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1 Introduction

While observations of clusters and the latest precise measurements of the relic den-
sity by Planck leave no doubts concerning the existence of dark matter - and as a
consequence physics beyond the Standard Model - the actual nature of dark mat-
ter continues to escape our current research programs. The LHC, Planck, Fermi,
Xenon1t are only some of the many experiments that have been or are searching for
physics beyond the Standard Model. In order to obtain the strongest constraints
on a dark matter model, one has to combine the results from direct, indirect and
collider searches in a global analysis. This means we take into account all kinds of
data, event numbers distributions, observables, and exclusion limits. The common
point to all inputs is that we have to treat the uncertainties associated to our data
in a careful and consistent way. In these lecture notes we will first discuss the details
of such a statistical analysis. For this purpose we will illustrate different types of
uncertainties by means of the γ-ray spectrum obtained by Fermi-LAT. In the second
chapter we will review the "WIMP" model, as a solution to the dark matter problem,
and the associated calculation of the relic density and discuss typical annihilation
channels using the example of supersymmetry. In the last chapter we will discuss
a current paper on the galactic centre excess and the results of a global analysis,
connecting direct, indirect, and collider searches.

2 Fitting

The basic idea of every fit is very simple. On the one hand we have data in form
of event numbers or cross sections that have been measured by an experiment. On
the other hand we have a model, that predicts the same observable. If data and
prediction agree, the model is (for the time being) a valid description - if they do
not agree, the model is excluded. Usually the model depends on a number of input
parameters. A Markov chain can be used to search the parameter space for allowed
regions or best fit points.
The complicated part is to define what we mean by "agree". We start with the
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definition of probability as a frequentist concept. Let us assume we perform an
experiment to measure the observable x. Repeating the experiment many times will
result in different values of x. The resulting distribution generates the probability
density function of x, f(x). Using this distribution we can determine the probability
p to measure x within the interval [xmin, xmax]∫ xmax

xmin

f(x)dx = p (1)

This definition is well defined within the frequentist framework. In order to include
our model we insert the dependence on a model parameter α and consider f(x|α).
For each value of alpha the pdf is again normalised to 1.∫ +∞

−∞
f(x|α)dx = 1 (2)

Fixing x to an observed value, we define the likelihood function L(α) = f(x|α) that
is no longer normalised to 1. Using the likelihood function one can determine the
best fit value αbest for which the likelihood is maximal. For practical purpose one
often minimises the log-likelihood −2 logL(α) instead of maximising the likelihood
as the product of likelihood becomes a simple sum of log-likelihoods. In the final
analysis we will consider the likelihood ratio function, that divides the likelihood
of a given parameter point by the likelihood of the best fit point. Under certain
conditions this likelihood ratio function can be approximated by a χ2 distribution,
which finally allows us to perform actual hypothesis testing and exclude regions of
the parameter space.
In the following we will discuss how to actually build a likelihood function.

2.1 How to build a likelihood function

The most crucial part when including data into a fit is the treatment of uncertainties.
In order to build a correct likelihood function we have to assign the right shape -
Gaussian, Poisson, or flat - to the different kinds of uncertainties - systematic,
statistic, theoretical - and correlate them in the right way. In the following we will
discuss the different kinds of uncertainties one by one. For illustration I will refer to
the data from the Fermi-LAT (Large Area Telescope) publication [arXiv:1511.02938].

2.1.1 Fermi data

In the Fermi data, the main uncertainty comes from the determination of the back-
ground. Interactions of high energy cosmic rays with the interstellar gas and radi-
ation field produce a diffuse γ- ray emission, which is the main background for a
γ- ray spectrum from dark matter annihilation. Therefore the spatial distribution
of cosmic rays sources is a crucial ingredient. In order to estimate the correspond-
ing uncertainties, the Fermi-LAT collaboration uses two models, "OB-stars" and
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24 Fermi–LAT Collaboration

Figure 18. Same as in Figure 13, but with the spectrum of the NFW profile
modeled with a power-law per energy band over the 1 � 100 GeV range.
The envelopes include the fit uncertainties for the normalisation and spectral
indices.

