RTG students lecture I - Pentaquark candidates at LHCb

Marian Stahl December 05th, 2016

[PRL 115 072001], [PRL 117 082002], [PRL 117 082003]

Pentaquark is a loaded word with a long history

-) Bumps can come and go (also at $750 \, {
 m GeV/c^2}$)
- Pentaquarks have done so twice already

U. Uwer, Erice 2015

U. Uwer, Erice 2015

- Initial goal: measurement of Λ_b^0 lifetime [PRL 111 102003]
- $\mathcal{B}(\Lambda_b^0 o J/\psi p K^-) = (3.04^{+0.55}_{-0.43}) imes 10^{-4}$ [Chin. Phys. C40, 011001]

Λ

• Smooth efficiency cannot create a peak

- Smooth efficiency cannot create a peak
- Feed-down from higher *b*-baryons ruled out

- Smooth efficiency cannot create a peak
- Feed-down from higher
 b-baryons ruled out
- ✓ Veto against $\bar{B}^0_s \rightarrow J/\psi K^- K^+$ and $\bar{B}^0 \rightarrow J/\psi K^- \pi^+$ from $p \rightarrow K^+/\pi^+$ misID
- Cross-checked by different analysis-teams
- Tested against selection artefacts
- Checked against clones/ghost-tracks

20 25

plots by Antimo Palano

ф.

plots by Antimo Palano

November 2016 4 / 15

Hadron Spectroscopy

plots by Antimo Palano

4 / 15 / 15 / 21

ф.

• Fit efficiency ϵ corrected PDF \mathcal{P} in 1+5 dimensions m_{Kp}, Ω

$$\mathcal{P}_{\text{sig}}(m_{Kp}, \Omega | \omega) = \frac{1}{I(\omega)} |\mathcal{M}(m_{Kp}, \Omega | \omega)|^2 \Phi(m_{Kp}) \epsilon(m_{Kp}, \Omega)$$
Normalization integral
Matrix element for Λ_b^0 decay (on next slides) Phase space factor

• Background handled by conventional sideband subtraction *cFit* or signal unfolding using *sPlot* [NIM A 555, 356] *sFit*

$$\mathcal{P}(m_{\mathcal{K}\rho,i},\Omega_{i}|\omega) = (1-\beta)\mathcal{P}_{sig}(m_{\mathcal{K}\rho},\Omega|\omega) + \beta \mathcal{P}_{bkg}(m_{\mathcal{K}\rho},\Omega)$$
$$-2\ln \mathcal{L}(\omega) = -2\frac{\sum_{i}w_{i}}{\sum_{i}w_{i}^{2}}\sum_{i}w_{i}\ln \mathcal{P}(m_{\mathcal{K}\rho,i},\Omega_{i}|\omega)$$
$$w_{i} = 1$$

 $\beta = 5.4\%$

• Fits coded independently for cross-check

$$\mathcal{M}_{\lambda_{A_{b}^{0}},\lambda_{p},\Delta\lambda_{\mu}}^{\Lambda^{*}} = \sum_{n} R_{n}(m_{\kappa_{p}}) \mathcal{H}_{\lambda_{p}}^{\Lambda^{*}_{n}\to\kappa_{p}} \sum_{\lambda_{\psi}} e^{i\,\lambda_{\psi}\phi_{\mu}} d^{1}_{\lambda_{\psi},\Delta\lambda_{\mu}}(\theta_{\psi}) \times \sum_{\lambda_{\Lambda^{*}_{n}}} \mathcal{H}_{\lambda_{\Lambda^{*}},\lambda_{\psi}}^{\Lambda^{0}_{b}\to\Lambda^{*}_{n}\psi} e^{i\,\lambda_{\Lambda^{*}}\phi_{\kappa}} d^{\frac{1}{2}}_{\lambda_{A_{b}^{0}},\lambda_{\Lambda^{*}_{n}}^{-}-\lambda_{\psi}}(\theta_{A_{b}^{0}}) d^{J_{\Lambda^{*}_{n}}}_{\lambda_{\Lambda^{*}},\lambda_{p}}(\theta_{\Lambda^{*}_{n}})$$

