
Scalar-tensor theories in cosmology

Student Lecture 3 by Manuel Wittner

Horndeski theories and some basic properties

� Often, stability is tied to second-order equations of motion (eom):

L =
1

2
φ̈2 − V (φ)

⇒
....
φ =

∂V

∂φ

– Fourth-order eom requires four initial values

– Corresponds two canonical field variables (incl. their momenta)

– One of those is a ghost (= wrong sign in kinetic term)

� Horndeski theories: most general 4D scalar-tensor theory with 2nd-order derivatives
in equations of motion

� They are specified by four functions Gi(φ,X) where X ≡ −gµν∂µφ∂νφ/2 is kinetic
term of scalar field φ:

LH =
5∑
i=2

Li

where

L2 = G2(φ,X),

L3 = −G3(φ,X)�φ,

L4 = G4(φ,X)R +G4X

[
(�φ)2 − (∇µ∇νφ)(∇µ∇νφ)

]
,

L5 = G5(φ,X)Gµν∇µ∇νφ− G5X

6

[
(�φ)3 − 3�φ(∇µ∇νφ)(∇µ∇νφ) + 2φµνφ

ν
λφ

λ
µ

]
� Horndeski contains a plethora of well-known theories, e.g.:

– ΛCDM: G2 = −2Λ, G4 = M2
P/2, G3,5 = 0

– Quintessence: G2 = X − V , G4 = M2
P/2, G3,5 = 0

– Brans-Dicke theory: G2 = ωX/φ, G4 = φM2
P/2, G3,5 = 0

– . . .

� Conditions of stability: restrictions on Gi’s. For the simple case of quintessence:

XG2X

H2
=

X

H2
> 0

⇒ kinetic term positive!
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� Horndeski theories are form-invariant under disformal transformations of the met-
ric:

gµν → g̃µν = C(φ)gµν +D(φ)∂µφ∂νφ

That is, if a scalar-tensor theory L1(φ, gµν) ⊂ LH is a Horndeski theory, another
theory given by L2 = L1(φ, g̃µν) will also be ⊂ LH. Or in other words: the
second-order nature of the eoms is preserved under a disformal transformation.

An exemplary Horndeski theory: Coupled Dark Energy

� Consider following theory:

SCDE =

∫
d4x
√
−g
[
M2

P

2
R + Lφ(gµν , φ) + Lb(gµν , ψb)

]
+

∫
d4x
√
−g̃L̃c(g̃µν , ψc),

where

Lφ = −1

2
gµν∂µφ∂νφ− V (φ),

ψb = baryonic matter,

ψc = (cold) dark matter,

g̃µν = C(φ)gµν .

� We consider theory in terms of gµν (“Einstein frame”), not g̃µν (“Dark-matter
frame”). That is, gravity is considered standard but dark matter feels additional
fifth force φ.
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� Let us calculate Einstein field equations:

Rµν −
1

2
gµνR =

8πG

c4

(
T φµν + T b

µν + T c
µν

)
,

where

T φµν = − 2√
−g

δ(
√
−gLφ)

δgµν

T b
µν = − 2√

−g
δ(
√
−gLb)

δgµν

T c
µν = − 2√

−g
δ(
√
−g̃L̃c)

δgµν

� Conservation equations:

∇µT b
µν = 0,

∇µ
(
T φµν + T c

µν

)
= 0

⇒ only total EM tensor of dark sector conserved whereas individual components:

∇µT φµν = −∇µT c
µν ≡ −Q(φ)T c∂νφ,

where T c ≡ gµνT c
µν and

Q(φ) = − 1

2C(φ)

dC(φ)

dφ

is so called coupling function.

� Background equations:

– Friedmann equation and baryonic-matter conservation remain standard

H2 =
8πG

3
(ρφ + ρb + ρc)

ρ′b + 3Hρb = 0

– Dark matter and φ-conservation equation get modified:

ρ′φ + 3(1 + wφ)ρφ = Qρcφ
′

ρ′c + 3ρc = −Qρcφ
′

– Let us choose
C(φ) ∝ eβφ,

so that Q ∼ const. Of course, if Q > 0, energy flows from DM to DE and, if
Q < 0, from DE to DM.
In our case, we choose Q > 0, i.e. β < 0, and for the sake of clarity V (φ) =
V0φ

−α, with α > 0 (“Peebles-Ratra potential”) so that φ′ > 0.
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– Can then solve conservation equation:

ρc =
ρc0

a3
eQ(φ0−φ)

⇒ DM density decays exponentially with φ

� Solution to Hubble tension?

– Due to exponential, DM energy density was larger in early times than in
ΛCDM

– Since during recombination era H2 ∼ ρc, this implies larger Hubble function
at early times and therefore smaller comoving sound horizon:

rs =

∫ trec

0

csdt

a
=

∫ arec

0

csda

a2H

– Remembering that Hubble factor is extracted from measurement of angular
diameter distance:

H0 ∝ D−1
A =

θs
rs
,

this might potentially increase the Hubble value measured from CMB

– However, data analysis shows that this model can only slightly alleviate Hub-
ble tension: H0 ≈ 69 km s−1 Mpc−1

⇒ Generalise: C(φ)? Non-canonical kinetic term? Disformal coupling?

Transient weak gravity in Coupled Dark Energy

� σ8-parameter = “clustering strength”

– σ8-tension: σ8 measured via CMB assuming ΛCDM larger than from measure-
ments using large scale structure

⇒ want to weaken gravity

� However, typically in CDE with Q ∼ const:

δ′′c + Fδ′c =
3

2
Ωc
Geff

GN

δc,

with

Geff = GN

(
1 + 2M2

PQ
2 k2

k2 +m2
φ

)
Leads to real-space potential:

V (r) = −GNm

r

(
1 + 2Q2e−mφr

)
⇒ Yukawa correction that makes gravity even stronger ⇒ σ8-tension gets worse.
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� Our approach: allow φ-dependence of Q, e.g. consider

C(φ) = em
−2
C φ2 .

Then close to minimum of C at φ = 0, we have new mass scale:

dQ

dφ
= − 1

m2
C

This enters the equations in such a way that the resulting potential is

V (r) = −GNm

r

[
1− 2M2

P (Q′)2

M̄2

(
1− e−M̄r

)]
⇒ weakens gravity on large scales and could potentially alleviate σ8-tension

Summary and Conclusions

� ΛCDM is good model but not perfect

� Hubble tension: H0,CMB+ΛCDM < H0,local

� Scalar-tensor theories modify gravity via additional scalar degree of freedom

� Stability is a delicate issue

� Coupled Dark Energy can perhaps solve problems but needs more research

� There are many other good ST theories!
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