Neutrino dark matter from an experimental perspective

Loredana Gastaldo

Kirchhoff Institute for Physics, Heidelberg University

Contents

- Neutrinos as Dark Matter candidates
- Astrophysical and cosmological evidences
- Signature of keV sterile neutrinos in direct neutrino mass measurements ECHo KATRIN
- Conclusions and outlook

Evidence of Dark Matter

- The dynamics of galaxies and galaxy clusters cannot be explained by the Newtonian potential created by visible matter
- Cosmic large scale structures started to develop much before the decoupling of photons → much before ordinary matter could start clustering
- Dark Matter represents ~25% of the total energy density of the Universe
- Most plausible hypothesis: Dark Matter is composed by new particle(s)

Dark Matter models

Cold Dark Matter Model

- \rightarrow DM particles decouple non-relativistically
- → Structure formation: small scale objects form first and then merge into larger ones
- → CDM models fit cosmological data well!

Hot Dark Matter Model

- → DM particles are produced relativistically and remain relativistic into the matter dominated epoch
- → structure formation: the first structure to collapse have size comparable to the Hubble size
- \rightarrow HDM models contradict large-scale structures

Warm Dark Matter Model

- →DM particles are produced relativistically and become non-relativistic in the radiation dominated epoch
- →Structure formation: similar to CDM above the free streaming length, below this scale density fluctuations are suppressed

SM Neutrinos (1)

The only electrically neutral and long leaving Standard Model partcles are neutrinos

Neutrinos are **massive** particles

interacts weakly

- → in the early universe neutrinos are in thermal equilibrium down to temperature of a few MeV
- → background of relic neutrinos was created before primordial nucleosynthesis

SM Neutrinos (2)

- To describe the whole Dark Matter, the mass of neutrinos should be ~10 eV
- Tremain-Gunn bound gives a lower limit for fermion DM particles m(v) > 10-100 eV

→ Contradiction with present limits

 $\Sigma m_i < 1 \text{ eV}$ Cosmology $m(v_e) < 2 \text{ eV}$ Direct measurement (³H)

Neutrino mass much smaller than decoupling temperature → neutrinos decouple relativistically and become non-relativistic only deeply in matter dominated epoch
 → hot Dark Matter excluded by structure formation

Standard model elementary particles cannot describe Dark Matter

Fermionic Dark Matter

- Lower limit for the mass is given by Tremain-Gunn bound
- Not necessarily stable, but half-life significantly longer than the age of the Universe
- DM particles should have become non-relativistic sufficiently early in the radiation dominated epoch (- sub-dominat fraction)

Candidates

Weakly Interacting Massive Particles

Cold Dark Matter

Foreseen in the Supersymmetric extension of the Standard Model

Good agreement with observations

Sterile neutrinos

Warm Dark Matter

Sterile neutrinos

In order to explain dark matter and active neutrino masses, the minimal model contains three right-handed neutrinos

L. Canetti, M. Drewes, and M. Shaposhnikov, PRL **110** 061801 (2013)

Sterile neutrinos

Quarks

Leptons

Neutrino Minimal SM (nuMSM)

In order to explain dark matter and active neutrino masses, the minimal model contains three right-handed neutrinos

> L. Canetti, M. Drewes, and M. Shaposhnikov, PRL 110 061801 (2013)

COLD DM models predict millions of sub-structures within a galaxy like Milky Way

COLD DM models predict millions of sub-structures within a galaxy like Milky Way Only 30 are observed within our Galaxy. M. Geha 2010

COLD DM models predict millions of sub-structures within a galaxy like Milky Way Only 30 are observed within our Galaxy. M. Geha 2010

Is small number of observed substructures due to dark matter free-streaming? Moore et al. (1999), Klypin et al. (1999)

COLD DM models predict millions of sub-structures within a galaxy like Milky Way Only 30 are observed within our Galaxy. M. Geha 2010

Is small number of observed substructures due to dark matter free-streaming? Moore et al. (1999), Klypin et al. (1999)

COLD DM models predict millions of sub-structures within a galaxy like Milky Way Only 30 are observed within our Galaxy. M. Geha 2010

