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Abstract. The dynamical mean-field theory (DMFT) maps a corre-
lated lattice problem onto an impurity problem of a single correlated
site coupled to an uncorrelated bath. Most implementations solve the
DMFT equations using quantum Monte-Carlo sampling on the imag-
inary time and frequency (Matsubara) axis. We will here review al-
ternative methods using exact diagonalization, i.e., representing the
many-body ground state of the impurity as a sum over Slater determi-
nants and calculating Green’s functions using iterative Lanczos proce-
dures. The advantage being that these methods have no sign problem,
can handle involved multi-orbital Hamiltonians (low crystal symmetry,
spin-orbit coupling) and – when working completely on the real axis
– do not need a mathematically ill-posed analytical continuation. The
disadvantage of traditional implementations of exact diagonalization
has been the exponential scaling of the calculation problem as a func-
tion of number of bath discretization points. In the last part we will
review how recent advances in exact diagonalization can evade the ex-
ponential barrier thereby increasing the number of bath discretization
points to reach the thermodynamic limit.

1 Introduction

The DMFT equations map a many-body problem on an infinite lattice to a local
impurity problem. The potentials of the uncorrelated bath are chosen such that a
self-consistency condition for the local one particle Green’s function is fulfilled. In
spite of being a great simplification, the resulting many-body impurity theory is still
not trivial to solve. Finding solutions to the correlated Anderson impurity model has
a long history including calculations of the Kondo problem and X-ray edge singular-
ities [1–8]. With the development of DMFT, the numerical challenges encounter in
solving the many-body impurity problem gained more attention and great progress
has been made. One of the most successful methods is the continuous-time diagram-
matic quantum Monte-Carlo impurity solver [9]. While this method is among the most
efficient methods available for the single-band Hubbard model, difficulties can arise
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when facing multi-band Hamiltonians with low-symmetry interactions, rotational in-
variant Coulomb repulsion or spin-orbit coupling that lead to inherently non-diagonal
elements in the Green’s function. An active field of research continuously pushes fur-
ther the limits of what is possible to calculate [9–23] but more work needs to be
done before one can reach the chemical accuracy needed for many applications. A
further complication of current quantum Monte-Carlo methods is the ill-posed ana-
lytical continuation needed to transform the calculations on the Matsubara axis to
the real-frequency axis. This transformation sets a limit to the amount of detail one
can derive about the spectral shape. Exact diagonalization has long been employed
as a method to solve the Anderson impurity model [1–3,24–42]. One of its major
disadvantages is the need to discretize the bath Green’s function. The exponential
scaling of storage and computation time in the number of discretization points for
most exact-diagonalization impurity solvers only allows for the inclusion of a few
bath sites. The great advantages of the exact diagonalization, on the other hand, are
that it can handle any form of Hamiltonian (there is no sign problem) and calculate
the Green’s functions directly on the real frequency axis – thereby avoiding the ana-
lytical continuation. In addition, it can straightforwardly calculate different types of
spectroscopy and response functions.
Recent advances in numerical methods now allow for the inclusion of many more

bath orbitals, thereby overcoming many of the disadvantages the early implementa-
tions of this method had. In this paper we will first review literatures available on
different exact-diagonalization schemes, starting with the formulation of DMFT in a
tight-binding language. We further discuss the problems that arise when representing
involved Green’s functions on the Matsubara axis. We then continue with the method
introduced by Lu et al. [30] in order to find a stable self-consistency cycle that func-
tions fully on the real-frequency axis which also allows one to increase the number of
bath sites such that (quasi-)continuous spectral functions can be computed. In the
last section we show examples of different spectral functions one can calculate using
this method.

