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o Can we confirm P states seen in A — J/i'pK™ and A9 — J/i pr~ in
A — A DK™?

A

0
b

u

\{

\

el

ol

K-

P+

Experimental challenges

@ 6 hadrons in final state

~~ larger combinatorial/misID backgrounds,
feeddown

Fewer reconstructed events
than AY — JippK~

Subsequent D° » KT#n~ and

1o — pK 7" decays,

reconstruction efficiency
Helicity of A7 requires
AT — pK~ 7" amplitudes

Latest measurement from E791

in 2000 with 950 events [PLB 471, 449]


http://dx.doi.org/10.1016/S0370-2693(99)01397-0

Table 3. Predictions for allowed (v') and suppressed (x) de-

cays for the different scenarios. The absence of an entry implies

that a given channel is not kinematically accessible. The pre-

o Narrow P+ — A+ DO not d?ctions ?ncl.oscd in l.)rackcts a.rc‘ lcs?“ rf)liablc and can be badly
C C violated if pion-exchange dominates: see the text.

expected in dynamical

diquark-triquark model pLe 740 454) p 5D PCA:D ) P;/wN*
o A/ DY can discriminate between j/;sN : : j : : :
different hypotheses in molecular A x v © x 7 x
models [EPJA51 11, 152] NeA X v X X v X
(4D v [x][v]  x (x] __x)
o Using partial reconstruction (Lo 7 7 v v v 7))
techniques, it is possible to infer 2.D N VR [x] x
the D*® momentum and analyse D v Y [x] v
QLEOI 50— 5%/ J/YNm % v X v v v
A.Dm X X X X v X
A.D*n X v X X
YrDp%z% x v v X



http://dx.doi.org/10.1016/j.physletb.2015.08.032
http://dx.doi.org/10.1140/epja/i2015-15152-6
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Report observation and branching ratio measurement before proceeding
with amplitude analysis

B(A) — AFDWOK™)  N(A — AFDFOK™)  e(A) — AFD;)  B(Dy — K*K™77)

B(AY = AZD;)  £(A9 — AZDMOK=)  N(AQ = AZDs) B(DH)° — K+r—(70/7))

Select Ai and D° signals with dedicated "open charm BDTs" | 1
[ ). To be updated in the course of this analysis.

o BDTs trained on X, — X 7 using kinematic variables and variables which are
direct input to conventionally used PID classifiers

o Their efficiencies are measured on data
Rely on simulation for trigger-, reconstruction- and pre-selection efficiencies

Use data driven methods for efficiency of final selection

19


https://cds.cern.ch/record/1418211/files/LHCb-INT-2012-002.pdf
https://twiki.cern.ch/twiki/pub/LHCbPhysics/DoubleOpenCharmBaryons/Xb2XcXc_v8.pdf

o Separate (unfold) signal from background distribution in "control" variable
x by extracting weights in "discriminating" variable m
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Separate (unfold) signal from background distribution in "control" variable
x by extracting weights in "discriminating" variable m

signal /background only 2 of many possible classes; x,m are vectors in general

Parametrisation f(x, m) = NsPs(x, m) + NpPp(x, m)

P denotes a PDF, N a normalisation

Construct weight function w(m) which projects out signal density
NsPs(x) :/ dmw(m)f(x, m)

w(m) has to be independent of x~» Ps(x, m) and Pp(x, m) factorise as
function of m and x

NsPs(x) = / dm w(m) [NsPs(x)Ps(m) + NpPp(x)Pp(m)], implying that

/ dmw(m)Ps(m)=1 and / dm w(m)Pp(m) =0

Any w(m) orthogonal to Pp(m) but not to Ps(m) possible
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o Choose w(m) to give most sensitivity on Ps(x)

Z w?(m) =min = / dx dm w?(m)f(x, m) = min

events
o Lagrange multiplier problem, solved by

w(m) = (Vss)Ps(m) + (Vip) Pp(m) wit / I . PS )Pj(m)

