RTG students lecture II - A Study of the Decay $\Lambda^0_b \to \Lambda^+_c \overline{D}^0 K^-$

Marian Stahl December 12th, 2016

• Can we confirm P_c^+ states seen in $\Lambda_b^0 \to J/\psi \, pK^-$ and $\Lambda_b^0 \to J/\psi \, p\pi^-$ in $\Lambda_b^0 \to \Lambda_c^+ \overline{D}{}^0 K^-$?

Experimental challenges

6 hadrons in final state

 \rightsquigarrow larger combinatorial/misID backgrounds, feeddown

- Fewer reconstructed events than $\Lambda_b^0 \rightarrow J/\psi \, pK^-$ Subsequent $\bar{D}^0 \rightarrow K^+\pi^-$ and $\Lambda_c^+ \rightarrow pK^-\pi^+$ decays, reconstruction efficiency
- Helicity of Λ_c^+ requires $\Lambda_c^+ \to p K^- \pi^+$ amplitudes

Latest measurement from E791 in 2000 with 950 events [PLB 471, 449]

- Narrow $P_c^+ \rightarrow \Lambda_c^+ \overline{D}^0$ not expected in dynamical diquark-triquark model [PLB 749 454]
- $\Lambda_c^+ \overline{D}^0$ can discriminate between different hypotheses in molecular models [EPJA51 11, 152]
- Using partial reconstruction techniques, it is possible to infer the \overline{D}^{*0} momentum and analyse $\Lambda_c^+ \overline{D}^{*0}! \quad \overline{D}^{*0} \to \overline{D}^0 \pi^0 / \gamma$

Table 3. Predictions for allowed (\checkmark) and suppressed (\times) decays for the different scenarios. The absence of an entry implies that a given channel is not kinematically accessible. The predictions enclosed in brackets are less reliable and can be badly violated if pion-exchange dominates: see the text.

	P_c^*			P_c		
	$\chi_{c1}p$	$\Sigma_c \bar{D}^*$	$\Lambda_c^* \bar{D}$	$J/\psi N^*$	$\Sigma_c^* \bar{D}$	$J/\psi N^*$
$J/\psi N$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\eta_c N$	\times	×	\checkmark	×	×	×
$J/\psi\Delta$	×	\checkmark	×	×	\checkmark	×
$\eta_c \Delta$	\times	\checkmark	\times	×	\checkmark	×
$\Lambda_c \bar{D}$	\checkmark	$[\times]$	[√]	×	$[\times]$	×
$\Lambda_c \bar{D}^*$	\checkmark	\checkmark	[√]	\checkmark	\checkmark	\checkmark
$\Sigma_c \bar{D}$	\checkmark	$[\times]$	\checkmark	×	$[\times]$	×
$\Sigma_c^* \bar{D}$	\checkmark	\checkmark	$[\times]$	\checkmark		
$J/\psi N\pi$	×	\checkmark	×	\checkmark	\checkmark	\checkmark
$\Lambda_c \bar{D}\pi$	\times	×	×	×	\checkmark	×
$\Lambda_c \bar{D}^* \pi$	×	\checkmark	×	×		
$\Sigma_c^+ \bar{D}^0 \pi^0$	×	\checkmark	\checkmark	×		

• Report observation and branching ratio measurement before proceeding with amplitude analysis

$$\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} = \frac{\mathcal{N}(\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-)}{\varepsilon(\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-)} \cdot \frac{\varepsilon(\Lambda_b^0 \to \Lambda_c^+ D_s^-)}{\mathcal{N}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} \cdot \frac{\mathcal{B}(D_s^- \to K^+ K^- \pi^-)}{\mathcal{B}(\overline{D}^{(*)0} \to K^+ \pi^- (\pi^0/\gamma))}$$

- Select Λ_c^+ and \overline{D}^0 signals with dedicated "open charm BDTs" [LHCD-INT-2012-002] [LHCD-ANA-2013-078]. To be updated in the course of this analysis.
 - BDTs trained on $X_b \rightarrow X_c \pi$ using kinematic variables and variables which are direct input to conventionally used PID classifiers
 - Their efficiencies are measured on data
- Rely on simulation for trigger-, reconstruction- and pre-selection efficiencies
- Use data driven methods for efficiency of final selection