Is small number of observed substructures due to dark matter free-streaming? Moore et al. (1999), Klypin et al. (1999)

Sterile neutrinos decay

Main decay mode: $N_s \rightarrow vv\overline{v}$

Subdominant process: $N_1 \rightarrow v + \gamma$

 $E_{\gamma} = 1/2 M_{N}$

Expect a signal from any large concentration of dark matter (galaxy, galaxy group, galaxy cluster)

The width of the decay line is determined by Doppler broadening \rightarrow narrow line in all DM-dominated objects

$$\frac{\Delta E}{E_{\gamma}} \approx 10^{-4} \div 10^{-2}$$

keV-scale sterile neurinos

Sterile neutrinos decay - detection

XMM Newton telescope

Sterile neutrinos decay – 3.5 keV line

DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RAY SPECTRUM OF GALAXY CLUSTERS

ESRA BULBUL^{1,2}, MAXIM MARKEVITCH², ADAM FOSTER¹, RANDALL K. SMITH¹ MICHAEL LOEWENSTEIN², AND SCOTT W. RANDALL¹

¹ Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138. ² NASA Goddard Space Flight Center, Greenbelt, MD, USA. Submitted to ApJ, 2014 February 10

1-1-1-1

ApJ (2014) [1402.2301]

An unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster

A. Boyarsky¹, O. Ruchayskiy², D. Iakubovskyi^{3,4} and J. Franse^{1,5}

¹Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden, The Netherlands

²Ecole Polytechnique Fédérale de Lausanne, FSB/ITP/LPPC, BSP, CH-1015, Lausanne, Switzerland

PRL (2014) [1402.4119]

Sterile neutrinos decay – 3.5 keV line

Energy: 3.5 keV Statistical error for line position ~30 - 50 eV

Lifetime: ~ 10²⁸ sec (uncertainty: factor ~3)

Possible origin: DM $\rightarrow v + \gamma$ (fermion)

 $DM \rightarrow \gamma + \gamma$ (boson)

Atomic Physics origin is questionable

ApJ (2014) [1402.2301]

PRL (2014) [1402.4119]

keV-scale sterile neurinos

ASTRO-H HITOMI mission

Four types of detectors

ASTRO-H - HITOMI

ASTRO-H HITOMI mission

Sounding Rocket Payloads – Micro-X

- 300 seconds of on-target data above 169 km
- High resolution X-ray microcalorimeter with ~1cm^2 area and large ~steradian FOV
- Flights from White Sands Missile Range in New Mexico and Woomera Range in Australia

Sounding Rocket Payloads – Micro-X

12×12 TES pixels array

Micro-X Focal Plane

NuSTAR limit

Can we find direct evidence of sterile neutrinos in laboratory based experiments?

Neutrino mass determination

Kinematics of beta decay

$$m^{2}(v_{e}) = \sum_{i} |U_{ei}|^{2} m_{i}^{2}$$

- Model independent
- Laboratory experiments

$$m(\overline{v}_e) < 2.2 \ eV$$
 ³H (1)
 $m(v_e) < 225 \ eV$ ¹⁶³Ho (2)

(1) Ch. Kraus *et al.*, Eur. Phys. J. C **40** (2005) 447
Ch. Weinheimer, Prog. Part. Nucl. Phys. **57** (2006) 22
N. Aseev *et al.*, Phys. Rev D **84** (2011) 112003

(2) P. T. Springer, C. L. Bennett, and P. A. Baisden Phys. Rev. A 35 (1987) 679

Neutrino mass determination

(2)

Kinematics of beta decay

$$m^{2}(v_{e}) = \sum_{i} |U_{ei}|^{2} m_{i}^{2}$$

- Model independent
- Laboratory experiments

$$m(\overline{v}_e) < 2.2 \ eV$$
 ³H (1)

 $m(v_e) < 225 \ eV$ ¹⁶³Ho

Next future 200 meV

Lightest neutrino mass (eV)

- (1) Ch. Kraus *et al.,* Eur. Phys. J. C **40** (2005) 447 Ch. Weinheimer, Prog. Part. Nucl. Phys. **57** (2006) 22
 - N. Aseev et al., Phys. Rev D 84 (2011) 112003