NSPs(m) + Nbe(m) —|— Nbpb( )
(-L)
1 . .
o Note that V =N, ;' where L is the likelihood
InC= > In{NsPs(m) + NpyPp(m)} — Ns — Nj
events

which is minimised in a fit where only Ns and N, are free parameters
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o Efficiencies are evaluated on control samples (data or MC) in bins of
k|nemat|c Val’iab|eS W w denotes binning scheme in kinematic phase space

o Because the efficiency depends on these variables

o Because the distribution of these variables is expected to change
from control to signal sample

~
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o Efficiencies are evaluated on control samples (data or MC) in bins of
k|nemat|c Val’iab|eS W w denotes binning scheme in kinematic phase space
o Because the efficiency depends on these variables

o Because the distribution of these variables is expected to change
from control to signal sample

o Efficiencies are "applied" event-by-event

Ns Psw, eo(we,j
Dol x Bledmmlp y sl

€s Nr k events i gk wk’ { events j ng

where k, ¢ denotes an efficiency class, s is the A) — AT DK~ signal

and r the AY — AT D reference-signal v 7. w a in sices berore

o N.B.: Product of classes means that factorisation is assumed

~
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Efficiency class control sample Phase space signal | reference
Generator |eVe| detector acceptance
Trigger :
Reconstruction signal MC Da|lt27p|0t _ pT, M

2 A+ 50Y M2 (B0 K — ’
Strlpplng pre-selection stream (M{"V(Ac i Mi"V(D )
Offline pre-selection
BDT 4—C"_ Ag — 4j_ﬂ_ data pT, thhtD\stancexz IJTv FDX2
BDT D° Bt — D%zt data pr, FDX? -
BDT D_ BY — Dy m* data - pr, FDY?
PID K~ D*~ — [K~nt]po ™ data p1,7n, nTracks -

@ Uncertainties in signal and reference cancel to large extent

o Signal MC needs to be reweighted in pr,7n

©

©

Using adaptive binning to increase sensitivity

Uncertainties on efficiencies from Wilson confidence interval best average coverage
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Efficiency class

Generator level deector ace
Trigger
Reconstruction

OK) (Gev?)

Stripping pre selection stream oOF | —
Offline pre-selection ~E - }\ ]
BDT AJ 8 -
BDT D - '\ 1
PID K- 6 _ﬂgjﬁ 3
o sE o L
o Uncertainties in sign 20 25
@ Signal MC needs to Miznv(/\gﬁo) (GeV?)

o Using adaptive binning to increase sensitivity

o Uncertainties on efficiencies from Wilson confidence interval vest average coverage

0.016
0.014
0.012
0.01

0.008
0.006

o
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o Six hadrons in final state ~~ large combinatorics!
o Particle identification is not entirely accurate ~~ misidentification

o Decay topology reduces misidentification backgrounds

19



Entries/1 MeV

o Six hadrons in final state ~~ large combinatorics!

o Particle identification is not entirely accurate ~~ misidentification

o Decay topology reduces misidentification backgrounds

250 \ \ \ 0> \ \ S 3r T T
s LHCb internal 1 2 o00p LHCb internal = f LHCbintema
o0t — withoutvetos 1 = goof- — without vetos s %F events cut by D*(2010) veto
= — all vetos applied ] E — all vetos applied Eo—
E p ] B 700E &P R_; from 50{ch -}
1500 1 2 eoof 2
3 1 Y so0k m
100F E3
E 1 300F
501 200E E
3 o ] 100 I b rind b
C Il Il c E I Il Il 4 O L 1 Il 1 1
2 2.05 21 215 22 2 2.05 21 215 22 5.4 56 58
erN(BO{Kba:helorﬂn}) (GeV) Mirw(Do{K/\C*T[}) (GeV) va (/\:;'D K—) (GeV)

o Two possibilities: include in fit or apply veto

o Combinatorial events in veto region can be signal ~» check signal mass projection

o In this analysis

D"~ = DK, =7}, D' = D{Kicheior = T }» & = KoachariP — K} are vetoed
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o 50 oo O 500 0 o 500 ‘ '

5600 0 5800
My, (D) (MeV)

5600 . 5800
M;,, (A:DK) (MeV)