through the line-of-sight to the GC.
The IEM fitting interior to the solar circle uses the tangent

ranges for positive and negative longitudes to obtain parame-
ters for the annuli 2 � 4 (Table 5). To examine the effect of
the azimuthal averaging, fits to the tangent ranges were made
for positive and negative longitudes to gauge the difference in
the parameters for the IEMs obtained when considering each
separately. The scaling factors for annulus 4 obtained when
fitting negative and positive longitude ranges were statistically
consistent 28 with those found when fitting both ranges com-
bined. For annuli 2 and 3 the fits to the positive and nega-
tive tangent longitude ranges result in scaling parameters that
differ by factors up to ⇠ 2 from each other, which is well
beyond the statistical uncertainty; the average value obtained
by fitting both tangent ranges together is approximately in-
between for the intensity-scaled IEMs over annuli 2 and 3.
For the index-scaled IEMs the spectral parameters are harder
or softer than the average when using the positive/negative
tangent ranges individually for annuli 2 � 4. However, there
is no clear trend and the over/under-prediction is not confined
to a particular energy interval.

The uncertainty for the IEM fore-/background flux toward
the GC due to the azimuthally averaged IEMs is difficult to
quantify precisely. A minimal estimate can be made from the
statistical uncertainty for the annulus 4 ⇡0-decay flux for each
IEM, because the fit results for the combined tangent ranges
are within these uncertainties when fitted to the positive and
negative ranges individually. Above 1 GeV this is ⇠ 4⇥10�8

ph cm�2 s�1 for the 15�⇥15� region about the GC across all
IEMs. This is comparable to the fitted flux from annulus 1
⇡0-decay or the TS < 25 point sources over the same region.

Any analysis employing the Galactocentric annulus decom-
position for the gas column densities is subject to the loss of
kinematic resolution for sight lines within l ⇠ ±12� of the
GC/anti-GC. Appendix B of Ackermann et al. (2012a) details
the transformation of H I and CO gas-survey data into the col-
umn density distributions over Galactocentric annuli used in
this analysis, and employed by many others. The assump-

28 The average statistical uncertainty for the normalisation of each inter-
stellar emission component per annulus is ⇠ 10%, except for annuli 2 and 3;
see Appendix A.

tions made in the transformation for the site lines over the
15� ⇥ 15� region about the GC have an impact on the inter-
stellar emission and point sources in the maximum-likelihood
fitting and consequently the spatial distribution of residuals.
Approximations made interpolating the gas column density
across the l ± 10� range can result in an incorrect gas density
distribution along the line-of-sight. Spurious point sources in
the analysis and structure in residuals can result from this be-
cause a higher/lower CR intensity compared to where the gas
should be placed is used in creating the interstellar emission
templates. The scaling procedure for the IEM then adjusts the
individual annuli potentially producing low-level artifacts due
to a combination of the effects described above.

To obtain an estimate of the uncertainties associated with
misplacement of the gas new maps of the column density
per annuli are created. 10% of the H I gas column density
is randomly displaced over the annuli and recombined with
the ⇡0-decay emissivity 29 in each annulus to create modified
intensity maps for this process, which are summed to pro-
duce new fore-/background intensity maps. The 68% frac-
tional change per pixel from 100 such realisations for each
IEM is compared with the fore-/background resulting from
the scaling procedure (Sec. 3.1). Depending on the IEM and
energy range, variations from 1% to 15% in the intensity per
pixel for the fore-/background from the structured interstel-
lar emission across the 15� ⇥ 15� region are obtained, with
the largest for OBstars index-scaled and smallest for the Pul-
sar intensity-scaled IEM, respectively. Because of the some-
what arbitrary choice of the precise fraction of H I column
density30 that is redistributed over the annuli these variations
are illustrative rather than providing a true ‘systematic uncer-
tainty’ associated with the gas misplacement. Note that the
uncertainty is maximised toward the GC because it is furthest
away from the gas column density interpolation base points at
l ⇠ ±12�.