- Λ^* resonances (masses/widths) modelled by Breit-Wigner amplitudes
- Helicity couplings for Λ^{*} and Λ_b decays (4-6 complex fit parameters per amplitude)
- Angular structure of Λ_b^0 , J/ψ and Λ^* decays (no free parameters)

State	J ^P	PDG class	Mass (MeV)	Г (MeV)	# Reduced	# Extended
Λ(1405)	$1/2^{-}$	****	$1405.1^{+1.3}_{-1.0}$	$50.5{\pm}2.0$	3	4
Λ(1520)	$3/2^{-}$	****	$1519.5 {\pm} 1.0$	$15.6 {\pm} 1.0$	5	6
Λ(1600)	$1/2^{+}$	***	1600	150	3	4
Λ(1670)	$1/2^{-}$	****	1670	35	3	4
Λ(1690)	$3/2^{-}$	****	1690	60	5	6
Λ(1710)	$1/2^{+}$	*	1713 ± 13	$180\pm~40$	0	0
Λ(1800)	$1/2^{-}$	***	1800	300	4	4
Λ(1810)	$1/2^{+}$	***	1810	150	3	4
Λ(1820)	$5/2^{+}$	****	1820	80	1	6
Λ(1830)	$5/2^{-}$	****	1830	95	1	6
Λ(1890)	$3/2^{+}$	****	1890	100	3	6
Λ(2000)	?	*	\approx 2000	?	0	0
Λ(2020)	$7/2^{+}$	*	\approx 2020	?	0	0
Λ(2050)	$3/2^{-}$	*	$2056{\pm}22$	$493{\pm}60$	0	0
Λ(2100)	$7/2^{-}$	****	2100	200	1	6
Λ(2110)	$5/2^{+}$	***	2110	200	1	6
Λ(2325)	$3/2^{-}$	*	\approx 2325	?	0	0
Λ(2350)	$9/2^{+}$	***	2350	150	0	6
Λ(2585)	$5/2^{-}?$	**	\approx 2585	200	0	6

 $\bullet\,$ All established Λ^* resonances included in fit

All established Λ^{*} resonances included in fit

10/21

- Including non resonant components up to $J^P = 3/2^{\pm}$, Σ^* 's and floating masses and widths of Λ^* 's can also not describe m_{J/ψ_P}
- Next: attempt to obtain better fit by including $m_{J/\psi p}$ resonances

- P_c of best fit has $J^P {=} 5/2^+$ (tried up to $J^P {=} 7/2^\pm$)
- $\Delta(2 \ln \mathcal{L}) = 14.7^2$ when adding single P_c vs. Λ^* only
- Likelihood significantly improved, but still discrepancies in $m_{J\psi p}$

- Adding $2^{nd} P_c$ gives good description of data in all observables
- $\Delta(2 \ln \mathcal{L}) = 11.6^2$ from adding 2nd P_c vs. only 1 P_c
- Best fit has $J^P(P_c(4380), P_c(4450)) = (3/2^-, 5/2^+)$, also $(3/2^+, 5/2^-)$ and $(5/2^+, 3/2^-)$ reasonable

State	Mass (MeV)	Width (MeV)	Fit fraction (%)	Significance
$P_{c}(4380)^{+}$	$4380\pm8\pm29$	$205\pm18\pm86$	$8.4\pm0.7\pm4.2$	9 <i>σ</i>
$P_{c}(4450)^{+}$	$4449.8 \pm 1.7 \pm 2.5$	$39\pm5\pm19$	$4.1 \pm 0.5 \pm 1.1$	12σ

• Significances calculated by fitting test-statistic $\Delta(-2 \ln \mathcal{L})$ of toyMC experiments in the extended model (the reduced model yielded higher significances)

$Null \to Alternative\ Hypothesis$	$\Delta(2\ln \mathcal{L})$	Significance
$0 \ P_c ightarrow 1 \ P_c$	14.7^{2}	12σ
$1 \ P_c ightarrow 2 \ P_c$'s	11.6^{2}	9σ
0 $P_c ightarrow$ 2 P_c 's	18.7^{2}	15σ

