for dyons:

Two dyonic point charges, i.e. with combined electric and magnetic charges (q, g) and
(q′, g′), satisfy the constraint

qg′ − q′g = 2πn, n ∈ Z. (2.19)

2.2 Georgi-Glashow Model

In 1974, ’t Hooft [5] and Polyakov [6] independently studied an alternative to our current theory of electro-
weak symmetry breaking, namely the Georgi-Glashow SU(2) model, and showed that it contains magnetic
monopole solutions. These solutions are however regular, in contrast to the Dirac monopole solution. Here
we shall first briefly describe the perturbative constituents of the Georgi-Glashow model.

Consider an SU(2) gauge theory with a Higgs field Φa in the adjoint representation of SU(2)

LGG = −1

4
F a
µνF

aµν +
1

2
DµΦaDµΦ

a − λ

4

(

ΦaΦa − v2
)2

(2.20)

with the usual definitions of the field strength and covariant derivative

F a
µν = ∂µA

a
ν − ∂νA

a
µ − eǫabcAb

µA
c
ν , DµΦ

a = ∂µΦ
a − eǫabcAb

µφ
c. (2.21)

The choice of a Higgs vacuum, Φ2 = v2, then familiarly gives rise to a spontaneous breaking of the gauge
group to U(1). An expansion around the vacuum with a vacuum expectation value along the third direction
(φa = vδa3) reveals, in accordance with Goldstone’s theorem, a massless gauge field A3

µ and two massive
vector bosons:

W±

µ =
1√
2

(

A1
µ ± iA2

µ

)

. (2.22)

The masses of the fields after symmetry breaking can then be read of from the quadratic terms to be:

Field Mass Charge

Aµ 0 0

ϕ v
√
2λ 0

W±
µ v|e| ±e

2.2.1 ’t Hooft-Polyakov Monopoles

Above we examined the trivial vacuum solution where the orientation of the Higgs field was not dependent
on the spatial coordinates

Φ = (0, 0, v). (2.23)
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However, the Georgi-Glashow model admits other localised finite energy solutions to the classical equations
of motion (so called solitons), where the directions of the Higgs field varies over space. The energy of a field
configurations in the static (time independent) case is given by

E =

∫

d3x
1

2
(Ea

nE
a
n +Ba

nB
a
n +DnΦ

aDnΦ
a) + V (Φ) (2.24)

where

Ea
n = F a

0n, and Ba
n =

1

2
ǫnmkF

a
mk. (2.25)

Evidently, for a finite energy solution we must impose that the vacuum condition is obtained at the boundary.
Such a spherically symmetric solution was found by ’t Hooft and Polyakov, and can be described by the
ansatz:

Φa = vh(r)
ra

r
, Ai

a = − (1− k(r)) ǫaij
rj

er2
, A0

a = 0. (2.26)

with functions h and k satisfying boundary conditions to avoid a singularity at the origin and a finite energy
solution:

h(0) = 0, k(0) = 1, lim
r→∞

h(r) = 1, and lim
r→∞

k(r) = 0. (2.27)

In this case we have that lim
r→∞

Φ(r) = vr̂, and everywhere the Higgs field points radially outwards to form

the so-called hedgehog solution. It is important to emphasize that this solution is topologically protected

as it is impossible to continuously transform it into the trivial vacuum solution.

Extra: On the topology of the ’t Hooft-Polyakov solutions

Requiring that the field configuration obtains a vacuum solution on the boundary
defines a map from the sphere at infinity to the Higgs vacuum manifold, which in this
case is also a sphere with radius v:

ϕ : S2
∞ → S2

v . (2.28)

The classification of such maps is given by the homotopy group π2(S
2) = Z. Hence

they are classified by an integer, the Brouwer degree, n, giving the wrapping number
of the domain manifold around the image manifold. The ansatz above corresponds to
n = 1, whereas the trivial solutions corresponds to n = 0.

For a general gauge group G broken to a subgroup H we would be interested
in the structure of the second homotopy group of the vacuum manifold:

π2(G/H). (2.29)

.

The explicit solutions of h and k for the classical equations of motion can be found numerically, but here
we will only comment on the features of this solution. By definition of the ansatz it has an asymptotic
behaviour as r → ∞ which looks like

Φa = v
ra

r
, Ai

a = −ǫaij
rj

er2
, A0

a = 0, (2.30)

and solutions of the shape function h tells us that the asymptotic value is obtained very fast. This means
that there is a core of energy centered at the origin with a characteristic radius and mass:

Rc ∼
1

ev
, M =

4πv

e
f

(

λ

e2

)

(2.31)

where f is function with f(0) = 1, and f(∞) = 1.787. Now we would like to know how this solution
is charged under the unbroken U(1) gauge group, and a calculation shows that the field strength has the
asymptotic behaviour

Fij ∼ ǫijk
rk

er3
(2.32)



which tells us that asymptotically there is a magnetic field of a monopole

B = − 1

er2
r̂. (2.33)

A comparison with equation (2.11) or direct calculation shows that it has magnetic charge

g =

∫

S2
∞

B · dS = −4π

e
. (2.34)

and satisfies the Dirac quantization (with a subtlety for the factor of 21). Thus, we have found that the ’t
Hooft-Polyakov solution indeed behaves like a magnetic monopole in the Georgi-Glashow model.
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