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Can we confirm P+
c states seen in Λ0

b → J/ψpK− and Λ0
b → J/ψpπ− in

Λ0
b → Λ+

c D0K−?
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Experimental challenges
6 hadrons in final state
 larger combinatorial/misID backgrounds,
feeddown

Fewer reconstructed events
than Λ0

b → J/ψpK−

Subsequent D0 → K+
π

− and
Λ

+
c → pK−

π
+ decays,

reconstruction efficiency

Helicity of Λ+
c requires

Λ+
c → pK−π+ amplitudes

Latest measurement from E791
in 2000 with 950 events [PLB 471, 449]

http://dx.doi.org/10.1016/S0370-2693(99)01397-0
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Narrow P+
c → Λ+

c D0 not
expected in dynamical
diquark-triquark model [PLB 749 454]

Λ+
c D0 can discriminate between

different hypotheses in molecular
models [EPJA51 11, 152]

Using partial reconstruction
techniques, it is possible to infer
the D∗0 momentum and analyse
Λ+

c D∗0! D∗0 → D0
π
0
/γ
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and bound state models. In kinematic models the enhance-
ment of Σ

(∗)+
c D̄(∗)0 is associated with its energy denom-

inator in the loop integral. In bound state models (at
least in S-wave) it is evident in the universal wavefunc-
tion applicable to loosely bound states: see for example
refs. [47, 48].

Due to their J/ψp decays, it would be natural to assign

the P
(∗)
c states to I = 1/2 doublets. But if Σ

(∗)
c D̄(∗) de-

grees of freedom are playing a role the required isospin vi-
olation implies that this canonical interpretation no longer
applies. Two distinct and interesting possibilities arise.
The closest match to the canonical interpretation is to
place the states in putative I = 1/2 doublets, meaning
that, were it not for the mass splittings of their con-
stituents, they would have I = 1/2. But there is a novel
and equally plausible alternative: they could be putative
I = 3/2 states, and their observed J/ψp decays are actu-
ally a manifestation of the required isospin breaking.

A striking confirmation of the latter interpretation
would be the observation of (I, I3) = (3/2,±3/2) part-

ners to the P
(∗)
c states, with charge +2 or −1. However

it is not automatic that such states will be bound. If the

mass of the observed P
(∗)
c state(s) includes a downward

contribution due to mixing of I = 3/2 and I = 1/2, the
(3/2,±3/2) partners will be somewhat heavier and not
necessarily bound.

Regardless of whether the P
(∗)
c states arise from puta-

tive I = 1/2 or I = 3/2 doublets, if Σ
(∗)
c D̄(∗) interactions

play a role they will have mixed isospin and their produc-
tion and decays will reflect this. By contrast, in the χc1p,

Λ∗
cD̄ and J/ψN∗ scenarios the P

(∗)
c states have I = 1/2.

7 Decay patterns

Experimental observation of the P
(∗)
c states in various de-

cay modes can discriminate among the possible meson-
baryon degrees of freedom, as the expected decay patterns
differ for the various scenarios.

On general grounds, many decays other than the ob-
served J/ψp can be expected. The kinematically accessi-
ble two-body modes are the open-charm pairs ΛcD̄, ΛcD̄

∗,
ΣcD̄ and (for P ∗

c ) Σ
∗
c D̄, and closed-charm pairs ηcp, χc0p

and (if isospin is broken) J/ψ∆ and ηc∆. In addition,
there are several three-body channels of interest: J/ψNπ,
ΛcD̄π and (for P ∗

c ) ΛcD̄
∗π and Σ+

c D̄0π0. (Note that for
ΣcD̄π only the specified charge channel is kinematically
accessible, and only due to the finite width of P ∗

c .)
The aim of this section is to distinguish which channels

are and are not available in each scenario, based only on
the assumed spin and flavour degrees of freedom. Whether
or not the decays allowed by these arguments translate
into prominent decays in specific models requires more de-
tailed calculations, beyond the scope of this paper. For ex-

ample, if the P
(∗)
c states are purely kinematic effects then

it is possible that they will not be seen in any channels
other than the observed J/ψp: only detailed model calcu-
lations can establish this. Moreover, decays allowed by the
arguments below may turn out to be small due to partial

Table 3. Predictions for allowed (�) and suppressed (×) de-
cays for the different scenarios. The absence of an entry implies
that a given channel is not kinematically accessible. The pre-
dictions enclosed in brackets are less reliable and can be badly
violated if pion-exchange dominates: see the text.