5600 .y 5800
M, (AD’K) (MeV)

veto cuts, mass cuts on charm daugters (¢ &~ 99 % each),

50/AC+ BDT cuts and K~ PID cut (combined € ~ 80 %)

sanity cuts, loose mass cuts on charm daugters (¢ ~ 100 %),

D°/ A} BDT cuts (= & 97/98 %), K~ PID cut (s ~ 98 %)

o Cut-based selection in principle good enough
o Signal and background clearly separable
Amplitude analysis can use sWeighted distributions
o Can we get better sensitivity (= increase statistical power)?
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sanity cuts, loose mass cuts on charm daugters (¢ ~ 100 %),

D°/ A} BDT cuts (= & 97/98 %), K~ PID cut (s ~ 98 %)

5600 0 5800
My, (D) (MeV)

o Cut-based selection in principle good enough

o Signal and background clearly separable
Amplitude analysis can use sWeighted distributions

o Can we get better sensitivity (= increase statistical power)?

5600 . 5800
M;,, (A:DK) (MeV)

o Use multivariate Classification! <— quality quantifyable!

5600 .y 5800
M, (AD’K) (MeV)

veto cuts, mass cuts on charm daugters (¢ &~ 99 % each),

50/AC+ BDT cuts and K~ PID cut (combined € ~ 80 %)

o But optimal working point will depend on many factors ~» systematic studies

10/19



ROC Curves
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Niklaus Berger — SMIPP - WS 2013 - Slide 6
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ROC Curves

- Receiver Operating Characteristics - orig-
inally from signal transmission in electrical

engineering
|deal case:
c | Completely disjoint PDFs
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events
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0 Signal Efficiency 1

Niklaus Berger — SMIPP — WS 2013 - Slide 7
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ROC Curves

- Receiver Operating Characteristics - orig-
inally from signal transmission in electrical
engineering

|deal case:

Completely disjoint PDFs

—

Some selection

Randomly
throwing away
events

Background Rejection

0 Signal Efficiency

Niklaus Berger — SMIPP — WS 2013 - Slide 8
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ROC Curves

- Receiver Operating Characteristics - orig-
inally from signal transmission in electrical
engineering

Ideal case:

c Completely disjoint PDFs
.g
ox Better selection
[a4
5]
S | Some selection
0
&
8 Randomly

throwing away

events

0
0 Signal Efficiency 1

- How far you can go to the upper
right is limited by Neyman-Pearson

o ROC-AreaUnderCurve IS COmmOnIy
used measure of quality

o Maximise ROC-AUC by
studying different MachineLecaring
methods and their
hyperparameters

Niklaus Berger — SMIPP — WS 2013 - Slide 10
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[Thesis P. Seyfert (PI)]

o Start with training (S,B known) sample at "Root Node" ‘ Reot Node

o Split sample using cut ¢; that gives best / \‘

Separation galn usually Gini Index = p(1 — p) with purity p

A
g
v
m

l‘z)cz \

o Continue splitting until reaching

o Minimal number of events per node
o Maximum number of nodes . ‘
o Maximum depth

(bockground  [signal_

o Insufficient separation gain

o DTs will be 100 % correct on training sample ~~ overtraining

12/19


http://www.physi.uni-heidelberg.de//Publications/2014_11_13_PhD_Thesis_Paul_Seyfert.pdf
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Start with training (S,B known) sample at "Root Node"

Split sample using cut ¢; that gives best
Separation ga|n usually Gini Index = p(1 — p) with purity p

Continue splitting until reaching

o Minimal number of events per node
o Maximum number of nodes
o Maximum depth

o Insufficient separation gain

DTs will be 100 % correct on training sample ~~ overtraining
Can be avoided using combination of shallow DTs (weak learners)

There are algorithms to systematically combine these weak learners: boosting

12 /19



© Tranng Sanple  ——
1 re-weight

Weighted Sample e
1 re-weight

Weighted Sample ——
1 re-weight

Weighted Sample —

1 re-weight

v

Weighted Sample

Boosting

classifier
C(O)(X)

classifier
C)(x)

classifier
C(Z)(X)

classifier
CO)(x)

classifier
Cm)(x)

> y(x)=

J

NCIassifier .
w,CY(x)