6. SUMMARY
The analysis described in this paper employs specialised

IEMs that are fit to the �-ray data without reference to the
15� ⇥ 15� region about the GC. Finding point-source seeds
for the same region using a method that does not rely on de-
tailed IEMs, the source-seeds and IEMs are combined in a
maximum-likelihood fit to determine the interstellar emission
across the inner ⇠ 1 kpc about the GC and point sources
over the region. The overwhelming majority of �-ray emis-
sion from the 15� ⇥ 15� region is due to interstellar emission
and point sources. To summarise the results for these aspects
of the analysis:

• The interstellar emission over the 15� ⇥ 15� region is
⇠ 85% of the total. For the case of fitting only ‘stan-
dard’ interstellar emission processes and point sources
the fore-/background is ⇠ 80% with the remaining
⇠ 20% mainly due to IC from the inner region. The
contribution by the ⇡0-decay process over the inner re-
gion is much less than the IC, with the relative contri-
butions by the H I- and CO-related emission suppressed
compared to the GALPROP predictions.

29 The contribution by CO-related ⇡0-decay emission is the same as that
obtained from the scaling procedure.

30 Similar modifications of the CO column density distribution are not
explored because the detailed knowledge to make a truly informed estimate
is not available.
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Figure 1: Left: Fermi spectrum as displayed in the publication by Fermi-LAT
[arXiv:1511.02938]. Right: Spectrum averaged over the different back-
grounds including all applied uncertainties.

"Pulsars" to model their distribution. Both models represent extreme cases. The
pulsar distribution is non-zero around at the Galactic centre while the distribution
of OB-stars vanishes around 2 kpc from the Galactic centre. For each model they
apply two methods - index and intensity scaled - to model the background from
interstellar emission. While for the intensity scaled case the normalisation of the
used templates is the only free parameter, in the index scaled case, one allows the
coefficient of the gas-related interstellar emission model to vary. Fig. 1 shows the
background subtracted data for all four models. For an accurate fit of the spec-
trum we will include the entire spectrum bin by bin. We start by determining the
individual likelihood contributions χi, which are then combined taken into account
correlations of uncertainties.

2.1.2 Poisson distribution

The statistic uncertainty is inherent to every measurement. Poisson statistic can
be applied to describe statistic uncertainties when we consider a large number of
independent tries N , a small probability p to observe an event and when the product
of probability and the number of tries results in a finite number of events N ·p. These
conditions are exactly fulfilled at the LHC, as well as the observation of γ-rays from
the galactic centre. The probability to observe d events when you expect d̃ events
is then given by

LPoiss,d = P (d|d̃) =
e−d̃d̃d

d!
(3)

This distribution peaks between d = d̃− 1 and d = d̃ and is normalized to 1.

d=∞∑
d=0

P (d|d̃) = e−d̃
d=inf∑
d=0

d̃d

d!
= e−d̃ed̃ = 1 (4)
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Fig. 48.— Systematic uncertainty band on Ae↵ as a function of energy. The interplay

between the steeply decreasing e↵ective area and the degrading energy resolution below

100 MeV and the resulting impact on spectral analysis will be thoroughly discussed in § 7.

are highly positively correlated (as can be naively inferred from the plot in Fig. 47), while

on the scale of half a decade in energy (n = 4) there is little evidence of a correlation. This

implies that the systematic uncertainties on the e↵ective area are not likely to introduce

significant spectral features over scales much smaller than half a decade in energy (which is

much larger than the LAT energy resolution). The results for all the consistency checks are

summarized in Table 8.
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Fig. 49.— (a) Values of ⌧n (n = 1, 2 and 4) defined in Eqn. (21) for the front/back consistency

check with the Vela data set shown in Figure 47. The parent distribution of ⌧n for random

normal uncorrelated deviations is shown in gray, while the black histogram represents the

values of ⌧n for 10,000 random permutations of the original data points. (Note that in both

cases the distributions are independent of n.) (b) Cumulative probability distribution for

random normal uncorrelated deviations.
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Figure 2: Left: Systematic uncertainty band on the effective area Aeff as a function
of energy. [arXiv: 1206.1896]. Right: Illustration of the R-fit scheme for
the combination of flat and Gaussian uncertainty.