P ∗
c Pc

χc1p ΣcD̄
∗ Λ∗

cD̄ J/ψN∗ Σ∗
c D̄ J/ψN∗

J/ψN � � � � � �
ηcN × × � × × ×
J/ψ∆ × � × × � ×
ηc∆ × � × × � ×
ΛcD̄ � [×] [�] × [×] ×
ΛcD̄

∗ � � [�] � � �
ΣcD̄ � [×] � × [×] ×
Σ∗

c D̄ � � [×] �
J/ψNπ × � × � � �
ΛcD̄π × × × × � ×
ΛcD̄

∗π × � × ×
Σ+

c D̄0π0 × � � ×

wave suppression; once the experimental JP assignments
are determined definitively, the summary of partial waves
in table 2 can be used as a guide.

However, there is an indirect argument which suggests
that significant decays other than J/ψp may be expected.

Wang et al. [49] argue that if the P
(∗)
c states are reso-

nances and not kinematic effects, they should be seen in
γp → J/ψp, and that in this case, existing experimental

data require that the P
(∗)
c → J/ψp branching fractions

are small.
As usual, the analysis in this section treats the compet-

ing scenarios as distinct. Even if this is too simple a pic-

ture, and the P
(∗)
c states involve some interplay among dif-

ferent meson-baryon degrees of freedom, the conclusions

can still be useful. If the P
(∗)
c states are eventually ob-

served in several channels which are not all allowed within
a given scenario, it could indicate the presence of mixed
degrees of freedom; an example is given in sect. 10.

The patterns of strong decays expected for the differ-
ent scenarios are summarised in table 3, and explained
below. For convenience, charge labels are dropped (except
for Σ+

c D̄0π0) and the label N will be used to stand for
the (n, p) isodoublet: the conclusions below apply both to

the charged P
(∗)
c states and their neutral partners.

Isospin leads to a simple selection rule: the J/ψ∆ and
ηc∆ modes have I = 3/2, so are only possible in the

Σ
(∗)
c D̄(∗) scenario, where isospin is broken. Otherwise all

channels are allowed by isospin in all of the scenarios.
Another strong constraint comes from heavy-quark

spin conservation. This can only be applied to transitions
in which both the initial and final heavy-quark spins are
fixed, namely for transitions between closed charm states
(uud)(cc̄) → (uud)(cc̄).

http://dx.doi.org/10.1016/j.physletb.2015.08.032
http://dx.doi.org/10.1140/epja/i2015-15152-6
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Report observation and branching ratio measurement before proceeding
with amplitude analysis
B(Λ0

b → Λ+
c D(∗)0K−)

B(Λ0
b → Λ+

c D−
s )

=
N(Λ0

b → Λ+
c D(∗)0K−)

ε(Λ0
b → Λ+

c D(∗)0K−)
· ε(Λ0

b → Λ+
c D−

s )

N(Λ0
b → Λ+

c D−
s )
· B(D−

s → K +K−π−)

B(D(∗)0 → K +π−(π0/γ))

Select Λ+
c and D0 signals with dedicated "open charm BDTs" [LHCb-INT-2012-002]

[LHCb-ANA-2013-078]. To be updated in the course of this analysis.

BDTs trained on Xb → Xcπ using kinematic variables and variables which are
direct input to conventionally used PID classifiers

Their efficiencies are measured on data

Rely on simulation for trigger-, reconstruction- and pre-selection efficiencies

Use data driven methods for efficiency of final selection

https://cds.cern.ch/record/1418211/files/LHCb-INT-2012-002.pdf
https://twiki.cern.ch/twiki/pub/LHCbPhysics/DoubleOpenCharmBaryons/Xb2XcXc_v8.pdf


gI
nt
er
m
ez
zo
:

sP
lo

t

4 / 19

Separate (unfold) signal from background distribution in "control" variable
x by extracting weights in "discriminating" variable mGenerated distributions

➜ sum of signal and background: ✧✭x ❀m✮ ❂ 1
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Generated distributions
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Separate (unfold) signal from background distribution in "control" variable
x by extracting weights in "discriminating" variable m
signal/background only 2 of many possible classes; x ,m are vectors in general