Helge Voss Graduierten-Kolleg, Freiburg, 11.-15. Mai 2009 — Multivariate Data Analysis and Machine Learning 12
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Adaptive Boosting (AdaBoost)

© TnngSampe  ——
1 re-weight
Weighted Sample
1 re-weight
Weighted Sample
1 re-weight
Weighted Sample

1 re-weight

v

Weighted Sample

Helge Voss

classifier
CO)(x)

classifier
C(1)(x)

classifier
C(Z)(X)

classifier
C(S)(X)

classifier
Cm(x)

>

J

" AdaBoost re-weights events

misclassified by previous classifier by:

1~ fer with :

err

_ misclassified events
- all events

" AdaBoost weights the classifiers also
using the error rate of the individual
classifier according to:

NCIasslﬁer
y(x)= Z |Og[ f(l)err}:(u)(x)

Graduierten-Kolleg, Freiburg, 11.-15. Mai 2009 — Multivariate Data Analysis and Machine Learning

13
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AdaBoost: A simple demonstration

The example: (somewhat artificial...but nice for demonstration) : ,
+ Data file with three “bumps” var )> x ar(i) <= x

» Weak classifier (i.e. one single simple “cut” « decision tree stumps ) i i

B T S T T P 24F T T T T Tosg ~ Signal
£ s ¥ bl 2 22p s Background
E [77] Backgrqund E Py 0] und |
5 2F 4 5 1af
z < Z 4gF 0.4F
15 b) 141 02|
12F
1E
08
06k 0.2
0.5 04F e
02
a 0.6
086 04 02 0 02 04 06 08 | L | | L ! |

varQ wvari

Two reasonable cuts: a) Var0 > 0.5 > €4g,,=66% &,y = 0% misclassified events in total 16.5%
or
b) Var0 < -0.5 > £540,=33% €, = 0% misclassified events in total 33%

the training of a single decision tree stump will find “cut a)”

Helge Voss Graduierten-Kolleg, Freiburg, 11.-15. Mai 2009 — Multivariate Data Analysis and Machine Learning
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AdaBoost: A simple demonstration

The first “tree”, choosing cut a) will give an error fraction: err = 0.165
=>» before building the next “tree”: weight wrong classified training events by ( 1-err/err) ) =5

=> the next “tree” sees essentially the following data sample:

H E 2.5 [ Signal ! ]
E re-weight E 2 Backgfound 1- and hence will
3 s chose: “cutb)”:
Var0 <-0.5
15 -1 05 0 0 1 15 0-1.5 -1 95 0 05 1 15
var0 varQ
B A7 signal T B
=E D Background *:
The combined classifier: Treel + Tree2 £ =1 *
the (weighted) average of the response to o |- 4%
a test event from both trees is able to i
separate signal from background as 2
good as one would expect from the most ~ *° [ 1 g
powerful classifier ol = s - e LS

BDT response

Helge Voss Graduierten-Kolleg, Freiburg, 11.-15. Mai 2009 — Multivariate Data Analysis and Machine Learning 16 13/19
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https://indico.scc.kit.edu/indico/event/48/session/4/contribution/35/material/slides/0.pdf

o 25 variables with good separation power have been identified
o HOW to deﬁne Slgnal training Samp|e7 background from sidebands in data v/

o Train directly on data? Overtraining, ¢ bias ~~ k-fold cross validation
o Use signal simulation? Need well simulated variables

15/19



o 25 variables with good separation power have been identified
o HOW to deﬁne Slgnal training Samp|e7 background from sidebands in data v/

X Train directly on data? Overtraining, € bias, statistics insufficient!
X Use signal simulation? Need well simulated variables

Entries/0.1
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120
100

KS Test: 0.000

+ 'I' t+ e
PERETERT I NS S SR N SR S S T | .l.-+. m
0 ! K ProbhNK -
Ol
100 ProbNNK)
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o 25 variables with good separation power have been identified

o HOW to deﬁne Slgnal training Samp|e7 background from sidebands in data v/

X Train directly on data? Overtraining, € bias, statistics insufficient!
X Use signal simulation? Need well simulated variables

o Use splines or KermelDensityEstimators to get smoothed signal PDF. Sample from it.