• Separate (unfold) signal from background distribution in "control" variable *x* by extracting weights in "discriminating" variable *m*

• Separate (unfold) signal from background distribution in "control" variable x by extracting weights in "discriminating" variable m

signal/background only 2 of many possible classes; x,m are vectors in general

- Parametrisation $f(x, m) = N_s \mathcal{P}_s(x, m) + N_b \mathcal{P}_b(x, m)$ \mathcal{P} denotes a PDF, N a normalisation
- Construct weight function w(m) which projects out signal density

$$N_s \mathcal{P}_s(x) = \int dm w(m) f(x,m)$$

w(m) has to be independent of x→→ P_s(x, m) and P_b(x, m) factorise as function of m and x

$$\Rightarrow N_{s}\mathcal{P}_{s}(x) = \int dm w(m) [N_{s}\mathcal{P}_{s}(x)\mathcal{P}_{s}(m) + N_{b}\mathcal{P}_{b}(x)\mathcal{P}_{b}(m)], \text{ implying that}$$
$$\int dm w(m)\mathcal{P}_{s}(m) = 1 \quad \text{and} \quad \int dm w(m)\mathcal{P}_{b}(m) = 0$$

• Any w(m) orthogonal to $\mathcal{P}_b(m)$ but not to $\mathcal{P}_s(m)$ possible

• Choose w(m) to give most sensitivity on $\mathcal{P}_s(x)$

$$\sum_{\text{events}} w^2(m) = \min \quad \Rightarrow \quad \int dx \, dm \, w^2(m) f(x, m) = \min$$

• Lagrange multiplier problem, solved by

$$w(m) = \frac{\langle V_{ss} \rangle \mathcal{P}_s(m) + \langle V_{sb} \rangle \mathcal{P}_b(m)}{N_s \mathcal{P}_s(m) + N_b \mathcal{P}_b(m)} \quad \text{with} \quad \langle V_{nj}^{-1} \rangle = \int dm \, \frac{\mathcal{P}_n(m) \mathcal{P}_j(m)}{N_s \mathcal{P}_s(m) + N_b \mathcal{P}_b(m)}$$

Note that
$$V_{nj}^{-1} = \frac{\partial^2(-\mathcal{L})}{\partial N_n \partial N_j}$$
, where \mathcal{L} is the likelihood

$$\ln \mathcal{L} = \sum_{\text{events}} \ln \{N_s \mathcal{P}_s(m) + N_b \mathcal{P}_b(m)\} - N_s - N_b$$

which is minimised in a fit where only N_s and N_b are free parameters

Intermezzo: *sPlot*

- Efficiencies are evaluated on control samples (data or MC) in bins of kinematic variables ω ω denotes binning scheme in kinematic phase space
 - Because the efficiency depends on these variables
 - Because the distribution of these variables is expected to change from control to signal sample

- Efficiencies are evaluated on control samples (data or MC) in bins of kinematic variables ω ω denotes binning scheme in kinematic phase space
 - Because the efficiency depends on these variables
 - Because the distribution of these variables is expected to change from control to signal sample
- Efficiencies are "applied" event-by-event

$$\frac{N_s}{\varepsilon_s} \cdot \frac{\varepsilon_r}{N_r} = \frac{N_s}{N_r} \prod_k \sum_{\text{events } i} \frac{\mathcal{P}_s(\omega_{k,i})w(m_i)}{\varepsilon_k(\omega_{k,i})} \cdot \prod_{\ell} \sum_{\text{events } j} \frac{\varepsilon_\ell(\omega_{\ell,j})}{\mathcal{P}_r(\omega_{\ell,j})w(m_j)}$$

where k, ℓ denotes an efficiency class, s is the $\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-$ signal and r the $\Lambda_b^0 \to \Lambda_c^+ D_s^-$ reference-signal _{N, P, W} as in slides before