Parametrisation f (x ,m) = NsPs(x ,m) + NbPb(x ,m)
P denotes a PDF, N a normalisation

Construct weight function w(m) which projects out signal density

NsPs(x) =

∫
dm w(m)f (x ,m)

w(m) has to be independent of x Ps(x ,m) and Pb(x ,m) factorise as
function of m and x

⇒ NsPs(x) =

∫
dm w(m) [NsPs(x)Ps(m) + NbPb(x)Pb(m)], implying that∫

dm w(m)Ps(m) = 1 and
∫

dm w(m)Pb(m) = 0

Any w(m) orthogonal to Pb(m) but not to Ps(m) possible
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Choose w(m) to give most sensitivity on Ps(x)∑
events

w2(m) = min ⇒
∫

dx dm w2(m)f (x ,m) = min

Lagrange multiplier problem, solved by

w(m) =
〈Vss〉Ps(m) + 〈Vsb〉Pb(m)

NsPs(m) + NbPb(m)
with 〈V −1

nj 〉 =

∫
dm Pn(m)Pj(m)

NsPs(m) + NbPb(m)

Note that V −1
nj =

∂2(−L)

∂Nn∂Nj
, where L is the likelihood

lnL =
∑
events

ln {NsPs(m) + NbPb(m)} − Ns − Nb

which is minimised in a fit where only Ns and Nb are free parameters
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Generated distributions

➜ sum of signal and background: ✧✭x ❀m✮ ❂ 1
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Extracted signal density
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➜ histogram all events ✭x ❀ m✮ with weights w✭m✮: hx->Fill(x,w(m))
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x

NsPs (xi )w(mi )
w(m)

sWeighted events
can become
negative!!!
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Efficiencies are evaluated on control samples (data or MC) in bins of
kinematic variables ω ω denotes binning scheme in kinematic phase space

Because the efficiency depends on these variables

Because the distribution of these variables is expected to change
from control to signal sample
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Efficiencies are evaluated on control samples (data or MC) in bins of
kinematic variables ω ω denotes binning scheme in kinematic phase space

Because the efficiency depends on these variables

Because the distribution of these variables is expected to change
from control to signal sample

Efficiencies are "applied" event-by-event

Ns
εs
· εr

Nr
=

Ns
Nr

∏
k

∑
events i

Ps(ωk,i )w(mi )

εk(ωk,i )
·
∏
`

∑
events j

ε`(ω`,j)

Pr (ω`,j)w(mj)

where k, ` denotes an efficiency class, s is the Λ0
b → Λ+

c D(∗)0K− signal
and r the Λ0

b → Λ+
c D−

s reference-signal N,P,w as in slides before

N.B.: Product of classes means that factorisation is assumed
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Efficiency class control sample Phase space signal reference
Generator level detector acceptance

signal MC Dalitz plot
(M2

inv(Λ+
c D0),M2

inv(D0K−))
pT , η

Trigger
Reconstruction
Stripping pre-selection stream

Offline pre-selection
BDT Λ+

c Λ0
b → Λ+

c π
− data pT , FlightDistanceχ2 pT , FDχ2

BDT D0 B+ → D0π+ data pT , FDχ2 -
BDT D−

s B0
s → D−

s π
+ data - pT , FDχ2

PID K− D∗− → [K−π+]D0 π− data pT , η, nTracks -

Uncertainties in signal and reference cancel to large extent
Signal MC needs to be reweighted in pT , η

Using adaptive binning to increase sensitivity
Uncertainties on efficiencies from Wilson confidence interval best average coverage
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Efficiency class control sample Phase space signal reference
Generator level detector acceptance

signal MC Dalitz plot
(M2

inv(Λ+
c D0),M2

inv(D0K−))
pT , η

Trigger
Reconstruction
Stripping pre-selection stream

Offline pre-selection
BDT Λ+

c Λ0
b → Λ+

c π
− data pT , FlightDistanceχ2 pT , FDχ2

BDT D0 B+ → D0π+ data pT , FDχ2 -
BDT D−

s B0
s → D−

s π
+ data - pT , FDχ2

PID K− D∗− → [K−π+]D0 π− data pT , η, nTracks -

Uncertainties in signal and reference cancel to large extent
Signal MC needs to be reweighted in pT , η