2 DMFT in a tight-binding language

We start by defining a Hamiltonian on an infinite lattice. Each lattice site i can have
several spin-orbitals which we label with τ ranging from 1 to Nτ . There are only
one-particle interactions between different lattice sites. On each site we include one-
and two-particle interactions. The resulting lattice Hamiltonian is:

H =
∑

i1,i2

∑

τ1,τ2

εi1,i2;τ1,τ2a
†
i2,τ2

ai1,τ1 +
∑

i

∑

τ1,τ2,τ3,τ4

Uτ1,τ2,τ3,τ4a
†
i,τ4

a†i,τ3ai,τ2ai,τ1 . (1)

The parameters ε include the onsite energy, the crystal-field splitting between the or-
bitals, the hopping between sites as well as spin-orbit coupling and possible magnetic
fields. The parameters U include the orbital and spin dependent onsite Coulomb re-
pulsion. Although the Coulomb repulsion in its bare form decays as 1/r as a function
of distance r and is thus long ranged, the locality of the Coulomb interaction can be
justified by the strong screening one generally expects to take place in solids.
The DMFT approximates the full lattice Hamiltonian by an impurity model where

only one site i = 1 remains fully correlated. At all other sites the Coulomb interac-
tion is replaced by a site independent local self-energy Στ1,τ2(ω). This approximation
allows one to take the self-energy calculated from the impurity model to be the self-
energy of the lattice model. The self-energy is ω dependent and thus cannot be entered
as a mere potential change in the tight-binding Hamiltonian. Nonetheless it is possi-
ble to add energy dependent interactions into a tight-binding description by adding
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Fig. 1. Graphical representation of the DMFT approximation. A full locally interacting
lattice model (left pannel) is mapped to an impurity model with one correlated site and
all other sites approximated by a local self-energy (middle pannel). The local self-energy is
chosen such that a full lattice model with all sites approximated by a local-self energy (right
pannel) give the same local Green’s function as the impurity site. In blue we depict the one
particle tight binding Hamiltonian defined by the parameters εi1,i2,τ1,τ2 in equations (1) and
(4). In red we depict the local Coulomb interaction defined by the parameters Uτ1,τ2,τ3,τ4 in
equations (1) and (4). In Green we depict the self energy defined by the parameters αj and
βj in equation (2) and equation (4).

additional auxiliary lattice sites. One way to determine the auxiliary lattice sites and
their Hamiltonian is by writing the self-energy as a continued fraction:

Στ1,τ2(ω) = lim
η→0+

α0 + β0
† 1

ω + iη − α1 + β1† 1
ω+iη−α2+...β1

β0, (2)

with αj and βj matrices of the dimension Nτ by Nτ whose numerical values determine
the actual shape of the self energy. The index j runs from 0 to Nj where Nj is the
number of discretization points used to represent the energy dependence of Στ1,τ2(ω).
In this tridiagonal form one can create a tight-binding Hamiltonian acting on auxil-
iary sites whose one-particle Green’s function reproduces equation (2). This auxiliary
Hamiltonian has 1 site that represents the site where the self energy is added and Nj
auxiliary sites with j running from 1 to Nj . α0 defines an additional onsite potential
that has to be added to each real site where a self energy is added. The matrices αh
define the onsite energy of the auxiliary site j. The matrices βj define the hopping
between site j and j + 1. For each site where a self-energy needs to be included one
can now add the auxiliary Hamiltonian and sites to the single particle part of the
original tight-binding Hamiltonian. The impurity Hamiltonian to solve thus becomes:

H =
∑

i1,i2

∑

τ1,τ2

εi1,i2;τ1,τ2a
†
i2,τ2

ai1,τ1 +
∑

τ1,τ2,τ3,τ4

Uτ1,τ2,τ3,τ4a
†
i=1,τ4

a†i=1,τ3ai=1,τ2ai=1,τ1

+
∑

i�=1

∑

τ1,τ2

α0τ1,τ2a
†
i,τ2

ai,τ1 +
∑

i�=1

∑

τ1,τ2

β0τ1,τ2a
†
i,τ2

bi,j=1,τ1 + h.c. (3)

+
∑

i�=1

Nj∑

j=1

∑

τ1,τ2

αjτ1,τ2b
†
i,j,τ2

bi,j,τ1 +
∑

i�=1

Nj−1∑

j=1

∑

τ1,τ2

βjτ1,τ2b
†
i,j+1,τ2

bi,j,τ1 + h.c.,

with the operators b†i,j,τ (bi,j,τ ) creating (annihilating) a particle in the j-th auxiliary
site representing the self energy acting on site i with local spin-orbital τ . The para-
meters ε and U used in the first line of equation (4) are equivalent to those from the
original lattice Hamiltonian as given in equation (1). The parameters α and β are
those of the tridiagonal representation of the self-energy as given in equation (2).
In Figure 1 we show the DMFT approximation graphically following the review of