• N.B.: Product of classes means that factorisation is assumed

Efficiency class	control sample	Phase space signal	reference
Generator level detector acceptance			
Trigger		Dalitz plat	
Reconstruction	signal MC		$oldsymbol{p_T},\eta$
Stripping pre-selection stream		$(M_{\rm inv}^2(\Lambda_c^+D^0), M_{\rm inv}^2(D^0K^-))$	
Offline pre-selection			
BDT Λ_c^+	$\Lambda^0_b o \Lambda^+_c \pi^-$ data	$ ho_T$, $F_{light}D_{istance}\chi^2$	p_T , FD χ^2
BDT \overline{D}^0	$B^+ o ar{D}{}^0 \pi^+$ data	p_T , FD χ^2	-
BDT D_s^-	$B^0_s ightarrow D^s \pi^+$ data	-	p_T , FD χ^2
PID K ⁻	$D^{*-} ightarrow [{\cal K}^- \pi^+]_{D^0} \pi^-$ data	p_T, η, n Tracks	-

- Uncertainties in signal and reference cancel to large extent
- Signal MC needs to be reweighted in p_T,η
- Using adaptive binning to increase sensitivity
- Uncertainties on efficiencies from Wilson confidence interval best average coverage

- Using adaptive binning to increase sensitivity
- Uncertainties on efficiencies from Wilson confidence interval best average coverage

- Six hadrons in final state \rightsquigarrow large combinatorics!
- Particle identification is not entirely accurate ~> misidentification
- Decay topology reduces misidentification backgrounds

- Six hadrons in final state ~> large combinatorics!
- Particle identification is not entirely accurate \rightsquigarrow misidentification
- Decay topology reduces misidentification backgrounds

- Two possibilities: include in fit or apply veto
- \bullet Combinatorial events in veto region can be signal \rightsquigarrow check signal mass projection
- In this analysis $\phi \to K_{A_c^+}^- \{p \to K^+\}$, $D^0 \to K_{A_c^+}^- \{p \to \pi^+\}$, $D^+/D_s^+ \to K_{A_c^+}^- \pi_{A_c^+}^+ \{p \to \pi^+/K^+\}$, $D^{*-} \to \overline{D}^0 \{K_{A_c^+}^- \to \pi^-\}$, $D^{*-} \to \overline{D}^0 \{K_{\text{bachelor}}^- \to \pi^-\}$, $\phi \to K_{\text{bachelor}}^- \{p \to K^+\}$ are vetoed

- Cut-based selection in principle good enough
 - Signal and background clearly separable
 - \Rightarrow Amplitude analysis can use sWeighted distributions

nlin

• Can we get better sensitivity (\equiv increase statistical power)?

- Cut-based selection in principle good enough
 - Signal and background clearly separable
 - \Rightarrow Amplitude analysis can use sWeighted distributions
 - Can we get better sensitivity (\equiv increase statistical power)?
- Use multivariate Classification! \leftarrow quality quantifyable!
- 0

ROC Curves

ROC Curves

ROC Curves

- How far you can go to the upper right is limited by Neyman-Pearson
- ROC-AreaUnderCurve is commonly used measure of quality
- Maximise ROC-AUC by studying different Machine Learning methods and their hyperparameters

Decision Trees

- Start with training (S,B known) sample at "Root Node"
- Split sample using cut c₁ that gives best separation gain usually Gini Index = p(1 - p) with purity p
- Continue splitting until reaching
 - Minimal number of events per node
 - Maximum number of nodes
 - Maximum depth
 - Insufficient separation gain
- DTs will be 100 % correct on training sample \rightsquigarrow overtraining

- Start with training (S,B known) sample at "Root Node"
- Split sample using cut c_1 that gives best separation gain usually Gini Index = p(1 p) with purity p
- Continue splitting until reaching
 - Minimal number of events per node
 - Maximum number of nodes
 - Maximum depth
 - Insufficient separation gain
- DTs will be 100 % correct on training sample \rightsquigarrow overtraining
- Can be avoided using combination of shallow DTs (weak learners)
- There are algorithms to systematically combine these weak learners: boosting

Boosting

$$y(x) = \sum_{i}^{N_{Classifier}} w_i C^{(i)}(x)$$

Helge Voss Graduierten-Kolleg, Freiburg, 11.-15. Mai 2009 — Multivariate Data Analysis and Machine Learning

Adaptive Boosting (AdaBoost)

 AdaBoost re-weights events misclassified by previous classifier by:

$$\label{eq:ferr} \begin{split} & \frac{1-f_{err}}{f_{err}} \;\; \text{with}: \\ & f_{err} = \frac{\text{misclassified events}}{\text{all events}} \end{split}$$