(2) P. T. Springer, C. L. Bennett, and P. A. Baisden Phys. Rev. A 35 (1987) 679

• $\tau_{1/2} \cong 12.3$ years (4*10⁸ atoms for 1 Bq)

• Q_β = 18 592.01(7) eV

E.G. Myers et al., Phys. Rev. Lett. 114 (2015) 013003

• $\tau_{1/2} \cong 4570$ years (2*10¹¹ atoms for 1 Bq)

• $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

• $\tau^{}_{1/2}\,\cong$ 12.3 years $\,$ (4*10^8 atoms for 1 Bq) $\,$

• Q_β = 18 592.01(7) eV

E.G. Myers et al., Phys. Rev. Lett. 114 (2015) 013003

- $\tau_{1/2} \cong 4570$ years (2*10¹¹ atoms for 1 Bq)
- $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Atomic de-excitation:

- X-ray emission
- Auger electrons
- Coster-Kronig transitions

•
$$\tau_{1/2} \cong$$
 4570 years (2*10¹¹ atoms for 1 Bq)

• $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Detector

Atomic de-excitation:

- X-ray emission
- Auger electrons

 V_e

 V_e

Source

• Coster-Kronig transitions

P. T. Springer, C. L. Bennett, and P. A. Baisden Phys. Rev. A 35 (1987) 679

Volume 118B, number 4, 5, 6

PHYSICS LETTERS

9 December 1982

CALORIMETRIC MEASUREMENTS OF ¹⁶³HOLMIUM DECAY AS TOOLS TO DETERMINE THE ELECTRON NEUTRINO MASS

A. DE RÚJULA and M. LUSIGNOLI¹ CERN, Geneva, Switzerland
Electron capture in ¹⁶³Ho

Requirements for sub-eV sensitivity in ECHo

Statistics in the end point region

• $N_{ev} > 10^{14} \rightarrow A \approx 1 \text{ MBq}$

Unresolved pile-up ($f_{pu} \sim a \cdot \tau_r$)

- *f*_{pu} < 10⁻⁵
- $\tau_r < 1 \,\mu s \rightarrow a \sim 10 \,\text{Bq}$
- 10⁵ pixels \rightarrow multiplexing

Precision characterization of the endpoint region

• $\Delta E_{\text{FWHM}} < 3 \text{ eV}$

Background level

• < 5*10⁻⁵ events/eV/det/day

Requirements for sub-eV sensitivity in ECHo

Statistics in the end point region

• $N_{ev} > 10^{14} \rightarrow A \approx 1 \text{ MBq}$

Unresolved pile-up ($f_{pu} \sim a \cdot \tau_r$)

- *f*_{pu} < 10⁻⁵
- $\tau_r < 1 \,\mu s \rightarrow a \sim 10 \,\text{Bq}$
- 10⁵ pixels \rightarrow multiplexing

Precision characterization of the endpoint region

• $\Delta E_{\text{FWHM}} < 3 \text{ eV}$

Background level

• < 5*10⁻⁵ events/eV/det/day

Low temperature micro-calorimeters

- Very small volume
- Working temperature below 100 mK small specific heat small thermal noise
- Very sensitive temperature sensor

Metallic magnetic calorimeters (MMCs)

A. Fleischmann et al., AIP Conf. Proc. **1185**, 571, (2009)

MMCs: Readout

Two-stage SQUID setup with flux locked loop allows for:

- Iow noise
- large bandwidth / slewrate
- small power dissipation on detector SQUID chip (voltage bias)

MMCs: Planar geometries

- Planar temperature sensor
- B-field generated by persistent current
- transformer coupled to SQUID

MMCs: 1d-array for soft x-rays (T=20 mK)

MMCs: Microwave SQUID multiplexing

Microwave SQUID Multiplexer for the Readout of Metallic Magnetic Calorimeters S.Kempf et al., J. Low. Temp. Phys. **175** (2014) 850-860

MMCs: Microwave SQUID multiplexing

Microwave SQUID Multiplexer for the Readout of Metallic Magnetic Calorimeters S.Kempf et al., J. Low. Temp. Phys. **175** (2014) 850-860