• In a separate paper, LHCb measured [Chin. Phys. C40, 011001]

$$\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p) = \begin{cases} (2.56 \pm 0.22 \pm 1.28^{+0.46}_{-0.36}) \times 10^{-5} \text{ for } P_c(4380)^+ \\ (1.25 \pm 0.15 \pm 0.33^{+0.22}_{-0.18}) \times 10^{-5} \text{ for } P_c(4450)^+ \end{cases}$$

• P_c states parametrized by a relativistic Breit-Wigner amplitude.

$$BW(m|m_0\Gamma_0) = \frac{1}{m_0^2 - m^2 - im_0\Gamma(m)} \text{ and } \Gamma(m) = \Gamma_0 \left(\frac{q}{q_0}\right)^{2L_{\Lambda^*+1}} \frac{m_0}{m} B'_{L_{\Lambda^*_n}}(q, q_0, d)^2$$

- -

- Test resonant character by plotting Argand diagram of interpolated amplitude
 - Scan $m_{J/\psi p}$ in 6 bins around $m_0 \pm \Gamma_0$ of P_c 's
 - Fit data with full model but replace Breit-Wigner parametrization of P_c with cubic spline interpolating from 4 closest neighbouring points

- Reject hypothesis that $m_{J/\psi p}$ can be described by model-independent fit to $(m_{K^-p}, \cos \theta_{\Lambda^*})$ subsystem by more than 9σ
- Test not sensitive to large width of $P_c(4380)$

- Exotic components are needed to describe the data
- Fit is not able to disentangle P_c and $Z_c(4200)$ components
- Measurement consistent with P_c 's reported in $\Lambda_b^0 \rightarrow J/\psi p K^-$

Molecular models:

 $P_c(4450)$ as $\Sigma_c \bar{D}^*$ molecule $P_c(4380)$ as $\Sigma_c \bar{D}^*$ and $P_c(4450)$ as $\Sigma_c^* \bar{D}^*$ $P_c(4380)$ as $\Sigma_c \bar{D}^*$ and $P_c(4450)$ as $\Sigma_c^* \bar{D}$ $P_c(4450)$ as $\Sigma_c \bar{D}^*$ and $\Sigma_c^* \bar{D}^*$ molecule P_c 's not (colored) molecules $P_c(4380)$ as $\Sigma_c^* \tilde{D}$ and $P_c(4450)$ as $\Sigma_c \bar{D}^*$ $P_c(4450)$ as $\chi_{c1}p$ molecule (compositeness) Rescattering effects: $\chi_{c1}p$ rescattering, $\Lambda(1890)\chi_{c1}p$ triangle singularity ATS, cusp effect $D^* D^*_{\epsilon} \Sigma_{\epsilon}$ triangle singularity $P_c(4380)$ rescattering, $P_c(4450)$ diquark model Diguarks/Triguarks: Diquark-Diquark-Antiquark ($[ag][ag]\bar{g}$) Dynamical Diguark-Triguark Diguark-Diguark-Antiguark multiplets Quasi particle diquarks $[qq][qq]\bar{q}$ with QCD sum rules $P_c(4380)$ as $J/\psi K$ reflection. $P_c(4450)$ as $[aa][aa]\bar{a}$ Dynamical Diguark-Triguark multiplets Other: Bound D-soliton Intrinsic charm in Λ_{h}^{0} decays Barvocharmonium Phenomenology review $J/\psi K$ reflection $Z_{2,3}$ geometrical symmetries

(List may be incomplete, not listing implications)

PRL 115 122001 PRL 115 132002 PRI 115 172001 arXiv:1507.04249 arXiv:1507.04694 arXiv:1507.05200 arXiv:1511.00870 PRD 92 071502(R), PLB 751 59 arXiv:1507.05359 arXiv:1507.06552 arXiv:1507.07652 PLB 749 289 PLB 749 454 arXiv:1507.08252 arXiv:1508.00356 arXiv:1508.01468 arXiv:1509.04898 arXiv:1510.08693 PRD 92 051501(R) arXiv:1508.03910 PRD 92 031502(R) arXiv:1509.02460 arXiv:1509.03028 arXiv:1509.06013