AdaBoost weights the classifiers also using the error rate of the individual classifier according to:

$$y(x) = \sum_{i}^{N_{Classifier}} log\left(\frac{1 - f_{err}^{(i)}}{f_{err}^{(i)}}\right) C^{(i)}(x)$$

AdaBoost: A simple demonstration

The example: (somewhat artificial...but nice for demonstration) :

- · Data file with three "bumps"
- Weak classifier (i.e. one single simple "cut" ↔ decision tree stumps)

Two reasonable cuts: a) Var0 > 0.5 $\rightarrow \epsilon_{signal}$ =66% $\epsilon_{bkg} \approx 0\%$ misclassified events in total 16.5% or b) Var0 < -0.5 $\rightarrow \epsilon_{signal}$ =33% $\epsilon_{bkg} \approx 0\%$ misclassified events in total 33%

the training of a single decision tree stump will find "cut a)"

var(i) <= x

var(i) > x

AdaBoost: A simple demonstration

The first "tree", choosing cut a) will give an error fraction: err = 0.165

- → before building the next "tree": weight wrong classified training events by (1-err/err)) ≈ 5
- → the next "tree" sees essentially the following data sample:

The combined classifier: Tree1 + Tree2 the (weighted) average of the response to a test event from both trees is able to separate signal from background as good as one would expect from the most powerful classifier

Helge Voss Graduierten-Kolleg, Freiburg, 11.-15. Mai 2009 — Multivariate Data Analysis and Machine Learning

plots: C. Böser

- 25 variables with good separation power have been identified
- How to define signal training sample? background from sidebands in data /
 - Train directly on data? Overtraining, ε bias \rightsquigarrow k-fold cross validation
 - Use signal simulation? Need well simulated variables

- 25 variables with good separation power have been identified
- How to define signal training sample? $background from sidebands in data \checkmark$
 - X Train directly on data? Overtraining, ε bias, statistics insufficient!
 - X Use signal simulation? Need well simulated variables

- 25 variables with good separation power have been identified
- How to define signal training sample? $background from sidebands in data \checkmark$
 - X Train directly on data? Overtraining, ε bias, statistics insufficient!
 - X Use signal simulation? Need well simulated variables
 - Use splines or $K_{ernel}D_{ensity}E_{stimators}$ to get smoothed signal PDF. Sample from it. Need to do this 25 dimensional to capture correlations $\rightsquigarrow GAN_{[arXiv:1406.2661]}$

- 25 variables with good separation power have been identified
- How to define signal training sample? background from sidebands in data 🗸
 - X Train directly on data? Overtraining, ε bias, statistics insufficient!
 - X Use signal simulation? Need well simulated variables
 - Use splines or $K_{ernel}D_{ensity}E_{stimators}$ to get smoothed signal PDF. Sample from it. Need to do this 25 dimensional to capture correlations \rightsquigarrow GAN_[arXiv:1406.2661]
 - Reweight signal MC to splines? tradeoff agreement \leftrightarrow effective MC statistics
 - Study correlations and use multiple stages of training?
 - Study ongoing. Best solution is probably a mix
 - $\, \bullet \,$ Currently: 25 \times 1D splines

• Wait... where did the sWeights come from?

- Wait... where did the sWeights come from?
- Use 3D fit to data after offline pre-selection stage

- Separate pure combinatorial and single charm backgrounds
 - Will study MVA with multiple background sources in the future
- Separate double charm from single and no-charm signal
 - Only $\Lambda^0_b \to \Lambda^+_c K^+ \pi^- K^-$ contributes at tree-level
- 3D Fits repeated after final selection to extract $\Lambda_b^0 \to \Lambda_c^+ K^+ \pi^- K^-(\pi^0)$ yield. This yield will be fixed in the final 1D fit

- cut-based \rightarrow MVA selection $\varepsilon_{\rm relative}$ \approx 90%
- Shapes of partially reconstructed Λ_b^0 decays from KDE PDFs of simulated data
- Further partially reconstructed decays absorbed in background or negligible

- Reference channel workflow similar to signal channel
- Use reference channel to validate open charm BDTs