ECHo First detector prototype

- Absorber for metallic magnetic calorimeters

 → ion implantation
 @ ISOLDE-CERN in 2009
 on-line process
- About 0.01 Bq per pixel

Field and heater bondpads

Heatsink

SQUIDbondpads

• Operated over more than 4 years

~

L. Gastaldo et al., Nucl. Inst. Meth. A, 711 (2013) 150 P. C.-O. Ranitzsch et al., http://arxiv.org/abs/1409.0071v1 Meander

ECHo Calorimetric spectrum

- Rise Time ~ 130 ns
- $\Delta E_{\text{FWHM}} = 7.6 \text{ eV} @ 6 \text{ keV} (2013)$
- Non-Linearity < 1% @ 6keV

	1000	– NI.	¹⁶³ Ho –					
eV	800	-	_					
Counts per 2.0 (600 -							
	400	_	First calorimetric measurement of the OI-line					
		OI	MI					
	200	- 🖌	¹⁴⁴ Pm MII					
	0							
	Energy <i>E</i> [keV]							
	$Q_{\rm FC}$ = (2.843 ± 0.009 ^{stat} ± 0.06 ^{syst}) keV							

P. CO. Ranitzsch	et al ., http://arxiv.org/abs/1409.007	/1v1)
L. Gastaldo et al.,	Nucl. Inst. Meth. A, 711, 150-159 (20)13)

	E _H bind.	Е _н ехр.	$arGamma_{ extsf{H}}$ lit.	$\Gamma_{ extsf{H}}$ ехр
МІ	2.047	2.040	13.2	13.7
MII	1.845	1.836	6.0	7.2
NI	0.420	0.411	5.4	5.3
NII	0.340	0.333	5.3	8.0
ΟΙ	0.050	0.048	5.0	4.3

Where to improve

Background reduction ٠

Detector design and fabrication:

- Increase activity per pixel
- Stems between absorber and sensor ٠

Understanding of the ¹⁶³Ho spectrum:

¹⁴⁴Pm

¹⁶³Ho

MI

2.0

MII

¹⁴⁴Pm

15

10

Energy E [keV]

High purity ¹⁶³Ho source: Chemical purification

Requirement : >10⁶ Bq \rightarrow >10¹⁷ atoms

- (n, γ)-reaction on ¹⁶²Er
 - High cross-section
 - Radioactive contaminants

- Excellent chemical separation
 Only ^{166m}Ho
- Available ¹⁶³Ho source:
 ~ 10¹⁸ atoms

High purity ¹⁶³Ho source: Chemical purification

Requirement : >10⁶ Bq \rightarrow >10¹⁷ atoms

- (n, γ)-reaction on ¹⁶²Er
 - High cross-section
 - Radioactive contaminants

- Excellent chemical separation
 Only ^{166m}Ho
- Available ¹⁶³Ho source:
 ~ 10¹⁸ atoms

ECHo requirements: ^{166m}Ho/¹⁶³Ho < 10⁻⁹

Offline mass separation: RISIKO, Mainz University ISOLDE-CERN

ECHo Second ¹⁶³Ho implantation

- Chemically purified ¹⁶³Ho source
- Offline implantation @ISOLDE-CERN using GPS and RILIS (December 2014)

C. Hassel et al., JLTP (2016)

... first results

Activity per pixel

٠

Baseline resolution

- А ~ 0.2 Вq *ΔЕ_{гWHM} ~* 5 eV
- No strong evidence of radioactive contamination in the source

... first results

- Activity per pixel
- A ~ 0.1 Bq
- Baseline resolution
- $\Delta E_{\rm FWHM} \simeq 5 \, {\rm eV}$
- No strong evidence of radioactive contamination in the source
- Symmetric detector response

C. Hassel et al., JLTP (2015)

Estimate the effect of

• Higher order excitation in ¹⁶³Ho

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C 91, 045505 (2015)
- A. Faessler et al.
 Phys. Rev. C 91, 064302 (2015)
- A. De Rujula and M. Lusignoli arXiv:1601.04990v1 [hep-ph] 19 Jan 2016