Using adaptive binning to increase sensitivity
Uncertainties on efficiencies from Wilson confidence interval best average coverage
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Six hadrons in final state  large combinatorics!
Particle identification is not entirely accurate  misidentification
Decay topology reduces misidentification backgrounds
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Six hadrons in final state  large combinatorics!
Particle identification is not entirely accurate  misidentification
Decay topology reduces misidentification backgrounds

Two possibilities: include in fit or apply veto
Combinatorial events in veto region can be signal  check signal mass projection
In this analysis φ→ K−

Λ+
c
{p → K +}, D0 → K−

Λ+
c
{p → π+}, D+/D+

s → K−
Λ+

c
π+

Λ+
c
{p → π+/K +},

D∗− → D0{K−
Λ+

c
→ π−}, D∗− → D0{K−bachelor → π−}, φ→ K−bachelor{p → K +} are vetoed
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After Trigger,
Reconstruction,
Stripping
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After Cut-Based Selection

sanity cuts, loose mass cuts on charm daugters (ε ≈ 100 %),

D0/Λ+
c BDT cuts (ε ≈ 97/98 %), K− PID cut (ε ≈ 98 %)

veto cuts, mass cuts on charm daugters (ε ≈ 99 % each),

D0/Λ+
c BDT cuts and K− PID cut (combined ε ≈ 80 %)

Cut-based selection in principle good enough
Signal and background clearly separable

⇒ Amplitude analysis can use sWeighted distributions
Can we get better sensitivity (≡ increase statistical power)?
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sanity cuts, loose mass cuts on charm daugters (ε ≈ 100 %),

D0/Λ+
c BDT cuts (ε ≈ 97/98 %), K− PID cut (ε ≈ 98 %)

veto cuts, mass cuts on charm daugters (ε ≈ 99 % each),

D0/Λ+
c BDT cuts and K− PID cut (combined ε ≈ 80 %)

Cut-based selection in principle good enough
Signal and background clearly separable

⇒ Amplitude analysis can use sWeighted distributions
Can we get better sensitivity (≡ increase statistical power)?

Use multivariate Classification! ← quality quantifyable!
But optimal working point will depend on many factors  systematic studies
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Ideal case:  
Completely disjoint PDFs

Some selection
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• Receiver Operating Characteristics - orig-
inally from signal transmission in electrical 
engineering

ROC Curves

Signal Eiciency

Ba
ck

gr
o

un
d

 R
ej

ec
tio

n

0
0

1

1

Randomly  
throwing away 
events

Ideal case:  
Completely disjoint PDFs

Some selection

Beter selection

• How far you can go to the upper 
right is limited by Neyman-Pearson 

• Rest of this lecture: Find good  
selections if PDFs are not known
ROC-AreaUnderCurve is commonly
used measure of quality

Maximise ROC-AUC by
studying different MachineLearning

methods and their
hyperparameters
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9. M3BODY DEVELOPMENT

100

100

80
5

80 5

20

95

15 5
95

5 95

x1 > c1

x2 > c2 x2 < c2

x1 < c1

x3 > c3 x3 < c3

x4 > c4 x4 < c4

background signal

backgroundbackground signal

Figure 9.1: Example of a full grown decision tree. The numbers are
to be understood as absolute numbers of signal and background
events in the training data, xi are event variables, ci are constants
which determine which branch to follow.

After a training iteration i, the error rate3 ei of the training is computed and the
weights of the training events are updated. The speed at which the weights are
updated is steered by the predefined parameter β:

(wi+1)j = (wi)j ·




1 event j is classified correctly in iteration i(

1−ei
ei

)β

event j is classified wrongly in iteration i
.

In the next iteration, a decision tree is trained with the updated weights ~wi+1 and the
procedure is repeated. The number of iterations, N , is predefined and usually at the
order of a few hundreds.