We normalize the likelihood again such, that L(d = d̃) = 1:

LPoiss,d =
P (d|d̃)

P (d̃|d̃)
=
d̃!

d!
d̃d−d̃ (5)

The statistical uncertainty on the background is independent from the uncertainty
on the data or in other words: a deviation of predicted signal and measured signal
can be caused by a fluctuation of the data as well as a fluctuation of the background.
We take this into account by a second contribution to the likelihood that compares
the measured background b with the predicted background b̃. For the measured
background we take the numbers given by the paper. For the predicted background
we add the difference between measured and predicted data b̃ = b+ d̃− d, assigning
the full deviation to the background. The second contribution to the likelihood is
therefore given by

LPoiss,b =
P (b|b̃)
P (b̃|b̃)

=
(b+ d̃− d)!

b!
(b+ d̃− d)d−d̃. (6)

2.1.3 Gaussian distribution

Next we are going to discuss systematic uncertainties, that usually arise in the con-
text of calibration of the experiment. Typical examples are the uncertainty on the
luminosity of a collider or the photon reconstruction efficiency of a calorimeter for
instance at Fermi-LAT or at an LHC experiment. Fig. 2 shows the systematic uncer-
tainty on the effective detection surface Aeff of the Fermi-LAT. The effective area is
the product of the cross-sectional geometrical collection area, the γ-ray conversion
probability, and the efficiency of a given event selection for a γ-ray depending on
its energy and direction in the LAT frame. Usually systematic uncertainties can
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be described by a Gaussian distribution, since they are measured using large data
samples. The likelihood is given by

LGauss(d|d̃) =
1√

2σ2
sysπ

exp−

(
d− d̃

)2

2σ2
sys

(7)

where d stands for the actually measured data and d̃ for the predicted number of
events. Moving from likelihood to log-likelihood, the pre-factor becomes a constant
offset. We want to normalize the likelihood such, that L(d = d̃) = 1.

−2 logLGauss(d|d̃) =

(
d− d̃

)2

σ2
sys

= χ2 (8)

When we are looking for physics beyond the Standard Model we consider the Stan-
dard Model as a background and the data as the sum of signal and background:
d = s + b. What we are actually looking for is therefore the likelihood of the BSM
signal s̃ given the datapoint s = d − b. The resulting uncertainty depends on the
correlation of data and background:

σ2
s =

(
∂s

∂d
σd

)2

+

(
∂s

∂b
σb

)2

+ 2ρ
∂s

∂d

∂s

∂b
σdσb (9)

=

{
σ2
d + σ2

b for ρ = 0 (uncorrelated)
(σd − σb)2 for ρ = 1 (fully correlated)

(10)

ρ is the correlation coefficient that can vary between -1 and 1. As the background
estimation has been verified using the same experiment, we assume full correlation
between data and background. Including all information we can therefore express
the log-likelihood of one bin including the systematic uncertainty via

−2 logLGauss(s|s̃) =
(d− b− s̃)2

σ2
sys,s

. (11)

2.1.4 Flat distribution

The third class of uncertainties are described by a flat distribution.

LFlat,d = Θ(d− d̃+ σd,1)Θ(d̃− d+ σd,2) (12)

In this case the prediction has to be within a certain range of the data, otherwise
its likelihood vanishes. Within the allowed range there is no discrimination between
the values. A typical situation in which we apply these kind of uncertainties are
scale dependencies in higher order calculations. In this case this treatment has no
statistical signification and the values of "σ" do NOT correspond to a well defined
statistical interpretation. A common way to determine σd is e.g. to vary the scale
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that is used in the calculation of the observables by a factor of 2 in both directions.
In the case of the Fermi spectrum we use a flat uncertainty to cover the differences
between the different background models. As we have no means to determine which
model is closer to a "true" model, we have to assume that the likelihood distribution
is flat between the minimal and maximal value predicted by the model.

2.2 Combination

Having determined the forms of all uncertainties, we proceed to combine them into
one likelihood function. In order to combine e.g. theory and systematic uncertainty
we profile over the theory uncertainty. This results in a shift of the predicted data
towards the actual data

L = max
s∗

Θ [s∗ − (s̃− σtheo)] Θ [(s̃+ σtheo)− s∗] exp−(d− b− s∗)2

2σ2
sys,s

(13)

= max
s∗[s̃min,s̃max]

exp−(d− b− s∗)2

2σ2
sys,s

. (14)

The log-likelihood can therefore be expressed by

√
−2 logL = χ =


s− (s̃+ σtheo)