Two-holes excited states: sh

shake-up

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C 91, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C 91, 045505 (2015)

A. Faessler et al.
 Phys. Rev. C 91, 064302 (2015)

Two-holes excited states:

shake-up

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C 91, 045505 (2015)

A. Faessler et al.
 Phys. Rev. C 91, 064302 (2015)

Two-holes excited states:

shake-up

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C **91**, 045505 (2015)

A. Faessler et al.
 Phys. Rev. C 91, 064302 (2015)

Two-holes excited states:

shake-up shake-off

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C 91, 045505 (2015)

A. Faessler et al.
 Phys. Rev. C **91**, 064302 (2015)

Visible energy, eV

will provide information on the spectral shape

- Prove scalability with medium large experiment ECHo-1K (2015 2018)
 - $A \sim 1000 \text{ Bq}$ High purity ¹⁶³Ho source (produced at ILL)
 - $\Delta E_{\text{FWHM}} < 5 \text{ eV}$
 - *τ*_r< 1 μs
 - multiplexed arrays → microwave SQUID multiplexing
 - 1 year measuring time $\rightarrow 10^{10}$ counts = Neutrino mass sensitivity $m_v < 10 \text{ eV}$

Supported by DFG through Research Unit FOR 2202/1

ECHo-1M towards sub-eV sensitivity (2017 - 2021)

$$\frac{dW}{dE_{\rm C}} = A(Q_{\rm EC} - E_{\rm C})^2 \left[\left(1 - \left|U_{e4}\right|^2\right) + \left|U_{e4}\right|^2 \sqrt{1 - \frac{m_4^2}{(Q_{\rm EC} - E_{\rm C})^2}} H(Q_{\rm EC} - E_{\rm c} - m_4) \right] \sum_{\rm H} B_{\rm H} \varphi_{\rm H}^{-2}(0) \frac{\frac{1}{2\pi}}{(E_{\rm C} - E_{\rm H})^2 + \frac{\Gamma_{\rm H}^2}{4}} + \frac{1}{4} \frac{1}{$$

$$m_{\nu}^2 = \sum_i \left| U_{ei} \right|^2 m_i^2$$

$$m_{1,2,3} = 0$$

$$m_4 \neq 0$$

$$|v_e\rangle = \sum_{i=1}^3 U_{ei} |v_i\rangle + U_{e4} |v_4\rangle$$

m₄=2 keV, U_{e4}²=0.5

no sterile neutrino

• Amplitude of the line H for only active neutrinos

 $W_{Ha} = A(Q_{EC} - E_{H})^2 B_H \varphi_{H}^2(0)$

• Amplitude of the line H for 3+1 model in case of $m_a = 0$ eV

$$W_{Hs} = A(Q_{EC} - E_{H})^{2} \left[\left(1 - |U_{e4}|^{2} \right) + |U_{e4}|^{2} \sqrt{1 - \frac{m_{4}^{2}}{(Q_{EC} - E_{C})^{2}}} H(Q_{EC} - E_{c} - m_{4}) \right] B_{H} \varphi_{H}^{2}(0)$$

• Ratio between amplitudes of two lines in the spectrum for 3+1 model in case of $m_a = 0 \text{ eV}$

$$\left(\frac{W_{H1}}{W_{H2}}\right)_{s} = \left(\frac{W_{H1}}{W_{H2}}\right)_{a} \frac{\left|U_{e4}\right|^{2} \left[H(Q_{EC} - E_{1} - m_{4})\sqrt{1 - \frac{m_{4}^{2}}{\left(Q_{EC} - E_{1}\right)^{2}} - 1\right] + 1}}{\left|U_{e4}\right|^{2} \left[H(Q_{EC} - E_{2} - m_{4})\sqrt{1 - \frac{m_{4}^{2}}{\left(Q_{EC} - E_{2}\right)^{2}} - 1\right] + 1}$$

Sensitivity to the mixing matrix element at 90% CL as a function of the sterile neutrino mass achievable with about 10¹⁰ events in the full EC spectrum.