Need to do this 25 dimensional to capture correlations ~» GAN[arxiv:1406.2661]

Entries/0.1

180
160
140
120
100
80
60
40
20

LHCb internal
+ —+— sweighted data

spline
KS Test: 0.967

i 0 ! KCpr bNNk 3
Ol
100 ProbNNK)
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https://arxiv.org/abs/1406.2661

o 25 variables with good separation power have been identified

o HOW to deﬁne Slgnal training Samp|e7 background from sidebands in data v/

X
X

*]

© 6 o o

Train directly on data? Overtraining, € bias, statistics insufficient!
Use signal simulation? Need well simulated variables

Use splines or KermelDensityEstimators to get smoothed signal PDF. Sample from it.

Need to do this 25 dimensional to capture correlations ~» GAN[arxiv:1406.2661]
Reweight signal MC to splines? tradeoff agreement <« effective MC statistics
Study correlations and use multiple stages of training?

Study ongoing. Best solution is probably a mix

Currently: 25 x 1D splines

15/19


https://arxiv.org/abs/1406.2661

o Wait... where did the sWeights come from?

0
=
>
o
=
<
>
=
f-
L
0
-
J=
.80
=
0
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o Wait... where did the sWeights come from?

o Use 3D fit to data after offline pre-selection stage

S0 LHCb internal I comb. bkg D° & A; sig, [ LHCb internal N comb. bkg D° & A; Sig. LHCb internal N comb. bkg D° & A; Sig.
3000 —— full model B comb. kg Alsg. —— full model I comb. bkg A sig. —— full model I comb. bikg A¢ sig
2500 — N~ ADK I comb. bkg D° sig. — A~ ADK I comb. bkg D°sig. — N~ ADK I comb. bkg D° sig.
A AR K I comb. bkg A ALK K A AR K I comb. bkg
2000 =
S
1500 =
1000
500
2 1 o 1 9 2 i E T o 3
2 Lttt ] 1 1 l
S BT EAU SR R N T S DT R L SRS DR RN SRR SR U RS IO AUUONR I UL YO8 I SO RTINS AU SU N |
Sptyth ey ARSI Py o = 7 9 R R e
- L i L PR L _L -4 L L =
1820 1840 1860 1880 1900 2280 2300 230 5600 5650
My, (K7 T0) (MeV) My, (P K TT) (MeV) Mo, (ND’K) (MeV)

o Separate pure combinatorial and single charm backgrounds

o Will study MVA with multiple background sources in the future

o Separate double charm from single and no-charm signal
o Only A9 — ATKT7~ K™ contributes at tree-level

o 3D Fits repeated after final selection to extract A) — ATK*7~ K~ () yield.

This yield will be fixed in the final 1D fit

16/19



Events/4 MeV

Pull

3 350 T T T
>

LHCb internal —— A ATK LHCb internal — A AT

+ = 300 +

A ABY] K A= AB] K

. B e 70 WL B e
[ A 3 2OE [ o)y

. . ./\“«/\C‘K‘KKH" . . ./\“«/\C‘K‘WKV\"
W -t Bk ’ Il -t o, P )

/\S<[/\;mr]Mm,UﬂK' . comb. bkg

/\g‘(.[/\;mr]Mm ok . comb. bkg
7 ¢

4 = 4F
2 I 2 i
o ﬁwﬂhﬁ A L e B o b e hﬁ
-4 | -4k .

0 00 My (DK (MOV) . w00 Mim(A:D"K)fS'ﬁOew

cut-based — MVA selection &,¢jative = 90%

o Shapes of partially reconstructed Ag decays from KDE PDFs of simulated data

o Further partially reconstructed decays absorbed in background or negligible
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B(A) = AFDUOK™)  N(A) - ALDWOK™) (A9 — ASD;)  B(Dg —>/(+K’7T*)

BU§— AEDs)  — e(AJNf ATDUKT)  N(A§ — ADs)  B(DOO K 7 (n/7))
gig E LHCb intemlal 3 I I 02
) = — full model = j o
S 100f- — A~ A, 3 1
g 0] N | [ — comb. bkg - _E 014
% 600 E Ny