Held [43]. On the left we depict the original lattice model, where each site, represented
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by a square, has full local Coulomb interactions. The middle panel shows the DMFT
approximation whereby only on one site the full interactions remain. On all other
sites the interactions are replaced by a self-energy. The self-consistent condition on
the self-energy is such that the impurity Green’s function must be the same as the
Green’s function obtained from the full lattice using the impurity self-energy.
We now can formulate the DMFT self consistency loop (see also Koch et al. [44]).

(1) Starting from an approximate local impurity self energy Σi one can calculate
the full lattice Green’s function Gl using the local self-energy and the non-
interacting part of the lattice Hamiltonian (right panel of Fig. 1)

Gl(ω) =

∫

k

1

ω −H0(k) + Σi(ω)dk· (4)

(2) The lattice Green’s function together with the local self-energy define the bath
Green’s Gb function as:

G−1b (ω) = Σi(ω) +G
−1
l (ω), (5)

wich combines the non-interacting part of the Hamiltonian as well as the self-
energy of the Anderson impurity problem as depicted in the middle panel of
Figure 1.

(3) Representing the bath Green’s function as:

Gb(ω) =
1

ω −A0 +
∑Nb
i=1Bi−1

† 1
ω−ηiBi−1

, (6)

with Ai and Bi Hermitian matrices of dimension Nτ by Nτ and Nb + 1 the
number of discretisation points used to represent the energy dependence of
Gb(ω), one can write the Anderson impurity Hamiltonian as:

HAnd =
∑

τ1,τ2,τ3,τ4

Uτ1,τ2,τ3,τ4a
†
i=0,τ4

a†i=0,τ3ai=0,τ2ai=0,τ1 (7)

+

Nb∑

i=0

∑

τ1,τ2

(
Ai;τ1,τ2a

†
i,τ2

ai,τ1 +Bi;τ1,τ2a
†
i+1,τ2

ai,τ1 +B
∗
i;τ1,τ2a

†
i,τ2

ai+1,τ1

)
.

How to write any Green’s function in the form of equation (6) can be found
in appendix B of the work by Lu et al. [30]. The matrices Aj and Bj are not
equivalent to, but related, by a near unitary transformation, to the matrices
εj , αj and βj of equation (4).

(4) Exact diagonalization methods without basis set optimisations used to equa-
tion (7) scale exponentially in terms of memory storage and computation time
needed in the number of bath sites used (Nb). Traditionally only a few bath
sites are included and the number of bath sites is reduced by fitting a small
number of parameters representing the bath Green’s function on the imaginary
axis. See for example Koch et al. [44] or Georges et al. [26]. Alternative reduc-
tion schemes have been proposed, such as truncated continues fractions by Si
et al. [45,46]. Both methods work well for simple models, but have problems
with numerical stability and general applicability once the Hamiltonian and
Green’s functions become more complex. In Section 4 we will review progress
in this respect made in the last years.

(5) Once the Anderson impurity model has been defined, one needs to solve it
and calculate the local impurity Green’s function Gi which is in general an Nτ
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by Nτ matrix. This can be done using the Lanczos routines as for example
explained in Appendix C of Lu et al. [30]. These calculations consist of two
steps. In the first step the lowest energy eigen-state of the impurity model is
calculated, in the second step the Green’s function is calculated starting from
the ground-state.

(6) After the local impurity Green’s function has been obtained, a new self-energy
needs to be calculated,

Σi(ω) = Gb
−1(ω)−Gi−1(ω). (8)

(7) Restart at step (1) with the new impurity self-energy until convergence is
reached.