Once all training iterations are performed, the boosted decision tree response y(j)
of an event j is computed as a weighted average of the individual tree responses hi(j)
using the error rate ei.

hi(j) =

{
0 event j reaches a background leaf in the tree from iteration i

1 event j reaches a signal leaf in the tree from iteration i
(9.1)

y(j) =
1

N

∑

i

ln

(
1− ei
ei

)β

hi(j) (9.2)

3e = N(incorrect decisions)/(N(correct decisions) +N(incorrect decisions))

82

[Thesis P. Seyfert (PI)]

Root NodeStart with training (S,B known) sample at "Root Node"

Split sample using cut c1 that gives best
separation gain usually Gini Index = p(1− p) with purity p

Continue splitting until reaching

Minimal number of events per node

Maximum number of nodes

Maximum depth

Insufficient separation gain

DTs will be 100 % correct on training sample  overtraining

http://www.physi.uni-heidelberg.de//Publications/2014_11_13_PhD_Thesis_Paul_Seyfert.pdf
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S/(S+B)=0.928 S/(S+B)=0.225

S/(S+B)=0.862

D0BDT<-0.631

S/(S+B)=0.753 S/(S+B)=0.156

S/(S+B)=0.563

D0_ctauSign_tfd<0.241

S/(S+B)=0.622 S/(S+B)=0.096

S/(S+B)=0.289

D0BDT<-0.403

S/(S+B)=0.033

S/(S+B)=0.070

D0_ctauSign_tfd< 0.81

S/(S+B)=0.145

D0BDT<0.0285

S/(S+B)=0.500

LcBDT<-0.53

Decision Tree no.: 0Pure Signal Nodes

Pure Backgr. Nodes

Start with training (S,B known) sample at "Root Node"

Split sample using cut c1 that gives best
separation gain usually Gini Index = p(1− p) with purity p

Continue splitting until reaching

Minimal number of events per node

Maximum number of nodes

Maximum depth

Insufficient separation gain

DTs will be 100 % correct on training sample  overtraining

Can be avoided using combination of shallow DTs (weak learners)

There are algorithms to systematically combine these weak learners: boosting
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Boosting

Training Sample
classifier 

C(0)(x)

Weighted Sample

re-weight

classifier 

C(1)(x)

Weighted Sample

re-weight

classifier 

C(2)(x)

Weighted Sample

re-weight

Weighted Sample

re-weight

classifier 

C(3)(x)

classifier 

C(m)(x)

ClassifierN
(i)

i

i

y(x) w C (x)= ∑
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Adaptive Boosting (AdaBoost)

Training Sample
classifier 

C(0)(x)

Weighted Sample

re-weight

classifier 

C(1)(x)

Weighted Sample

re-weight

classifier 

C(2)(x)

Weighted Sample

re-weight

Weighted Sample

re-weight

classifier 

C(3)(x)

classifier 

C(m)(x)

err

err

err

1 f
with :

f

misclassified events
f

all events

−

=

ClassifierN (i)
(i)err

(i)
i err

1 f
y(x) log C (x)

f

⎛ ⎞−= ⎜ ⎟⎝ ⎠∑

AdaBoost re-weights events 

misclassified by previous classifier by:

AdaBoost weights the classifiers also 

using the error rate of the individual 

classifier according to: 
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AdaBoost: A simple demonstration

The example: (somewhat artificial…but nice for demonstration) :  

� Data file with three “bumps”

� Weak classifier (i.e. one single simple “cut” ↔ decision tree stumps )

B S

var(i) > x var(i) <= x

Two reasonable cuts: a) Var0 > 0.5 εsignal=66% εbkg ≈ 0%   misclassified events in total 16.5%

or 

b) Var0 < -0.5 εsignal=33% εbkg ≈ 0%  misclassified events in total 33%

the training of a single decision tree stump will find “cut a)”

a)b)
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AdaBoost: A simple demonstration

The first “tree”, choosing cut a) will give an error fraction: err = 0.165

.. and hence will 

chose:   “cut b)”:  

Var0 < -0.5b)

The combined classifier:  Tree1 + Tree2

the (weighted) average of the response to 

a test event from both trees is able to 

separate signal from background as 

good as one would expect from the most 

powerful classifier

before building the next “tree”:  weight wrong classified training events by  ( 1-err/err) ) ≈ 5 

the next “tree” sees essentially the following data sample:

re-weight
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[plots: C. Böser]

https://indico.scc.kit.edu/indico/event/48/session/4/contribution/35/material/slides/0.pdf
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25 variables with good separation power have been identified
How to define signal training sample? background from sidebands in data 3

Train directly on data? Overtraining, ε bias  k-fold cross validation
Use signal simulation? Need well simulated variables
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25 variables with good separation power have been identified
How to define signal training sample? background from sidebands in data 3

7 Train directly on data? Overtraining, ε bias, statistics insufficient!
7 Use signal simulation? Need well simulated variables
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25 variables with good separation power have been identified
How to define signal training sample? background from sidebands in data 3