400:_ 3 = 0.1

: E 0.08

200 et e, E 001
e e : : 0.04
: 2@ g ol 1 Wity m % Wl e P! 0

""""" 20 5000 10000 15000 20000 25000 0

L 0
5400 5600 » (5/%0%5) Mev) Ny b, (MeV)

inv

o Reference channel workflow similar to signal channel
o Use reference channel to validate open charm BDTs
B(AY — AFDHOK™)

~ 0.13
B(A) — AEDs)

18/19



©

©

©

©

Exotica are excellent laboratory to study the poorly understood dynamics and
binding mechanisms of QCD

Absence of exotica in the light quark sector

o Inconclusive searches for decades
o Two waves of hints for exotic KN resonances

Large number of Tetraquark candidates observed with ¢ or bb content
First uudcT pentaquark candidates observed in 2015 at LHCb

Lots of theoretical predictions waiting to be tested

One of them: search for uudcc pentaquarks in A — Aj[j(*)OK_

o Here, A9 — A7D™°K~ has been observed for the first time
o Challenges: Efficiencies as function of kinematics, optimisation of signal selection
o Amplitude analysis proven to be feasible, but helicity of As needed

19/19



Backup slides start here



EventType | Decay feeds into A9 | expected fiq
15196200 | A9 — A D°~,] _ X 14
D*(2007)°
0 + [ P00
15196400 | A — A [D7C] x 23
15196201 | A9 — AF [[Dﬂa} . K- X 0.06
D+(2007)° D41(2536)~
15196406 | A9 — AF [[5%0} _ K- X 0.10
L D+ (2007)° D.1(2536)~

15196401 | A9 — AFD° K~ ]K*(m X 0.25?
15196402 /1?, - [/ljﬁo}zta,,ﬁy Dk~ X 0.05
15196403 | A§ — [AF 7]y (p550) DK™ X < 0.02
15196404 | A — [ATK™ 7] (59500 D° X negl.
15196405 | A§ = [ATK™7%)= (30500 90 X negl.
15198002 | A9 — [Afr = ]A (250s)+ D°K™ x negl.
15198003 A° = [AFr 7], (aszs) Dk~ X negl.
16196440 | =9 — [/IJr ]Z (2as5)+ 9 K- v/ negl.
16196441 | =9 — [Af %]y (2520 DK~ v1 negl.
16197030 | = (A7 ]z 2assp DOK™ v negl.
16197031 _b = [AF)g, (2520 Dk~ V] negl.
16196442 | Ef — [[1°p] . K 7 K] D V] negl.
16196443 | =9 — AFD° [K~n ]K*(m) v] negl.
16196444 | 20 — [pK 7t 7% -4 D°K™ V] negl.

Potential Ag and =, decays which cross feed into the AjEOK_ invariant mass distribution. The third column indicates if the decay feeds into the A?,

signal (v'), or not (X). A [/] indicates that the tails of the distribution feed into the Ag signal. Particles labelled in red are not reconstructed, whereas

blue labelled particles are required to be within [2270,2305] MeV of their invariant mass to mimic a Azr. The last column gives the expected feeddown

fraction w.r.t. the signal yield.

19



EventType | Decay feeds into A9 | expected fiq
15106200 | A3 — AF [D%] 00y X 14
15106400 | A3 — ¢ [D°r°] " X 23
007)°
15196201 | A9 — A} [[ 7], ‘(2007)0 ]Dﬂ(zmr x 0.06
15196406 | A9 — A} [[ |- X 0.10
il (2007)° D41(2536)~

15196401 | A9 — A$D [K~r ]K*(m x 0.257
15106402 | A9 — [AF 70 (pq55y D°K™ X 0.05
15196403 | A§ — [AL7%]5 500 DOK ™ X < 0.02
15196404 Ag = [AFK=7°)=, 20500 D° X negl.
15196405 | A9 — [A:rK’/.D] (30800 D° X negl.
15198002 | A§ — [AZ7m 7" ]a (a50s)+ DK™ x negl.
15198003 A° = [Afr ], oy bille x negl.
16106440 | 59 — [/1+ 1: (aassyr DK™ v negl.
16196441 | = — [AE7°]5 (o550 DK™ V] negl.
16197030 | =, = [ 7 5 assyo DK v negl.
16107031 | =, — Ay, @0 DK~ V] negl.
16196442 | 50— [[x°p] . K 77 K] o D° V] negl.
16196443 | 59— AL D0 [K 7T . gy V] negl.
16196444 | 20 — [pK 7t 7% -4 D°K™ V] negl.