• List from November 15, now at 285 citations

Concerning $P_c(4380)$ and $P_c(4450)$

- Most important: confirmation by other experiments needed!
 - $\, \bullet \,$ In particular from different production mechanisms like photoproduction or $p \bar{p}$
- Observe $P_c \rightarrow J/\psi p$ as subsystems in different final states, e.g.:
 - $\Upsilon
 ightarrow J/\psi p ar p$ check for peaks at $_{\chi_{c0,1,2} p}$ thresholds [PRD 92 071502(R)]
- Observe new decay modes of P_c 's, e.g. in:
 - $\Lambda_b^0 \rightarrow \chi_{c1} p K^-$ decay of P_c (4450) in this channel rules out $\chi_{c1} p$ rescattering [PRD 92 071502(R)] • $\Lambda_b^0 \rightarrow \Lambda_c^+ \overline{D}^0 K^-$ topic next time

Incorporate coupled channel effects in amplitude analyses

Search for other types of pentaquarks

- Hidden charm partners
- Open charm pentaquarks
- Triply charged baryons
- Bottom pentaquarks
- Hidden strangeness pentaquarks

At distant horizons

- Dibaryons?
- Hexaquarks?

• ...

Backup slides start here

Dynamical terms $R_n(m_{pK})$ parametrized by:

- Relativistic single-channel Breit-Wigner amplitudes
- (dressed) Blatt-Weisskopf barrier factors [PRD 5 624]

$$R_n(m_{\mathcal{K}p}) = \tilde{B}_{L_{\psi\Lambda^*}}^{\Lambda_b^0} \times BW(m_{\mathcal{K}p}|m_0^{\Lambda_n^*}, \Gamma_0^{\Lambda_n^*}) \times \tilde{B}_{L_{p\mathcal{K}}}^{\Lambda^*}$$

with
$$BW(m|m_0\Gamma_0) = \frac{1}{m_0^2 - m^2 - im_0\Gamma(m)}$$

and $\Gamma(m) = \Gamma_0 \left(\frac{q}{q_0}\right)^{2L_{\Lambda^*+1}} \frac{m_0}{m} B'_{L_{\Lambda^*_n}}(q, q_0, d)^2$

where p(q) are momenta of daughters in CM frame of mother

and subscript-0 denotes evaluation at nominal resonance parameters (PDG)

• Exception: sub-threshold $\Lambda(1405)$ described by Flatté-like parametrization [PLB 63 224]

25 / 21

Source		m_0 (MeV) Γ_0 (MeV)		Fit fractions (%)				
		high	low	high	low	high	Λ(1405)	Λ(1520)
Extended vs. reduced		0.2	54	10	3.14	0.32	1.37	0.15
Λ^* masses & widths		0.7	20	4	0.58	0.37	2.49	2.45
Proton ID		0.3	1	2	0.27	0.14	0.20	0.05
$10 < \rho_{p} < 100 { m GeV}$		1.2	1	1	0.09	0.03	0.31	0.01
Nonresonant		0.3	34	2	2.35	0.13	3.28	0.39
Separate sidebands		0	5	0	0.24	0.14	0.02	0.03
J^P (3/2 ⁺ , 5/2 ⁻) or (5/2 ⁺ , 3/2 ⁻)	10	1.2	34	10	0.76	0.44		
$d = 1.5 - 4.5 { m GeV}^{-1}$	9	0.6	19	3	0.29	0.42	0.36	1.91
$L^{P_c}_{\Lambda^0_b} \ \Lambda^0_b o P^+_c({ m low}/{ m high}) {\cal K}^-$	6	0.7	4	8	0.37	0.16		
$L_{P_c} \stackrel{\scriptscriptstyle B}{\to} P_c^+(ext{low/high}) o J/\psi p$	4	0.4	31	7	0.63	0.37		
$L^{\Lambda^{*}_{n}}_{\Lambda^{0}_{b}} \Lambda^{0}_{b} ightarrow J/\psi \Lambda^{*}$	11	0.3	20	2	0.81	0.53	3.34	2.31
Efficiencies		0.4	4	0	0.13	0.02	0.26	0.23
Change $\Lambda(1405)$ coupling		0	0	0	0	0	1.90	0
Overall		2.5	86	19	4.21	1.05	5.82	3.89
sFit/cFit cross check		1.0	11	3	0.46	0.01	0.45	0.13

Uncertainties in Λ^* model dominate

Sizeable uncertainties from J^P assignment and resonance parametrization