P. Filianin et al. arXiv: 1402.4400

- \succ postion of kink => m₄
- \succ depth of kink => $|U_{e4}|^2$

Sterile Neutrino in ECHo

- Statistical Fluctuation
- No Pile Up
- Theoretical Spectrum supposed to be perfectly known

A White Paper on keV Sterile Neutrino Dark Matter arXiv:1602.04816v1

Many peaks due to higher order excited states in ¹⁶³Dy and the corresponding structures in the pile up spectrum

Identification of sterile neutrinos signatures could be limited by the complex structure of the ¹⁶³Ho spectrum

¹⁶³Ho-based experiments

Other condidates in the EC branch:

- Q_{EC} < 100 keV
- Reasonable halflife

Nuclide	$T_{1/2}$	EC- transition	Q (keV) [22]	$\begin{array}{c} B_i (\mathrm{keV}) \\ [23] \end{array}$	$\begin{array}{c} B_j (\mathrm{keV}) \\ [23] \end{array}$	$ \psi_i ^2/ \psi_j ^2$	$\begin{array}{c} Q-B_i\\ (\text{keV}) \end{array}$
¹²³ Te	$>2 \cdot 10^{15} \mathrm{y}$?	52.7(16)	K: 30.4912(3)	L _I : 4.9392(3)	7.833	22.2
¹⁵⁷ Tb	71 y	$3/2^+ \rightarrow 3/2^-$	60.04(30)	K: 50.2391(5)	L _I : 8.3756(5)	7.124	9.76
¹⁶³ Ho	4570 y	$7/2^{-} \rightarrow 5/2^{-}$	2.555(16)	M _I : 2.0468(5)	N _I : 0.4163(5)	4.151	0.51
¹⁷⁹ Ta	1.82 y	$7/2^+ \rightarrow 9/2^+$	105.6(4)	K: 65.3508(6)	L _I : 11.2707(4)	6.711	40.2
¹⁹³ Pt	50 y	$1/2^{-} \rightarrow 3/2^{+}$	56.63(30)	L _I : 13.4185(3)	M _I : 3.1737(17)	4.077	43.2
²⁰² Pb	52 ky	$0^+ \rightarrow 2^-$	46(14)	L _I : 15.3467(4)	M _I : 3.7041(4)	4.036	30.7
²⁰⁵ Pb	13 My	$5/2^{-} \rightarrow 1/2^{+}$	50.6(5)	L _I : 15.3467(4)	M _I : 3.7041(4)	4.036	35.3
²³⁵ Np	396 d	$5/2^+ \rightarrow 7/2^-$	124.2(9)	K: 115.6061(16)	L _I : 21.7574(3)	5.587	8.6

Other condidates in the EC branch:

- Q_{EC} < 100 keV
- Reasonable halflife

Nuclide	$T_{1/2}$	EC- transition	Q (keV) [22]	$\begin{array}{c} B_i (\mathrm{keV}) \\ [23] \end{array}$	<i>B_j</i> (keV) [23]	$ \psi_i ^2/ \psi_j ^2$	$\begin{array}{c} Q - B_i \\ (\text{keV}) \end{array}$
¹²³ Te	$>2 \cdot 10^{15} \mathrm{y}$?	52.7(16)	K: 30.4912(3)	L _I : 4.9392(3)	7.833	22.2
¹⁵⁷ Tb	71 y	$3/2^+ \rightarrow 3/2^-$	60.04(30)	K: 50.2391(5)	L _I : 8.3756(5)	7.124	9.76
¹⁶³ Ho	4570 y	$7/2^{-} \rightarrow 5/2^{-}$	2.555(16)	M _I : 2.0468(5)	N _I : 0.4163(5)	4.151	0.51
¹⁷⁹ Ta	1.82 y	$7/2^+ \rightarrow 9/2^+$	105.6(4)	K: 65.3508(6)	L _I : 11.2707(4)	6.711	40.2
¹⁹³ Pt	50 y	$1/2^{-} \rightarrow 3/2^{+}$	56.63(30)	L _I : 13.4185(3)	M _I : 3.1737(17)	4.077	43.2
²⁰² Pb	52 ky	$0^+ \rightarrow 2^-$	46(14)	L _I : 15.3467(4)	M _I : 3.7041(4)	4.036	30.7
²⁰⁵ Pb	13 My	$5/2^{-} \rightarrow 1/2^{+}$	50.6(5)	L _I : 15.3467(4)	M _I : 3.7041(4)	4.036	35.3
²³⁵ Np	396 d	$5/2^+ \rightarrow 7/2^-$	124.2(9)	K: 115.6061(16)	L _I : 21.7574(3)	5.587	8.6