7 Train directly on data? Overtraining, ε bias, statistics insufficient!
7 Use signal simulation? Need well simulated variables

Use splines or KernelDensityEstimators to get smoothed signal PDF. Sample from it.
Need to do this 25 dimensional to capture correlations  GAN[arXiv:1406.2661]

https://arxiv.org/abs/1406.2661
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25 variables with good separation power have been identified
How to define signal training sample? background from sidebands in data 3

7 Train directly on data? Overtraining, ε bias, statistics insufficient!
7 Use signal simulation? Need well simulated variables

Use splines or KernelDensityEstimators to get smoothed signal PDF. Sample from it.
Need to do this 25 dimensional to capture correlations  GAN[arXiv:1406.2661]

Reweight signal MC to splines? tradeoff agreement ↔ effective MC statistics
Study correlations and use multiple stages of training?
Study ongoing. Best solution is probably a mix
Currently: 25 × 1D splines

https://arxiv.org/abs/1406.2661
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Wait... where did the sWeights come from?
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Wait... where did the sWeights come from?
Use 3D fit to data after offline pre-selection stage

Separate pure combinatorial and single charm backgrounds
Will study MVA with multiple background sources in the future

Separate double charm from single and no-charm signal
Only Λ0

b → Λ+
c K +π−K− contributes at tree-level

3D Fits repeated after final selection to extract Λ0
b → Λ+

c K +π−K−(π0) yield.
This yield will be fixed in the final 1D fit
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Shapes of partially reconstructed Λ0
b decays from KDE PDFs of simulated data

Further partially reconstructed decays absorbed in background or negligible
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B(Λ0
b → Λ+

c D(∗)0K−)

B(Λ0
b → Λ+

c D−
s )

=
N(Λ0

b → Λ+
c D(∗)0K−)
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· ε(Λ0

b → Λ+
c D−
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c D−
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Reference channel workflow similar to signal channel
Use reference channel to validate open charm BDTs
B(Λ0

b → Λ+
c D(∗)0K−)

B(Λ0
b → Λ+

c D−
s )

≈ 0.13

X X
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Exotica are excellent laboratory to study the poorly understood dynamics and
binding mechanisms of QCD

Absence of exotica in the light quark sector
Inconclusive searches for decades
Two waves of hints for exotic KN resonances

Large number of Tetraquark candidates observed with cc or bb content

First uudcc pentaquark candidates observed in 2015 at LHCb

Lots of theoretical predictions waiting to be tested

One of them: search for uudcc pentaquarks in Λ0
b → Λ+

c D(∗)0K−

Here, Λ0
b → Λ+

c D(∗)0K− has been observed for the first time
Challenges: Efficiencies as function of kinematics, optimisation of signal selection
Amplitude analysis proven to be feasible, but helicity of Λ+

c s needed



Backup slides start here
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EventType Decay feeds into Λ0
b expected ffd

15196200 Λ0
b → Λ+

c

[
D0γ

]
D̄∗(2007)0

K− 7 1.4

15196400 Λ0
b → Λ+

c

[
D0π0

]
D̄∗(2007)0

K− 7 2.3

15196201 Λ0
b → Λ+

c

[[
D0γ

]
D̄∗(2007)0

K−
]

Ds1(2536)−
7 0.06

15196406 Λ0
b → Λ+

c

[[
D0π0

]
D̄∗(2007)0

K−
]

Ds1(2536)−
7 0.10

15196401 Λ0
b → Λ+

c D0 [K−π0
]
K∗(892)− 7 0.25?

15196402 Λ0
b →

[
Λ+

c π
0]

Σc (2455)+ D0K− 7 0.05
15196403 Λ0

b →
[
Λ+

c π
0]

Σc (2520)+ D0K− 7 . 0.02
15196404 Λ0

b →
[
Λ+

c K−π0
]

Ξc (2980)0 D0 7 negl.
15196405 Λ0

b →
[
Λ+

c K−π0
]

Ξc (3080)0 D0 7 negl.
15198002 Λ0

b → [Λ+
c π

−π+]Λc (2595)+ D0K− 7 negl.
15198003 Λ0

b → [Λ+
c π

−π+]Λc (2625)+ D0K− 7 negl.
16196440 Ξ0

b →
[
Λ+

c π
0]

Σc (2455)+ D0K− 3 negl.
16196441 Ξ0

b →
[
Λ+

c π
0]

Σc (2520)+ D0K− [3] negl.
16197030 Ξ−

b → [Λ+
c π

−]Σc (2455)0 D0K− 3 negl.
16197031 Ξ−

b → [Λ+
c π

−]Σc (2520)0 D0K− [3] negl.
16196442 Ξ0

b →
[[
π0p

]
Σ+ K−π+K−]

Ω0
c

D0 [3] negl.
16196443 Ξ0

b → Λ+
c D0 [K−π0

]
K∗(892)− [3] negl.