σsys,s
for σtheo < s− s̃

0 for σtheo > |s− s̃|
s− (s̃− σtheo)

σsys,s
for σtheo < s̃− s

(15)

The combination of theory and statistic uncertainty follows the same approach and
results again in a shift of the prediction towards the data. The combination of
Poisson and Gauss distributions usually needs a numerical solution. However we
found that the approximative formula

1

logL =
1

logLGauss
+

1

logLPoiss,d
+

1

logLPoiss,b
(16)

that is valid in the limit of large event numbers, results as well in a very good
agreement for small event numbers, reducing the computing time. The expression
illustrates that the combined likelihood is dominated by the largest likelihood, which
corresponds to the largest uncertainty.

2.3 Correlations

We already mentioned the necessity of including correlations between the data and
the background. When combining the likelihood contributions of all bins we have
to take into account as well the correlation of systematic uncertainties of the same
type between different bins. This can be implemented using a correlation matrix

Ci,j =

∑
syst σi,systσj,syst · corr(i, j)

σi,expσj,exp
, (17)

6



where we sum over all systematic uncertainties. σ2
i,exp is the sum of all experimental -

non theoretical - uncertainties added in quadrature. The full log-likelihood is finally
computed using:

χ2 = ~χi
TC−1 ~χi (18)

Theoretical uncertainties are not included in the above calculation. In the case of
Fermi we assume that they are uncorrelated, as all models use a legitimate approach
and the correlations would depend on the specific models. Correlated theory uncer-
tainties can be modelled using nuisance parameters, that can vary within a certain
interval corresponding to σtheo. The global fit then profiles over this parameter.
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3 Dark Matter

3.1 Evidence for dark matter

The first evidences for dark matter were observed and pointed out by Jan Hendrik
Oort and Fritz Zwicky in 1932 and 1933. While Oort’s measurement was later
found to be incorrect, Zwicky’s observations were determined from observations of
the Coma galaxy cluster. Using the virial theorem he estimated its mass from the
movement of galaxies at the outer part of the cluster. From the comparison with
the brightness and number of galaxies he deduced a factor of 400 between the visible
and the dark matter. The number was later corrected to be smaller by an order
of magnitude e.g. due to updated values of the Hubble constant. In the following
years many other observations have supported this theory. Typical examples are

• Galaxy rotation curves

• Dynamics of galaxy clusters

• Cosmic microwave background (CMB)

• Collisions of galaxy clusters

• Structure Formation.

All evidence can be explained by weakly interacting massive particles (WIMPs). As
the name suggests they are not charged under the electromagnetic force but interact
only weakly. Recent measurements of the CMB by Planck have determined the relic
density with high precision. We will now calculate how to predict the relic density
from the annihilation cross section of a WIMP particle.

3.2 The WIMP relic density

Following modern models of the Big Bang the history of the early universe is a rather
short one. This is not to say, that nothing happened - quite the contrary - but about
half of the crucial steps are assumed to happen within the first few minutes. There
is inflation at about 10−34 s after the Big Bang, followed closely by baryogenesis and
electroweak phase transition at 2 ·10−11 s. As the temperature continues to drop the
QCD phase transition takes place after 2·10−5 s. This is roughly the same time when
we expect the dark matter to freeze out. In the following couple of minutes we can
see the neutrinos decouple (1 s), electrons and positrons annihilate (6 s), and finally
the nucleosynthesis forming light elements. The following processes of recombination
will take several thousands of years ending with the decoupling of photons that we
can observe today as the cosmic microwave background. The formation of stars and
galaxies seems in comparison only a minor step that will be neglect in the following
discussion ;).
When we talk about the freeze out of dark matter, which determines the relic density,
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we have to go back to the first microseconds after the Big Bang. In the time after
the inflation dark matter was in thermal equilibrium.

dNχ

dt
= 0 (19)

The equilibrium is described by the Boltzmann equation, where any change in the
number of dark matter particles comes from annihilation of dark matter into SM
particles and vice versa.

dNχ

dt
= Γ(ff̄ → χχ)− Γ(χχ→ ff̄) + Γother (20)

