Scalar-tensor theories in cosmology

Student Lecture 1 by Manuel Wittner
Motivation and Outline

e Today’s standard model of cosmology (“ACDM model”):

— 70% dark energy (A = cosmological constant) + 25% cold dark matter (“cold”
= non-relativistic) + 5% baryonic matter ( = normal matter that interacts
with light)

— general relativity as underlying theory
e Successes: Can explain very well a wide variety of cosmological observations as for
example:
— Accelerated background expansion first measured via type la supernovae
— CMB power spectrum measured with high precision by Planck experiment
and others

e Problems:

— Cosmological constant problem: why do quantum corrections to the vacuum
energy, which are naively of order Ayy ~ M3 ~ (10" GeV)*, add up to an

effective cosmological constant of A ~ (meV)" thus causing a fine-tuning of
Auv/A ~ O(10129)?

— Coincidence problem: why is Q59 &~ 70% of the same order as Q. ~ 25%7

— oy tension: assuming ACDM, there is a tension between Planck measurements
and LSS in the og — €2, plain, with the latter favouring smaller values.

— Hubble tension: measurements of the cosmic microwave background (CMB)
from Planck and others together with ACDM model imply a Hubble factor
Hy ~ 67km (s - Mpcf1 vs model-independent measurements from cepheids
and supernovae that show Hy ~ 74km (s - Mpc) ™' = more than 3¢ difference.

= The ACDM model seems not to be the final answer but needs modification.

e This course:

Basic concepts of general relativity and standard cosmology
Scalar-tensor theories as a modification of GR
Horndeski theories and their basic properties

An exemplary Horndeski theory: coupled dark energy
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Transient weak gravity in coupled dark energy



Basic concepts of GR and standard cosmology

e GR is a theory that identifies gravity with the curvature of a dynamic spacetime.
Matter and energy content determine how spacetime curves and spacetime deter-
mines how the former move in it.

e Basic object to describe spacetime: metric tensor g,, — gives us a measure for
distances in spacetime. For example:

— Newtonian mechanics — 3D Euclidean space — g, = d;; =
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= line element ds? = §;;dz'dz? invariant under Galilei transformations:
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— Special relativity — 4D Minkowski space — g, = 1, 0 010
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= ds? = 1, dz"dz” invariant under Poincaré transformations:
at — A +a, A€ O(1,3)

— General relativity — 4D pseudo-Riemannian manifold — g,, = g, ()
= ds? = g,,dz#da” invariant under general, differentiable coordinate trans-
formations: x# — z'*(x")
Why? — Metric transforms as covariant tensor:
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Here off = 02" /0z” is the transformation matrix whereas the metric g,
transforms with its inverse (a=1)* = dx#/0z"™

e How can we measure curvature?
= for a function f(z), the osculating circle at a specific point zg is the circle, that
perfectly “touches” the function at xy. Curvature is the inverse of its radius R.
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= analogously, curvature of spacetime, expressed in terms of the Ricci tensor, must
be second-order derivatives of metric: R, ~ (9%g) + (9g)?* (full expression in every
GR textbook)

e How does matter influence spacetime?
= We need an equation that relates matter content to curvature of spacetime.

— Let us start with a “reasonable” action:
S = /d4l‘ V _g('cgravity + 'Cmatter)a

where £; transform as scalars, d'z — a*d*z and g = det(g,,) = ().
Hence, both d*z\/—g and £; are invariant under coordinate transformations
= S is invariant as well.

— What could Lgavity be?

x We need scalar quantity that represents spacetime curvature: Ricci scalar
R=g¢g"R,, = Einstein-Hilbert action:

« We can further add a constant A that couples to gravity due to /—g-term

— In total we get

S= [ d'zy/—=g M_I% —
- g 2 (R 2A)+£matter



— Variation w.r.t. metric, a dynamical field, leads to the famous Einstein field
equations:
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— Here T}, = —2 6(vV—=9Lmatter)
V=9 O
eralisation of well-known EM-tensor from QFT (conserved Noether current

w.r.t. time and space translations) to curved spacetimes. In flat spacetime,
both are equivalent.

is the energy-momentum tensor. This is gen-

— Important: both, left and right handside are conserved: V,G* = V ,g" =
VvV, T" =0, where G, = R, — % g IR is the so called “Einstein tensor”. The
conservation of T}, is the GR analogue to energy and momentum conservation.

e With the additional information that free-falling particles follow geodesics, the
theory is complete.

e Application: cosmology!

— Universe is homogeneous and isotropic on large scales and almost spatially
flat — FRW-metric ds? = —c?dt? + a(t)*dz?
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— Matter content can be described as a perfect fluid: 7, = 0 0 p 0
0 00 p

— Einstein equations for this metric and EM tensor yield Friedmann equations
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— Furthermore, V, 7" = 0 leads to the conservation equation
. Py
p+3H (p+—2> —0,
c

which is not independent of the Friedmann equations so that we need only
two of these 3 equations.



— Combined with the equation of state w = p/p, the background dynamics of
the universe are fully determined. (w = 0 for matter, w = 1/3 for radiation,
w = —1 for A)

— Examples:

*+ Matter domination: w = 0
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— Excursion on Hubble tension: how can Hubble constant be inferred from

CMB?
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* CMB almost isotropic but has small anisotropies (67/T ~ O(107?))



Strongest effect are so called baryon acoustic oscillations (BAOs): inter-
play of gravity and pressure in high density regions leads to oscillations.
At recombination they are frozen and define the so called “sound horizon”
We can measure the angular distribution of the anisotropies and calculate
the angular power spectrum — acoustic peak allows us to measure sound
horizon during recombination precisely

Since CMB anisotropies are seeds for structure formation, galaxy distri-
bution in universe allows for measurement of sound horizon at later time

Comparing them, lets us deduce how much the universe has expanded
since recombination
= yields Hubble factor H