16196444 Ξ0
b →

[
pK−π+π0

]
Ξ+

c
D0K− [3] negl.

Potential Λ0
b and Ξb decays which cross feed into the Λ+

c D0K− invariant mass distribution. The third column indicates if the decay feeds into the Λ0
b

signal (3), or not (7). A [3] indicates that the tails of the distribution feed into the Λ0
b signal. Particles labelled in red are not reconstructed, whereas

blue labelled particles are required to be within [2270,2305] MeV of their invariant mass to mimic a Λ+
c . The last column gives the expected feeddown

fraction w.r.t. the signal yield.
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EventType Decay feeds into Λ0
b expected ffd

15196200 Λ0
b → Λ+

c

[
D0γ

]
D̄∗(2007)0

K− 7 1.4

15196400 Λ0
b → Λ+

c

[
D0π0

]
D̄∗(2007)0

K− 7 2.3

15196201 Λ0
b → Λ+

c

[[
D0γ

]
D̄∗(2007)0

K−
]

Ds1(2536)−
7 0.06

15196406 Λ0
b → Λ+

c

[[
D0π0

]
D̄∗(2007)0

K−
]

Ds1(2536)−
7 0.10

15196401 Λ0
b → Λ+

c D0 [K−π0
]
K∗(892)− 7 0.25?

15196402 Λ0
b →

[
Λ+

c π
0]

Σc (2455)+ D0K− 7 0.05
15196403 Λ0

b →
[
Λ+

c π
0]

Σc (2520)+ D0K− 7 . 0.02
15196404 Λ0

b →
[
Λ+

c K−π0
]

Ξc (2980)0 D0 7 negl.
15196405 Λ0

b →
[
Λ+

c K−π0
]

Ξc (3080)0 D0 7 negl.
15198002 Λ0

b → [Λ+
c π

−π+]Λc (2595)+ D0K− 7 negl.
15198003 Λ0

b → [Λ+
c π

−π+]Λc (2625)+ D0K− 7 negl.
16196440 Ξ0

b →
[
Λ+

c π
0]

Σc (2455)+ D0K− 3 negl.
16196441 Ξ0

b →
[
Λ+

c π
0]

Σc (2520)+ D0K− [3] negl.
16197030 Ξ−

b → [Λ+
c π

−]Σc (2455)0 D0K− 3 negl.
16197031 Ξ−

b → [Λ+
c π

−]Σc (2520)0 D0K− [3] negl.
16196442 Ξ0

b →
[[
π0p

]
Σ+ K−π+K−]

Ω0
c

D0 [3] negl.
16196443 Ξ0

b → Λ+
c D0 [K−π0

]
K∗(892)− [3] negl.

16196444 Ξ0
b →

[
pK−π+π0

]
Ξ+

c
D0K− [3] negl.

Potential Λ0
b and Ξb decays which cross feed into the Λ+

c D0K− invariant mass distribution. The third column indicates if the decay feeds into the Λ0
b

signal (3), or not (7). A [3] indicates that the tails of the distribution feed into the Λ0
b signal. Particles labelled in red are not reconstructed, whereas

blue labelled particles are required to be within [2270,2305] MeV of their invariant mass to mimic a Λ+
c . The last column gives the expected feeddown

fraction w.r.t. the signal yield.
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EventType Decay feeds into Λ0
b expected ffd

15196200 Λ0
b → Λ+

c

[
D0γ

]
D̄∗(2007)0

K− 7 1.4

15196400 Λ0
b → Λ+

c

[
D0π0

]
D̄∗(2007)0

K− 7 2.3

15196201 Λ0
b → Λ+

c

[[
D0γ

]
D̄∗(2007)0

K−
]

Ds1(2536)−
7 0.06

15196406 Λ0
b → Λ+

c

[[
D0π0

]
D̄∗(2007)0

K−
]

Ds1(2536)−
7 0.10

15196401 Λ0
b → Λ+

c D0 [K−π0
]
K∗(892)− 7 0.25?