Potential Ag and =, decays which cross feed into the AjEOK_ invariant mass distribution. The third column indicates if the decay feeds into the A?,

signal (v'), or not (X). A [/] indicates that the tails of the distribution feed into the Ag signal. Particles labelled in red are not reconstructed, whereas

blue labelled particles are required to be within [2270,2305] MeV of their invariant mass to mimic a Azr. The last column gives the expected feeddown

fraction w.r.t. the signal yield.

N
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EventType | Decay feeds into A9 | expected fiq
15196200 | A9 — A D°~,] _ X 1.4
D*(2007)°
15106400 | A3 — ¢ [D°r°] X 23
+(2007)°
15196201 | A9 — AF [[ 7] - X 0.06
D+(2007)° D;1(2536)~
15196406 | A9 — AF [[ ] - X 0.10
L D*(2007)° D,1(2536)

15196401 — AZDO [K~7%) . (292 X 0.257
15196402 = [4571% . passys DK™ X 0.05
15196403 Ag — [4¢n%, (zmy D°K~ X <002
15196404 | AY — [AF K70 _5(2930)0 D° X negl.
15196405 Ag = [ATK7°)2 (308010 l?“ X negl.
15198002 | A9 — [Afr = ]A (250s)+ D°K™ x negl.
15198003 A° = [Afr 7]y, o) DK~ X negl.
16196440 | =) — [/IJr ]Z (2as5)+ 9 K- v/ negl.
16196441 | =9 — [Af %]y (2520 DK~ v1 negl.
16197030 | =} = [477 ]x, aassyo DK™ v negl.
16107031 | =, — Air s, a0y DK~ %] negl.
16196442 | 20 — [[n%p] gy K 7 K"] g D° v negl.
16196443 | 59— AL D0 [K 7T . gy % negl.
16196444 | 20 — [pK 7t 7% -4 D°K™ V] negl.

Potential Ag and =, decays which cross feed into the AjEOK_ invariant mass distribution. The third column indicates if the decay feeds into the A?,

signal (v'), or not (X). A [/] indicates that the tails of the distribution feed into the Ag signal. Particles labelled in red are not reconstructed, whereas

blue labelled particles are required to be within [2270,2305] MeV of their invariant mass to mimic a Azr. The last column gives the expected feeddown

fraction w.r.t. the signal yield.
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d d > d

Estimate feeddown fraction from CDF PRD 79 032001
B(A) — £c(2455) 7 um,) 0.054

B(AS — Afpu7,)

Correct for additional 7’ assuming additional pions are Poissonian and using
B(Ay —» Adpw,) 1.1 B(A) = Alp~v,)

B(AY — Afrtn—p—v,) 0.6 B(AY — Al2mu~T,,)

@ Additional dd pair in semileptonic diagram ~- factor 0.5

o Estimate < 2% of A9 — Af [BOWO] D*(2007)° K-
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logD’ DIRAQ) BDT response BDT response

DIRAQ = (1 — DIRA) - ADIRA requires vertex-momentum covariances

D° BDT Af BDT arctan(D° crprr sign.)  log( K REomk arctan(AL crpE sign.)
log(K~ Aprptr) log(D° DIRAQ) log(K~ proTE) log(A2 BPV IPx31¢) D° app

log(A} DIRAQ) log(AF BPV IPx31¢) log(K~ BPV IPx31¢)  log(l — A9 DIRA) log(D° AprpTE)
Iog(m%) log(D° prpte) log(A3 Aprpre) log(A3 BPVTDTF) log(D° BPV IPx}rr)
log(A} AMprr) log(A¢ proTe) log(A} BPVPDSpF) log(A3 prote) log(A Aprprr)
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