•
$$\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} \approx 0.13$$

- Exotica are excellent laboratory to study the poorly understood dynamics and binding mechanisms of QCD
 - Absence of exotica in the light quark sector
 - Inconclusive searches for decades
 - Two waves of hints for exotic KN resonances
 - Large number of Tetraquark candidates observed with $c\overline{c}$ or $b\overline{b}$ content
 - First $uudc\overline{c}$ pentaquark candidates observed in 2015 at LHCb
 - Lots of theoretical predictions waiting to be tested
 - One of them: search for $uudc\overline{c}$ pentaquarks in $\Lambda^0_b \to \Lambda^+_c \overline{D}^{(*)0} K^-$
 - $\, \bullet \,$ Here, $\Lambda^0_b \to \Lambda^+_c \, \overline{D}{}^{(*)0} K^-$ has been observed for the first time
 - Challenges: Efficiencies as function of kinematics, optimisation of signal selection
 - Amplitude analysis proven to be feasible, but helicity of Λ_c^+ s needed

Backup slides start here

EventType	Decay	feeds into Λ_b^0	expected $f_{\rm fd}$
15196200	$\Lambda_b^0 \rightarrow \Lambda_c^+ \left[\overline{D}^0 \gamma \right]_{\overline{D}^*(2007)^0} K^-$	×	1.4
15196400	$\Lambda_b^0 \to \Lambda_c^+ \begin{bmatrix} \overline{D}^0 \pi^0 \end{bmatrix}_{\overline{D}^*(2007)^0} \mathcal{K}^-$	×	2.3
15196201	$\Lambda_b^0 \to \Lambda_c^+ \left[\left[\overline{D}^0 \gamma \right]_{\overline{D}^*(2007)^0} K^- \right]_{D_{\rm el}(2536)^-}$	×	0.06
15196406	$\Lambda_b^0 \to \Lambda_c^+ \left[\left[\bar{D}^0 \pi^0 \right]_{\bar{D}^*(2007)^0} K^- \right]_{D_1(2536)^-}$	×	0.10
15196401	$\Lambda_b^0 \to \Lambda_c^+ \overline{D}{}^0 \left[\kappa^- \pi^0 \right]_{\kappa^*(892)^-}$	×	0.25?
15196402	$\Lambda_b^0 \rightarrow [\Lambda_c^+ \pi^0]_{\Sigma_c(2455)^+} \overline{D}{}^0 K^-$	×	0.05
15196403	$\Lambda_b^0 \rightarrow [\Lambda_c^+ \pi^0]_{\Sigma_c(2520)^+} \overline{D}^0 K^-$	×	$\lesssim 0.02$
15196404	$\Lambda_b^0 \rightarrow [\Lambda_c^+ \kappa^- \pi^0]_{\equiv_c(2980)^0} \overline{D}^0$	×	negl.
15196405	$\Lambda_b^0 \rightarrow [\Lambda_c^+ K^- \pi^0]_{\equiv_c(3080)^0} \overline{D}^0$	×	negl.
15198002	$\Lambda_b^0 \rightarrow [\Lambda_c^+ \pi^- \pi^+]_{\Lambda_c(2595)^+} \overline{D}{}^0 K^-$	×	negl.
15198003	$\Lambda_b^0 \rightarrow [\Lambda_c^+ \pi^- \pi^+]_{\Lambda_c(2625)^+} \overline{D}{}^0 K^-$	×	negl.
16196440	$\Xi_b^0 \rightarrow [\Lambda_c^+ \pi^0]_{\Sigma_c(2455)^+} \overline{D}^0 K^-$	1	negl.
16196441	$\Xi_b^0 ightarrow [\Lambda_c^+ \pi^0]_{\Sigma_c(2520)^+} \overline{D}{}^0 \kappa^-$	[•]	negl.
16197030	$\Xi_b^- ightarrow [\Lambda_c^+ \pi^-]_{\Sigma_c(2455)^0} \overline{D}{}^0 K^-$	1	negl.
16197031	$\Xi_b^- ightarrow [\Lambda_c^+ \pi^-]_{\Sigma_c(2520)^0} \overline{D}{}^0 K^-$	[•]	negl.
16196442	$\Xi_b^0 \to \left[\left[\pi^0 p \right]_{\Sigma^+} K^- \pi^+ K^- \right]_{\Omega^0} \overline{D}{}^0$	[•]	negl.
16196443	$\Xi_b^0 \rightarrow \Lambda_c^+ \overline{D}{}^0 \left[K^- \pi^0 \right]_{K^*(892)^-}$	[•]	negl.
16196444	$\Xi_b^0 \rightarrow [pK^-\pi^+\pi^0]_{\Xi_c^+} \overrightarrow{D^0} \overrightarrow{K'}$	[•]	negl.