Other condidates in the EC branch:

- Q_{EC} < 100 keV
- Reasonable halflife

Nuclide	$T_{1/2}$	EC- transition	Q (keV) [22]	$\begin{array}{c} B_i (\mathrm{keV}) \\ [23] \end{array}$	<i>B_j</i> (keV) [23]	$ \psi_i ^2/ \psi_j ^2$	$Q-B_i$ (keV)
¹²³ Te	$>2 \cdot 10^{15} \mathrm{y}$?	52.7(16)	K: 30.4912(3)	L _I : 4.9392(3)	7.833	22.2
¹⁵⁷ Tb	71 y	$3/2^+ \rightarrow 3/2^-$	60.04(30)	K: 50.2391(5)	L _I : 8.3756(5)	7.124	9.76
¹⁶³ Ho	4570 y	$7/2^{-} \rightarrow 5/2^{-}$	2.555(16)	M _I : 2.0468(5)	N _I : 0.4163(5)	4.151	0.51
¹⁷⁹ Ta	1.82 y	$7/2^+ \rightarrow 9/2^+$	105.6(4)	K: 65.3508(6)	L _I : 11.2707(4)	6.711	40.2
¹⁹³ Pt	50 y	$1/2^{-} \rightarrow 3/2^{+}$	56.63(30)	L _I : 13.4185(3)	M _I : 3.1737(17)	4.077	43.2
²⁰² Pb	52 ky	$0^+ \rightarrow 2^-$	46(14)	L _I : 15.3467(4)	M _I : 3.7041(4)	4.036	30.7
²⁰⁵ Pb	13 My	$5/2^{-} \rightarrow 1/2^{+}$	50.6(5)	L _I : 15.3467(4)	M _I : 3.7041(4)	4.036	35.3
²³⁵ Np	396 d	$5/2^+ \rightarrow 7/2^-$	124.2(9)	K: 115.6061(16)	L _I : 21.7574(3)	5.587	8.6

P. Filianin et al. J. Phys. G: Nucl. Part. Phys. 41 (2014) 095004

Beta decay of ³H

Beta decay of ³H

Only a small fraction of events in the last eV below the endpoint: 2 *10⁻¹³

Triutium is present as **bi-atomic molecules**

³H based experiments

Main ideas:

- high activity source 10¹¹ e⁻/s
 - high resolution MAC-E* filter to select electrons close to the end point
 - count electrons as function of retarding potential
 - \rightarrow integral spectrum

*MAC-E: Magnetic Adiabatic Collimation with Electrostatic Filter

J. Angrik et al (KATRIN Collaboration) 2004 Wissenschaftliche Berichte FZ Karlsruhe 7090

High stability : **10**⁻³ level

< 1 eV energy cut off

retarding potential U [eV]

The KATRIN experiment: differential spectrum

keV-scale sterile neurinos

S. Mertens

³H based experiments

KATRIN - Karlsruhe Tritium Neutrino Experiment

Main ideas:

- high activity source: 10¹¹ e⁻/s
 - high resolution MAC-E filter to select electrons close to the end point
 - count electrons as function of retarding potential
 - → integral spectrum

Project8

Main ideas:

- Source = detector: $10^{11} 10^{13} {}^{3}\text{H}_{2}$ molecules /cm³
- Use cyclotron frequency to extract electron energy
- Differential spectrum

PTOLEMY - Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield

Main ideas:

- large area tritium source: 100 g atomic ³H
 - MAC-E lter to select electrons close to the end point
 - RF tracking and time-of-flight systems
 - cryogenic calorimetry \rightarrow differential spectrum

Conclusions and outlook

A. Merle

Conclusions and outlook

A. Merle