Annihilation channels

Fitting the GCE

Fitting Dark Matter

Anja Butter

Student lecture

February 6, 2017

Revisior

Annihilation channels

Fitting the GCE

Outline

1. Revision

- 2. Dark Matter annihilation channels
- 3. Fitting the Galactic center excess

Annihilation channels

Fitting the GCE

Likelihood function

Gauss:

$$\sqrt{-2\log\mathcal{L}_{Gauss}} = \begin{cases} \frac{s - (\tilde{s} + \sigma_{theo})}{\sigma_{sys,s}} & \text{for } \sigma_{theo} < s - \tilde{s} \\ 0 & \text{for } \sigma_{theo} > |s - \tilde{s}| \\ \frac{s - (\tilde{s} - \sigma_{theo})}{\sigma_{sys,s}} & \text{for } \sigma_{theo} < \tilde{s} - s \end{cases}$$

Poisson:

$$\mathcal{L}_{\mathsf{Poiss},d} = rac{P(d| ilde{d})}{P(ilde{d}| ilde{d})} = rac{ ilde{d}!}{d!} \, ilde{d}^{d- ilde{d}}$$

Combination:

$$\frac{1}{\log \mathcal{L}} = \frac{1}{\log \mathcal{L}_{Gauss}} + \frac{1}{\log \mathcal{L}_{Poiss,d}} + \frac{1}{\log \mathcal{L}_{Poiss,b}}$$

Annihilation channels

Fitting the GCE

Dark Matter

Boltzmann equation:

$$rac{dN_{\chi}}{dt} = \Gamma(far{f} o \chi\chi) - \Gamma(\chi\chi o far{f}) + \Gamma_{other}$$

Freeze-out:

Relic density:

$$\Omega h^2 = \frac{\rho}{\rho_{crit}} h^2 \approx \frac{2.510^{-27} \frac{cm^3}{sec}}{<\sigma_{ann} v_{rel} >}$$

SUSY

- Symmetry connecting fermions and bosons
- Hierarchy problem
- Dark matter candidates: neutralino, sneutrino, gravitino
- gauge coupling unification

	SM Particle (R=+1)		SUSY Partner(R=-1)	
Names	Gauge ES	Mass ES	Gauge ES	Mass ES
neutralinos	W^0, B^0 H^0_u, H^0_d	$Z^{0}, \gamma \ h_{1}^{0}, h_{2}^{0}, A_{1}^{0}$	$ ilde{W}^0, ilde{B}^0 \ ilde{H}^0_u, ilde{H}^0_d$	$ ilde{\chi}^{0}_{1}, ilde{\chi}^{0}_{2}, ilde{\chi}^{0}_{3}, ilde{\chi}^{0}_{4}$
charginos	W^{\pm} H^+_u, H^d	W^{\pm} H^{\pm}	$ ilde{W}^{\pm} \ ilde{H}^+_u, ilde{H}^d$	${ ilde \chi}_1^\pm, { ilde \chi}_2^\pm$

Annihilation channels

Fitting the GCE

Annihilation channels I

Annihilation channels

Fitting the GCE

Annihilation channels II

process	channel	σv
$\chi\chi \to A \to q\bar{q}$	s-channel	$c\lambda^4rac{m_\chi^2}{(M_A^2-4m_\chi^2)^2}$
$\chi\chi ightarrow h ightarrow qar{q}$	s-channel	$c\lambda^4rac{{m v}^2m_\chi^2}{(M_h^2-4m_\chi^2)^2}$
$\chi\chi o Z o q \bar{q}$	s-channel	$c\lambda^2\left[rac{\lambda_{qZ_{ax}}^2m_q^2}{M_2^4}+rac{v^2(\lambda_{qZ_{ax}}^2+\lambda_{qZ_v}^2)m_\chi^2}{3(M_Z^2-4m_\chi^2)^2} ight]$
$\chi\chi ightarrow \chi \tilde{q} \bar{q} ightarrow q \bar{q}$	t-channel	$c\lambda^4 rac{(m_q+m_\chi)^2}{(M_{\tilde{q}}^2-m_q^2+m_\chi^2)^2}$

Table: Examples for simplified annihilation cross sections expanded in powers of v^2 assuming Majorana dark matter and light final states.

Annihilation channels

Fitting the GCE

Annihilation channels III

Illustration of the velocity dependence

Figure: Inverse relic density (dashed, left axis) and annihilation rate in the GC (solid, right axis) for an MSSM parameter point where the annihilation is dominated by $\chi_1^0 \chi_1^0 \rightarrow b\bar{b}$.

Annihilation channels

Fitting the GCE

The Fermi LAT spectrum

γ ray spectrum from the galactic center observed by Fermi LAT [arXiv:1511.02938]

Annihilation channels

Fitting the GCE

Fitting the Fermi LAT spectrum

- annihilation spectra for $\chi\chi \rightarrow b\bar{b}/t\bar{t}/WW$ for local best fit points
- *m_A* = 500 GeV
- likelihood map determined by LSP mass and coupling

Fitting the Fermi LAT spectrum and the relic density

- left: likelihood map with black dots indicating the correct relic density
- the relic density favours smaller couplings
- right: fit including the relic density

Annihilation channels

Fitting the GCE

Another example

• $\tan \beta = 45$, $m_A = 1$ TeV (di lepton limits)

Revisior 000 Annihilation channels

Fitting the GCE

Direct detection

- · exclusion limits from direct detection experiments
- light to dark: Xenon100, PandaX, LUX

Revisior 000 Annihilation channels

Fitting the GCE

Direct detection

- low $M_2 = 120 \text{ GeV} \rightarrow \text{wino}$
- smaller coupling to light Higgs \rightarrow avoids direct detection

5 things to keep in mind

- careful treatment of uncertainties and correlation to built a likelihood function
- $\gamma\text{-ray}$ excess observed in GC can be explained by annihilating dark matter
- strongest constraint from relic density
- small tension between relic density and GCE can be resolved in MSSM
- direct detection experiments can rule out most of the parameter space

For further reading

- Statistik lecture notes
 - T. Plehn

http://www.thphys.uni-heidelberg.de/~plehn/pics/lhc.pdf

- K. Cranmer (NYU) http://arxiv.org/abs/1503.07622
- Glen Cowan

https://www.pp.rhul.ac.uk/~cowan/stat_course.html

- Dark Matter lecture notes
 - T. Plehn

http://www.thphys.uni-heidelberg.de/~plehn/pics/dark_
matter.pdf

• J. Kopp (Mainz)

http:

//www.staff.uni-mainz.de/jkopp/astroparticle2013.html

others

- S. P. Martin, "A Supersymmetry primer"
- E.W. Kolb & M. S. Turner, "The Early Universe"
- Butter et al., "Saving the MSSM from the GCE" https://arxiv.org/abs/1612.07115