Potential Λ_b^0 and Ξ_b decays which cross feed into the $\Lambda_c^+ \overline{D}^0 K^-$ invariant mass distribution. The third column indicates if the decay feeds into the Λ_b^0 signal (\checkmark), or not (\bigstar). A [\checkmark] indicates that the tails of the distribution feed into the Λ_b^0 signal. Particles labelled in red are not reconstructed, whereas blue labelled particles are required to be within [2270,2305] MeV of their invariant mass to mimic a Λ_c^+ . The last column gives the expected feeddown fraction w.r.t. the signal yield.

EventType	Decay	feeds into Λ_b^0	expected $f_{\rm fd}$
15196200	$\Lambda_b^0 \rightarrow \Lambda_c^+ \left[\overline{D}^0 \gamma \right]_{\overline{D}^*(2007)^0} K^-$	×	1.4
15196400	$\Lambda_b^0 o \Lambda_c^+ \left[\overline{D}^0 \pi^0 \right]_{D^*(2007)^0} K^-$	×	2.3
15196201	$\Lambda_b^0 \to \Lambda_c^+ \left[\left[\overline{D}^0 \gamma \right]_{\overline{D}^*(2007)^0} \mathcal{K}^- \right]_{\underline{D}_{s1}(2536)^-}$	×	0.06
15196406	$\Lambda_{b}^{0} \to \Lambda_{c}^{+} \left[\left[\bar{D}^{0} \pi^{0} \right]_{\bar{D}^{*}(2007)^{0}} K^{-} \right]_{D_{s1}(2536)^{-}}$	×	0.10
15196401	$\Lambda_b^0 \rightarrow \Lambda_c^+ \overline{D}{}^0 \left[K^- \pi^0 \right]_{K^*(892)^-}$	×	0.25?
15196402	$\Lambda_b^0 \rightarrow [\Lambda_c^+ \pi^0]_{\Sigma_c(2455)^+} \overline{D}{}^0 \dot{K}^-$	×	0.05
15196403	$\Lambda_b^0 \rightarrow [\Lambda_c^+ \pi^0]_{\Sigma_c(2520)^+} \overline{D}^0 K^-$	×	$\lesssim 0.02$
15196404	$\Lambda_b^0 \rightarrow [\Lambda_c^+ K^- \pi^0]_{\equiv_c(2980)^0} \overline{D}^0$	×	negl.
15196405	$\Lambda_b^0 \to \left[\Lambda_c^+ \mathcal{K}^- \pi^0\right]_{\equiv_c(3080)^0} \overline{D}^0$	×	negl.
15198002	$\Lambda_b^0 \rightarrow [\Lambda_c^+ \pi^- \pi^+]_{\Lambda_c(2595)^+} \overline{D}{}^0 K^-$	×	negl.
15198003	$\Lambda_b^0 \rightarrow [\Lambda_c^+ \pi^- \pi^+]_{\Lambda_c(2625)^+} \overline{D}{}^0 K^-$	×	negl.
16196440	$\Xi_b^0 \rightarrow [\Lambda_c^+ \pi^0]_{\Sigma_c(2455)^+} \overline{D}^0 K^-$	1	negl.
16196441	$\Xi_b^0 \to [\Lambda_c^+ \pi^0]_{\Sigma_c(2520)^+} \overline{D}{}^0 K^-$	[~]	negl.
16197030	$\Xi_{b}^{-} \rightarrow [\Lambda_{c}^{+}\pi^{-}]_{\Sigma_{c}(2455)^{0}} \overline{D}^{0}K^{-}$	1	negl.
16197031	$\Xi_{b}^{-} \rightarrow [\Lambda_{c}^{+}\pi^{-}]_{\Sigma_{c}(2520)^{0}} \overline{D}^{0}K^{-}$	[√]	negl.
16196442	$\Xi_b^0 \to \left[\left[\pi^0 p \right]_{\Sigma^+} \tilde{K} \overset{\sim}{\pi^+} \overset{\sim}{K^-} \right]_{\Omega^0} \overline{D}{}^0$	[•]	negl.
16196443	$\Xi_b^0 o \Lambda_c^+ \overline{D}{}^0 \left[K^- \pi^0 \right]_{K^*(892)^-}$	[~]	negl.
16196444	$\Xi_b^0 \rightarrow \left[p K^- \pi^+ \pi^0 \right]_{\Xi_c^+} \vec{D}^0 K^-$	[•]	negl.

