
Scalar-tensor theories in cosmology

Student Lecture 1 by Manuel Wittner

Motivation and Outline

� Today’s standard model of cosmology (“ΛCDM model”):

– 70% dark energy (Λ = cosmological constant) + 25% cold dark matter (“cold”
= non-relativistic) + 5% baryonic matter ( = normal matter that interacts
with light)

– general relativity as underlying theory

� Successes: Can explain very well a wide variety of cosmological observations as for
example:

– Accelerated background expansion first measured via type Ia supernovae

– CMB power spectrum measured with high precision by Planck experiment
and others

� Problems:

– Cosmological constant problem: why do quantum corrections to the vacuum
energy, which are naively of order ΛUV ∼ M4

P ∼ (1018 GeV)
4
, add up to an

effective cosmological constant of Λ ∼ (meV)4 thus causing a fine-tuning of
ΛUV/Λ ∼ O(10120)?

– Coincidence problem: why is ΩΛ0 ≈ 70% of the same order as Ωc0 ≈ 25%?

– σ8 tension: assuming ΛCDM, there is a tension between Planck measurements
and LSS in the σ8 − Ωm plain, with the latter favouring smaller values.

– Hubble tension: measurements of the cosmic microwave background (CMB)
from Planck and others together with ΛCDM model imply a Hubble factor
H0 ≈ 67 km (s ·Mpc)−1 vs model-independent measurements from cepheids
and supernovae that show H0 ≈ 74 km (s ·Mpc)−1 ⇒ more than 3σ difference.

⇒ The ΛCDM model seems not to be the final answer but needs modification.

� This course:

1. Basic concepts of general relativity and standard cosmology

2. Scalar-tensor theories as a modification of GR

3. Horndeski theories and their basic properties

4. An exemplary Horndeski theory: coupled dark energy

5. Transient weak gravity in coupled dark energy
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Basic concepts of GR and standard cosmology

� GR is a theory that identifies gravity with the curvature of a dynamic spacetime.
Matter and energy content determine how spacetime curves and spacetime deter-
mines how the former move in it.

� Basic object to describe spacetime: metric tensor gµν → gives us a measure for
distances in spacetime. For example:

– Newtonian mechanics → 3D Euclidean space → gµν = δij =

1 0 0
0 1 0
0 0 1


⇒ line element ds2 = δijdx

idxj invariant under Galilei transformations:

t→ t+ a, ~x→ R · ~x+ ~v · t+~b, R ∈ SO(3)

– Special relativity → 4D Minkowski space → gµν = ηµν


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


⇒ ds2 = ηµνdx

µdxν invariant under Poincaré transformations:

xµ → Λµ
νx

ν + aµ, Λ ∈ O(1, 3)

– General relativity → 4D pseudo-Riemannian manifold → gµν = gµν(x)
⇒ ds2 = gµνdx

µdxν invariant under general, differentiable coordinate trans-
formations: xµ → x′µ(xν)
Why? → Metric transforms as covariant tensor:

ds′2 = g′µνdx
′µdx′ν =

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ

∂x′µ

∂xρ
dxρ

∂x′ν

∂xλ
dxλ

=
∂xα

∂xρ
∂xβ

∂xλ
gαβdxρdxλ

= δαρ δ
β
λgαβdxρdxλ

= gαβdxαdxβ

= ds2

Here αµν ≡ ∂x′µ/∂xν is the transformation matrix whereas the metric gµν
transforms with its inverse (α−1)µν ≡ ∂xµ/∂x′ν

� How can we measure curvature?
⇒ for a function f(x), the osculating circle at a specific point x0 is the circle, that
perfectly “touches” the function at x0. Curvature is the inverse of its radius R.
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⇒ analogously, curvature of spacetime, expressed in terms of the Ricci tensor, must
be second-order derivatives of metric: Rµν ∼ (∂2g) + (∂g)2 (full expression in every
GR textbook)

� How does matter influence spacetime?
⇒ We need an equation that relates matter content to curvature of spacetime.

– Let us start with a “reasonable” action:

S =

∫
d4x
√
−g(Lgravity + Lmatter),

where Li transform as scalars, d4x → α4d4x and g ≡ det(gµν) → (α−1)
8
g.

Hence, both d4x
√
−g and Li are invariant under coordinate transformations

⇒ S is invariant as well.

– What could Lgravity be?

* We need scalar quantity that represents spacetime curvature: Ricci scalar
R ≡ gµνRµν ⇒ Einstein-Hilbert action:

SEH =
M2

P

2

∫
d4x
√
−gR

* We can further add a constant Λ that couples to gravity due to
√
−g-term

– In total we get

S =

∫
d4x
√
−g
(
M2

P

2
(R− 2Λ) + Lmatter

)
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– Variation w.r.t. metric, a dynamical field, leads to the famous Einstein field
equations:

δS

δgµν
= 0

⇔ Rµν −
1

2
gµνR + Λgµν =

8πG

c4
Tµν

– Here Tµν ≡
−2√
−g

δ(
√
−gLmatter)

δgµν
is the energy-momentum tensor. This is gen-

eralisation of well-known EM-tensor from QFT (conserved Noether current
w.r.t. time and space translations) to curved spacetimes. In flat spacetime,
both are equivalent.

– Important: both, left and right handside are conserved: ∇µG
µν = ∇µg

µν =
∇µT

µν = 0, where Gµν ≡ Rµν − 1
2
gµνR is the so called “Einstein tensor”. The

conservation of Tµν is the GR analogue to energy and momentum conservation.

� With the additional information that free-falling particles follow geodesics, the
theory is complete.

� Application: cosmology!

– Universe is homogeneous and isotropic on large scales and almost spatially
flat → FRW-metric ds2 = −c2dt2 + a(t)2d~x2

– Matter content can be described as a perfect fluid: Tµν =


ρc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


– Einstein equations for this metric and EM tensor yield Friedmann equations

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ+

Λc2

3

ä

a
= −4πG

3

(
ρ+

3p

c2
+

Λc2

3

)
– Furthermore, ∇µT

µν = 0 leads to the conservation equation

ρ̇+ 3H
(
ρ+

p

c2

)
= 0,

which is not independent of the Friedmann equations so that we need only
two of these 3 equations.
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– Combined with the equation of state w = p/ρ, the background dynamics of
the universe are fully determined. (w = 0 for matter, w = 1/3 for radiation,
w = −1 for Λ)

– Examples:

* Matter domination: w = 0

ρ̇ = −3
ȧ

a
ρ

⇒ ρ = ρ0a
−3

⇒
(
ȧ

a

)2

=
8πG

3
ρ0a
−3

⇒ a(t) ∝ t2/3

* Λ domination: (
ȧ

a

)2

=
Λc2

3

⇒ a ∝ e
√

Λ/3 t = eH t

– Excursion on Hubble tension: how can Hubble constant be inferred from
CMB?

* CMB almost isotropic but has small anisotropies (δT/T ∼ O(10−5))
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* Strongest effect are so called baryon acoustic oscillations (BAOs): inter-
play of gravity and pressure in high density regions leads to oscillations.

* At recombination they are frozen and define the so called “sound horizon”

* We can measure the angular distribution of the anisotropies and calculate
the angular power spectrum→ acoustic peak allows us to measure sound
horizon during recombination precisely

* Since CMB anisotropies are seeds for structure formation, galaxy distri-
bution in universe allows for measurement of sound horizon at later time

* Comparing them, lets us deduce how much the universe has expanded
since recombination
⇒ yields Hubble factor H0
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