We can directly see that when the temperature drops below the mass of the dark
matter particle, only SM particles at the tail of the velocity distribution could pro-
duce dark matter particles, while the dark matter particles can annihilate into SM
particles and thereby decrease Nχ. Only when due to the expansion of the universe
the number density of dark matter has dropped sufficiently that the probability of
one DM particle to find another is small, Nχ will become constant again. This pro-
cess is called freeze-out and we will go through the main step of the calculation to
determine the relic density.
Starting with the left hand side of eq. (20) we have to take into account the expan-
sion of the universe. A change of the number of dark matter particles can either be
related to a change in the number density or in the volume.

dNχ

dt
=
d(nχV )

dt
= V

dnχ
dt

+ 3nχHV with H(t) =
ȧ(t)

a(t)
(21)

The Hubble constant quantifies the expansion of the universe. The transition rates
on the right hand side of the Boltzmann equation can be calculated via

Γ(χ1χ2 → f1f̄2) =V

∫
dΠ(p1)dΠ(p2)dΠ(k1)dΠ(k2)φχ1φχ2(1± φf1)(1± φf2)

(2π)4δ(4)(p1 + p2 − k1 − k2)|Mχk1
χk2
→fp1 f̄p2 |

2
(22)

where φ is the phase space density of the involved particles. The plus corresponds to
bosonic final states and the minus to fermionic final states. |M| is the spin averaged
matrix element. Assuming CP invariance we can use that

|Mχk1
χk2
→fp1 f̄p2 |

2 = |Mfp1 f̄p2→χk1
χk2
|2 = |M|2. (23)

Moreover we use Maxwell-Boltzmann statistics for all involved particles leading to
φi(ki) = exp[−(Ei − µi)/T ] in equilibrium with a negligible chemical potential µi
and 1± φi ≈ 1. The full Boltzmann equation then simplifies to

dnχ
dt

+ 3nχH =

∫
dΠ(p1)dΠ(p2)dΠ(k1)dΠ(k2)(φf1φf2 − φχ1φχ2)

(2π)4δ(4)(p1 + p2 − k1 − k2)|M|2. (24)

9



The δ function enforces Eχ1 +Eχ2 = Ef1 +Ef̄2 and we can express the phase space
density of the SM particle via

φf1φf2 = φf1,eqφf2,eq = exp[−(Ef1 + Ef̄2)/T ]

= exp[−(Eχ1 + Eχ2)/T ] = φχ1,eqφχ2,eq . (25)

The first equality arises because the SM particle will remain in thermal equilibrium
during the freeze out due to its interactions with the SM sector. The next step is to
connect the decay rate with the annihilation cross section. The thermal average of
the cross section times the relative velocity of the annihilating particles is

< σannvrel >=
1

nχ

∫
dΠ(p1)dΠ(p2)dΠ(k1)dΠ(k2)(φf1φf2 − φχ1φχ2)

(2π)4δ(4)(p1 + p2 − k1 − k2)|M|2. (26)

Inserting this expression into the Boltzmann equation we obtain
dnχ
dt

+ 3nχH = − < σannvrel > (n2
χ − n2

χ,eq). (27)

Before we can solve the differential equation we will use two useful replacements.
First we define

Y =
n

s
with

dY

dt
=

1

s

dn

dt
+

3

R

dR

dt
Y. (28)

Here s is the entropy density. We use that the expansion is adiabatic, so that the
entropy is conserved sR3 = const. This leads to the first simplification

dY

dt
= − < σannvrel > s(Y 2 − Y 2

eq). (29)

The second simplification is to replace the time derivative by the temperature via

x =
mχ

T
with

dY

dt
=
dY

dx

H(m)

x
. (30)

The final form of our equation is
dY

dx
= − < σannvrel >

xs

H(m)
(Y 2 − Y 2

eq). (31)

We now that around the freeze out the equilibrium distribution drops exponentially
and can therefore be neglected. We can now integrate out∫ Y (∞)

Y (xf )

1

Y 2
dY = − < σannvrel >

1

H(m)

∫
xsdx (32)

− 1

Y (∞)
= − < σannvrel > const (33)

Y (∞) =
const

< σannvrel >
(34)