Potential Λ_b^0 and Ξ_b decays which cross feed into the $\Lambda_c^+ \overline{D}^0 K^-$ invariant mass distribution. The third column indicates if the decay feeds into the Λ_b^0 signal (\checkmark), or not (\bigstar). A [\checkmark] indicates that the tails of the distribution feed into the Λ_b^0 signal. Particles labelled in red are not reconstructed, whereas blue labelled particles are required to be within [2270,2305] MeV of their invariant mass to mimic a Λ_c^+ . The last column gives the expected feeddown fraction w.r.t. the signal yield.

EventType	Decay	feeds into Λ_b^0	expected $f_{\rm fd}$
15196200	$\Lambda_b^0 \to \Lambda_c^+ \left[\overline{D}^0 \gamma \right]_{\overline{D}^*(2007)^0} K^-$	×	1.4
15196400	$\Lambda_b^0 \to \Lambda_c^+ \left[\overline{D}^0 \pi^0 \right]_{\overline{D}^*(2007)^0} K^-$	×	2.3
15196201	$\Lambda_b^0 \to \Lambda_c^+ \left[\left[\overline{D}^0 \gamma \right]_{\overline{D}^*(2007)^0} \mathcal{K}^- \right]_{D_{\epsilon 1}(2536)^-}$	×	0.06
15196406	$\Lambda_b^0 \to \Lambda_c^+ \left[\left[\bar{D}^0 \pi^0 \right]_{\bar{D}^*(2007)^0} K^- \right]_{D_{21}(2536)^-}$	×	0.10
15196401	$\Lambda_b^0 \to \Lambda_c^+ \bar{D}^0 \left[K^- \pi^0 \right]_{K^*(892)^-}$	×	0.25?
15196402	$\Lambda_b^0 \to [\Lambda_c^+ \pi^0]_{\Sigma_c(2455)^+} \bar{D}^0 K^-$	×	0.05
15196403	$\Lambda_b^0 \rightarrow \left[\Lambda_c^+ \pi^0\right]_{\Sigma_c(2520)^+} \overline{D}^0 K^-$	×	$\lesssim 0.02$
15196404	$\Lambda_b^0 \rightarrow [\Lambda_c^+ K^- \pi^0]_{\equiv_c(2980)^0} \overline{D}^0$	×	negl.
15196405	$\Lambda_b^0 \rightarrow \left[\Lambda_c^+ K^- \pi^0\right]_{\equiv_c(3080)^0} \overline{D}^0$	×	negl.
15198002	$\Lambda_b^0 \rightarrow [\Lambda_c^+ \pi^- \pi^+]_{\Lambda_c(2595)^+} \overline{D}{}^0 K^-$	×	negl.
15198003	$\Lambda_b^0 \rightarrow [\Lambda_c^+ \pi^- \pi^+]_{\Lambda_c(2625)^+} \overline{D}{}^0 K^-$	×	negl.
16196440	$\Xi_b^0 \rightarrow [\Lambda_c^+ \pi^0]_{\Sigma_c(2455)^+} \overline{D}{}^0 K^-$	1	negl.
16196441	$\Xi_b^0 \to [\Lambda_c^+ \pi^0]_{\Sigma_c(2520)^+} \overline{D}{}^0 K^-$	[~]	negl.
16197030	$\Xi_b^- \rightarrow [\Lambda_c^+ \pi^-]_{\Sigma_c(2455)^0} \overline{D}{}^0 K^-$	1	negl.
16197031	$\Xi_b^- \rightarrow [\Lambda_c^+ \pi^-]_{\Sigma_c(2520)^0} \overline{D}^0 K^-$	[√]	negl.
16196442	$\Xi_b^0 \to \left[\left[\pi^0 p \right]_{\Sigma^+} K^- \pi^+ K^- \right]_{\Omega^0} \overline{D}{}^0$	[•]	negl.
16196443	$\Xi_b^0 \rightarrow \Lambda_c^+ \overline{D}{}^0 \left[K^- \pi^0 \right]_{K^*(892)^-}$	[~]	negl.
16196444	$\Xi_b^0 \rightarrow \left[{}^{\ensuremath{\rho} K^- \pi^+ \pi^0} ight]_{\Xi_c^+} \overrightarrow{D^0 K^-}$	[•]	negl.