15196402 Λ0
b →

[
Λ+

c π
0]

Σc (2455)+ D0K− 7 0.05
15196403 Λ0

b →
[
Λ+

c π
0]

Σc (2520)+ D0K− 7 . 0.02
15196404 Λ0

b →
[
Λ+

c K−π0
]

Ξc (2980)0 D0 7 negl.
15196405 Λ0

b →
[
Λ+

c K−π0
]

Ξc (3080)0 D0 7 negl.
15198002 Λ0

b → [Λ+
c π

−π+]Λc (2595)+ D0K− 7 negl.
15198003 Λ0

b → [Λ+
c π

−π+]Λc (2625)+ D0K− 7 negl.
16196440 Ξ0

b →
[
Λ+

c π
0]

Σc (2455)+ D0K− 3 negl.
16196441 Ξ0

b →
[
Λ+

c π
0]

Σc (2520)+ D0K− [3] negl.
16197030 Ξ−

b → [Λ+
c π

−]Σc (2455)0 D0K− 3 negl.
16197031 Ξ−

b → [Λ+
c π

−]Σc (2520)0 D0K− [3] negl.
16196442 Ξ0

b →
[[
π0p

]
Σ+ K−π+K−]

Ω0
c

D0 [3] negl.
16196443 Ξ0

b → Λ+
c D0 [K−π0

]
K∗(892)− [3] negl.

16196444 Ξ0
b →

[
pK−π+π0

]
Ξ+

c
D0K− [3] negl.

Potential Λ0
b and Ξb decays which cross feed into the Λ+

c D0K− invariant mass distribution. The third column indicates if the decay feeds into the Λ0
b

signal (3), or not (7). A [3] indicates that the tails of the distribution feed into the Λ0
b signal. Particles labelled in red are not reconstructed, whereas

blue labelled particles are required to be within [2270,2305] MeV of their invariant mass to mimic a Λ+
c . The last column gives the expected feeddown

fraction w.r.t. the signal yield.
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b

u

d

c

u

d

c
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u
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Λ0
b

K−

D0

Σ
(∗)+
c

u

b

d

u

c

d

c

s

u

u

W−
Λ0
b

K−

D0

Σ
(∗)+
c

Estimate feeddown fraction from CDF PRD 79 032001
B(Λ0

b → Σc (2455)+π0µ−νµ)

B(Λ0
b → Λ+

c µ−νµ)
= 0.054

Correct for additional π0 assuming additional pions are Poissonian and using
B(Λ0

b → Λ+
c µ
−νµ)

B(Λ0
b → Λ+

c π+π−µ−νµ)
= 1.1 =

B(Λ0
b → Λ+

c µ
−νµ)

0.6 · B(Λ0
b → Λ+

c 2πµ−νµ)

Additional dd pair in semileptonic diagram  factor 0.5
Estimate < 2% of Λ0

b → Λ+
c
[
D0π0]

D̄∗(2007)0
K−

7∆
I

=
1

http://dx.doi.org/10.1103/PhysRevD.79.032001
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new variable

DIRAQ = (1− DIRA) ·∆DIRA requires vertex-momentum covariances

D0 BDT Λ+
c BDT arctan(D0 cτDTF sign.) log( K− ProbNNk

1−K− ProbNNk) arctan(Λ+
c cτDTF sign.)

log(K− ∆pTDTF) log(D0 DIRAQ) log(K− pTDTF) log(Λ0
b BPV IPχ2DTF) D0 αAP

log(Λ+
c DIRAQ) log(Λ+

c BPV IPχ2DTF) log(K− BPV IPχ2DTF) log(1− Λ0
b DIRA) log(D0 ∆pTDTF)

log( K− ProbNNghost
1−K− ProbNNghost) log(D0 pTDTF) log(Λ0

b ∆pTDTF) log(Λ0
b BPVτDTF) log(D0 BPV IPχ2DTF)

log(Λ0
b ∆MDTF) log(Λ+

c pTDTF) log(Λ0
b BPVPDSDTF) log(Λ0

b pTDTF) log(Λ+
c ∆pTDTF)