Ωh2 =
ρ

ρcrit
h2 =

mχY (∞)s

ρcrit
h2 =

const

< σannv >
≈ 2.510−27 cm3

sec

< σannvrel >
(35)
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SM Particle (R=+1) SUSY Partner(R=-1)
Names Gauge ES Mass ES Spin Gauge ES Mass ES Spin

squarks uL/R, cL/R, tL/R u, c, t 1/2 ũL/R, c̃L/R, t̃L/R ũ1/2, c̃1/2, t̃1/2 0
dL/R, sL/R, bL/R d, s, b 1/2 d̃L/R, s̃L/R, b̃L/R d̃1/2, s̃1/2, b̃1/2 0

sleptons eL/R, µL/R, τL/R e, µ, τ 1/2 ẽL/R, µ̃L/R, τ̃L/R ẽ1/2, µ̃1/2, τ̃1/2 0
νe, νµ, ντ νe, νµ, ντ 1/2 ν̃e, ν̃µ, ν̃τ ν̃e, ν̃µ, ν̃τ 0

neutralinos W 0, B0 Z0, γ 1 W̃ 0, B̃0

χ̃0
1, χ̃

0
2, χ̃

0
3, χ̃

0
4 1/2

H0
u, H

0
d h0

1, h
0
2, A

0
1 0 H̃0

u, H̃
0
d

charginos W± W± 1 W̃±
χ̃±1 , χ̃

±
2 1/2

H+
u , H

−
d H± 0 H̃+

u , H̃
−
d

gluino g g 1 g̃ g̃ 1/2

Table 1: Overview of SM particles and their supersymmetric partners in the MSSM

3.3 SUSY - a model for dark matter

Supersymmetry (SUSY) is one of the most popular models that predict physics
beyond the SM, as it offers a solution to the Hierarchy problem and a dark matter
candidate. Via an extension of the Poincaré algebra SUSY adds a symmetry to the
SM that relates fermions and bosons, as listed in Tab. 1. It illustrates the full particle
content of the minimal supersymmetric extension of the SM (MSSM) that leaves us
with 31 undetected particles. If the symmetry was unbroken we would expect to
observe the supersymmetric particles at the same masses as their SM partners. As
these particles have not yet been observed, supersymmetry has to be broken. This
forces us to introduce a soft SUSY breaking Lagrangian that leaves the coupling
unchanged but can push the masses of charged particles to higher values and finally
out of the so far detectable mass range. A general Ansatz for this Lagrangian is

LMSSM
soft =− Q̃†m2

QQ̃− L̃†m2
LL̃− ˜̄u†m2

ū
˜̄u† − ˜̄d†m2

d̄
˜̄d† − ˜̄e†m2

ē
˜̄e†

−m2
Hu
H∗uHu −m2

Hd
H∗dHd − (m2

3HuHd + c.c.)

− (˜̄uhuAuQ̃Hu + ˜̄dhdAdQ̃Hd + ˜̄eheAeL̃Hd + c.c.)

− 1

2
(M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.). (36)

For our purpose of explaining the relic density we are interested in the MSSM dark
matter candidate. If R-parity, a Z2 symmetry that protects baryon and lepton
number conservation, was conserved, the lightest supersymmetric particle would
be stable (LSP). If the LSP was in addition electromagnetically neutral, it would
provide a good dark matter candidate. Valid solutions are neutralinos, sneutrinos
or possibly a gravitino, that is not included in our model. A standard sneutrino
solution is excluded due to the required annihilation cross section. The minimal
required cross section would have led to discovery via Z-boson interactions. The
only possibility to find sneutrino solutions is by including sterile sneutrinos. The
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h/A/Z

χ0
1

χ0
1

q̄/l̄

q/l

(a)

q/l

q̃/l̃

χ0
1

q/l

A

(b)

χ±1

χ0
1

χ0
1

W±

W±

(c)

Figure 3: Dark matter annihilation processes for the funnel region (a), the co-
annihilation region (b) and the focus point (c).

more popular solution is therefore neutralino dark matter. Its mass is determined
by the neutralino mass mixing matrix

Mχ =


M1 0 −mZcβsw mZsβsw
0 M2 mZcβcw −mZsβcw

−mZcβsw mZcβcw 0 −µ
mZsβsw −mZsβcw −µ 0

 . (37)

For small M1 the LSP is bino like, for small M2 it becomes a wino and for small µ
it becomes a higgsino mixture. The composition of the neutralino is important for
its coupling to the gauge bosons and Higgs scalars.