Potential Λ_b^0 and Ξ_b decays which cross feed into the $\Lambda_c^+ \overline{D}^0 K^-$ invariant mass distribution. The third column indicates if the decay feeds into the Λ_b^0 signal (\checkmark), or not (\bigstar). A [\checkmark] indicates that the tails of the distribution feed into the Λ_b^0 signal. Particles labelled in red are not reconstructed, whereas blue labelled particles are required to be within [2270,2305] MeV of their invariant mass to mimic a Λ_c^+ . The last column gives the expected feeddown fraction w.r.t. the signal yield.

- Estimate feeddown fraction from CDF PRD 79 032001 $\frac{\mathcal{B}(\Lambda_b^0 \to \Sigma_c (2455)^+ \pi^0 \mu^- \overline{\nu}_{\mu})}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_{\mu})} = 0.054$
- Correct for additional π^0 assuming additional pions are Poissonian and using $\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_{\mu})}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \mu^- \overline{\nu}_{\mu})} = 1.1 = \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_{\mu})}{0.6 \cdot \mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ 2\pi\mu^- \overline{\nu}_{\mu})}$
- Additional $d\overline{d}$ pair in semileptonic diagram \rightsquigarrow factor 0.5

• Estimate < 2% of
$$\Lambda_b^0 \to \Lambda_c^+ \left[\overline{D}^0 \pi^0 \right]_{\overline{D}^*(2007)^0} K^-$$

 $\mathsf{DIRAQ} = (1 - \mathsf{DIRA}) \cdot \Delta \mathsf{DIRA}$ requires vertex-momentum covariances

\overline{D}^0 BDT	Λ_c^+ BDT	$\operatorname{arctan}(\overline{D}{}^0\ c au_{DTF}\ sign.)$	$\log(rac{K^- \operatorname{ProbNNk}}{1-K^- \operatorname{ProbNNk}})$	$\arctan(\Lambda_c^+ c au_{DTF} \operatorname{sign.})$
$\log({\it K}^- \; \Delta {\it p_{ m TDTF}})$	$\log(\overline{D}^0 \text{ DIRAQ})$	$\log(K^- \ p_{ ext{T}DTF})$	$\log(\Lambda_b^0 \text{ BPV IP} \chi^2_{\text{DTF}})$	$ar{D}^0 lpha_{ extsf{AP}}$
$\log(\Lambda_c^+ \text{ DIRAQ})$	$\log(\Lambda_c^+ \text{ BPV IP}\chi^2_{\text{DTF}})$	$\log(K^- \text{ BPV IP}\chi^2_{\text{DTF}})$	$\log(1 - \Lambda_b^0 \text{ DIRA})$	$\log(ar{D}^0 \; \Delta p_{ ext{T}DTF})$
$\log(rac{K^- extsf{ ProbNNghost}}{1-K^- extsf{ ProbNNghost}})$	$\log(ar{D}^0 \ p_{ ext{TDTF}})$	$\log(\Lambda_b^0 \ \Delta p_{ ext{TDTF}})$	$\log(\Lambda_b^0 \text{ BPV} au_{DTF})$	$\log(\overline{D}^0 \text{ BPV IP} \chi^2_{\text{DTF}})$
$\log(\Lambda_b^0 \Delta M_{\rm DTF})$	$\log(\Lambda_c^+ \ p_{\mathrm{TDTF}})$	$\log(\Lambda_b^0 \text{ BPVPDS}_{DTF})$	$\log(\Lambda_b^0 \ p_{\mathrm{TDTF}})$	$\log(\Lambda_c^+ \Delta p_{ ext{TDTF}})$