gWχ±
1 χ

0
1

=
g sin θw
cos θw

(
1√
2
N14V

∗
12 −N12V

∗
11

)
(38)

gZχ0
1χ

0
1

=
g

2 cos θw
(N13N13 −N14N14) (39)

ghχ0
1χ

0
1

= (gN11 − g′N12) (sinα N13 + cosα N14) (40)

gAχ0
1χ

0
1

= (gN11 − g′N12) (sin β N13 − cos β N14) (41)

We see that apart from the W -coupling all couplings rely on a Higgsino component
of the LSP. Therefore smaller values of µ will usually lead to larger couplings. On
the other hand µ always has to remain larger than 103 GeV because otherwise the
mass of the lightest chargino can be less than 103 GeV and would be excluded by
LEP searches. Putting the information on the masses and couplings together we
can analyse some typical annihilation channels.

3.3.1 Annihilation channels

Following our calculation in section 3.2 we can estimate the relic density by com-
puting the annihilation cross section. The main annihilation channels can be sorted
into the categories s-channel, t-channel and co-annihilation as illustrated in Fig. 3.

s-channel
The simplest annihilation channel is the s-channel annihilation. Two dark matter
particles annihilate via a boson (h/H/A/Z/γ) into SM particles. If the propagator

12



process channel σv

χχ→ A→ qq̄ s-channel
3λ2

χAλ
2
qA

2π

m2
χ

(M2
A − 4m2

χ)2

χχ→ h→ qq̄ s-channel
3λ2

χhλ
2
qh

8π

v2m2
χ

(M2
h − 4m2

χ)2

χχ→ Z → qq̄ s-channel
3λ2

χZax

2π

[
λ2
qZax

m2
q

M4
Z

+
v2(λ2

qZax
+ λ2

qZv
)m2

χ

3(M2
Z − 4m2

χ)2

]
χχ→ χq̃q̄ → qq̄ t-channel

3λ4
χqq̃(mq +mχ)2

8π(M2
q̃ −m2

q +m2
χ)2

Table 2: Some examples for simplified annihilation cross sections expanded in powers
of v2 assuming Majorana dark matter and light final states.

can be on-shell, the annihilation cross section becomes very large and is constrained
by the width of the propagator. In table 2 we display the annihilation cross section
multiplied by the relative velocity of the colliding particles for specific channels.
The results are expanded in powers of v2 and assume Majorana dark matter and
light quarks as final states so that mq � mχ. We see that the annihilation via a
scalar is s-wave suppressed with respect to the pseudoscalar annihilation. For the
Z boson only the axial vector component couples to the Majorana particles. The v-
independent contribution is hence suppressed by the mass of the outgoing particles.
Close to the on shell conditioin the v2 suppressed term will therefore be dominant.

co-annihilation
If the mass difference between LSP and the next heavier particle is small, the de-
cay of the heavier particle is suppressed and it can contribute to the annihilation
of dark matter. Typical examples are stau, stop or chargino co-annihilation. The
corresponding mediator particles are tau, top and the charged Higgs and W bosons.

t-channel
Two dark matter particles can as well annihilate via a super symmetric mediator like
a neutralino, a chargino, or a sfermion in the t-channel. In principle we can again
enhance the cross section by choosing masses that allow for an on shell propaga-
tor. However the additional freedom from the momentum fraction that propagates
through the mediator washes out the effect.

Concluding remark on annihilation in the early universe and today
When we talk about the relic density we have to take into account the the higher
temperature and therefore the larger velocity of dark matter in the early universe.
Comparing annihilation cross sections depending on the dark matter mass in the
early universe and today will therefore result in a broader distribution for the early
universe. Fig. 4 shows relic density and annihilation cross section today for a h and
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Figure 4: Inverse relic density (dashed, left axis) and annihilation rate in the GC
(solid, right axis) for an MSSM parameter point where the annihilation
is dominated by χ0

1χ
0
1 → bb̄. The right pannel is zoomed into the Higgs

annihilation region.

Z mediated annihilation. While the width in the relic density is determined by the
velocity distribution, the width in the annihilation cross section today is determined
by the width of the mediator.
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