2.1 Numerical challenges in DMFT

There are two parts in the algorithm presented in the previous section that pose nu-
merical challenges. Mostly discussed in the literature is that the computation time as
well as memory cost of the solution to the Anderson impurity problem scales expo-
nentially in the number of bath orbitals included. Traditional exact-diagonalization
methods can handle about 16 total basis states (sites times orbitals), which trans-
lates to about 15 bath sites for a single band model, 7 bath sites per orbital for a two
band model and 4 bath sites per orbital for a three band model. Recalling that the
number of bath sites is equal to the number of discretisation points in energy used
to represent the Green’s functions it is clear that this number is far from enough to
create continuous spectral functions. The other numerical challenge for the DMFT
algorithm lies in the calculations during the self-consistency loop. The calculations
of the self-energy and bath Green’s function as done in step (2) and (6) are numeri-
cally unstable, subject to severe loss of significance at large energies and can lead to
unphysical (non-causal) representations of the Green’s function or self energy.

2.1.1 Loss of significance in calculating the self energy

In step (6) in the algorithm outlined above, the self energy is calculated as Σi(ω) =
Gb
−1(ω)−Gi−1(ω). For large values of |ω| both Gi and Gb go to zero and their

inversions thus become infinite while the self-energy, i.e. their difference remains finite.
This poses a problem once implemented in a computer where only finite precision
math is available (about 16 digits in most calculations). The direct calculation of the
self-energy is numerical unstable and leads to loss of significance. Furthermore due to
the discretisation of both Gb and Gi at possible different energy meshes, one might
find that for some energy points the imaginary part of Σi becomes positive thereby
breaking causality. Traditionally, this problem is solved by calculating the self energy
on the imaginary axis, where the later instability is absent and the first is solved by
analytical relations between limω→∞G(iω) and moments of the Green’s function [47].
The use of Green’s functions on the Matsubara axis requires one to transfer back from
the imaginary axis to the real axis at some point in the calculation which leads to an
ill-posed inversion problem. This problem will be discussed in more detail in Section 3.
In Section 5, we will review the recent progress made to do numerically stabel DMFT
self-consistency loops on the real frequency axis.

2.1.2 Anderson impurity problem

In step (5) of the algorithm, an Anderson impurity problem needs to be solved. If
no further approximations are made, the Hilbert space scales exponentially with the
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number of bath sites and one is restricted by a total of bath plus impurity spin-
orbitals of about 16. This puts a severe limitation on the accuracy one can reach
using traditional exact-diagonalization methods. It is however to be expected that
not all elements of the Hilbert space (determinants) will be important. Based on this
notion one can device further approximations that allow one to include many more
bath orbitals. These methods applied to impurity problems go back to the work of
Gunnarsson and Schönhammer in the mid 80’s [1–3]. In Section 4 we will review
recent progress made that allows one to include several hundreds of bath orbitals in
exact-diagonalization routines.

3 Matsubara frequencies and the ill posed fitting to functions on
the real axis

Exact-diagonalization methods require that the bath Green’s function is represented
on a finite mesh. Traditionally this is done by optimizing the parameters of the dis-
cretized Green’s function by comparing the discretized Green’s function to the orig-
inal one in the imaginary-frequency domain. See for example Section VI.A.2 of the
review of Georges et al. [26]. As noted by Koch et al. [44], details of the fitting
procedure can be important and are accordingly discussed in the literature [48–51].
Before we review how stable self-consistency DMFT algorithms can be implemented
on the real-frequency axis, including solving the loss-of-significance problem inherent
to the calculation of a self-energy from two Green’s functions, we briefly review the
mathematics behind Green’s functions on the Matsubara axis and the corresponding
transformations.
The relation between the fermionic Matsubara Green’s function and the Green’s

function on the real frequency axis is given as:

G(τ) =

∫ ∞

−∞

e−τω

1 + e−βω
A(ω)dω, (9)

with ω the energy, β = 1/(kBT ) the inverse temperature, τ ∈ [0, β] the imaginary
time, and A(ω) = −(1/π)Im[G(ω)] the spectral density. In order to work with exact-
diagonalization methods on the real frequency axis we represent our Green’s functions
as a sum over delta functions:

G(ω) =
∑

i

lim
η→0+

β†i
1

ω − αi + iηβi , (10)

with βi and αi the parameters that determine the Green’s function. Note that η → 0+
is an infinitesimal positive number and should not be confused with a finite broad-
ening, i.e. the Green’s function is given as a true sum of delta functions. For a single
delta function with αi = ω0 and βi = 1 the transformation to Matsubara frequencies
yields:

G(τ) =
e−τω0

1 + e−βω0
. (11)

The transformation from G(ω) to G(τ) is bijective, i.e., for each delta function at en-
ergy αi there is a unique function Gαi(τ). However, the transformation does not con-
serve norm or orthogonality of the transformed functions. The set of delta functions on
the real frequency axis is complete and orthonormal (

∫
δ(ω,αi)δ(ω, αj)dω = δ(i, j)),

while the transformed functions on the Matsubara axis are not. In order to study the
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Fig. 2. Matsubara (imaginary-time) Green’s function Gτ for a delta function at ω0 at
the real frequency axis, plotted for different values of ω0 and τ . The symmetric (s) and
anti-symmetric a parts are shown separately (left and right panels). Top panels show a 3D
representation, bottom panels show a contour plot.

implications of this loss of orthonormality in more detail we plot in Figure 2 the func-
tion G(τ) as a function of ω0, the energy position of the delta function. We separate
the total Green’s function in a symmetric and antisymmetric part:

G(τ, ω0) = G
S(τ, ω0) +G

A(τ, ω0). (12)

The symmetric Green’s function (Gs(τ, ω0)) is the transform of the sum of two delta
functions at±ω0, the antisymmetric Green’s function is the transform of the difference
between two delta functions at ±ω0:

GS(τ, ω0) = (G(τ, ω0) +G(τ,−ω0))/2, (13)

GA(τ, ω0) = (G(τ, ω0)−G(τ,−ω0))/2.
As shown in Figure 2, the Green’s function of a delta function when transformed

to the imaginary axis varies only slowly as a function of the position of the delta
function. The transformation is ill posed in the sense that the detail and information
content in G(ω), represented by different values of G(ω) at each value of ω, is only
represented in G(τ) if this function is known to a high precision. One of the implica-
tions of representing the Green’s function on the imaginary axis becomes clear when
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Fig. 3. Derivative of the Matsubara Green’s function G(τ) for a delta function at ω0 at
the real frequency axis with respect to ω0, plotted for different values of ω0 and τ . The
symmetric (s) and anti-symmetric a parts are shown separately (left and right panels). Top
panels show a 3D representation, bottom panels show a contour plot.

one considers the derivative of G(τ, ω0) with respect to ω0 (Fig. 3). This derivative
illustrates how sensitive the error in the position of the pole depend on the numerical
accuracy with which the Green’s function on the imaginary axis is known. As can be
seen in Figure 3, for large values of ω0, dG(τ, ω0)/dω0 goes to zero. The Matsubara
representation of the Green’s function is thus largely insensitive to the exact position
of the pole at large energies. More important, for many calculations is the observation
that the derivative for the symmetric Green’s function goes to zero for ω0 = 0. The
Matsubara representation of the Green’s function is not sensitive to the exact spectral
weight at the chemical potential. One can always open a small gap in the Green’s
function without numerically changing the Matsubara representation of the Green’s
function by a significant amount.
Most self-consistency loops used in exact-diagonalization schemes need to fit a set

of poles on the real-frequency axis to a known Green’s function on the Matsubara
axis. Knowing that this transformation is ill conditioned raises the question how
many poles on the real-frequency axis one can fit to a given function known on the
Matsubara axis within certain numerical accuracy. Naturally one can always fit more
poles, but at some point the weight and position of additional poles become ill defined
or arbitrary.



Dynamical Mean-Field Approach with Predictive Power 2557

Fig. 4. Prefactors of the Matsubara imaginary time Green’s function of a delta function
at real frequency ω0 expanded on Legendre polynomials. Even (left panels) and odd (right
panels) expansion coefficients refer to the symmetric and anti-symmetric part of G(τ). Ex-
pansion coefficients up-to the 22-nd order are shown, using a normal (top) and logarithmic
(bottom) scale.

Standard methods to regularize an ill-posed inversion problem use singular value
decomposition techniques and only keep those eigen values larger than the known error
in the original data. The simple form of G(τ, ω0) for the transformation of a delta
function allows for an analytical expresion. One can expand G(τ, ω0) on a complete
set of Legendre polynomials, which yields analytical prefactors for the expansion
coefficients as a function of ω0, i.e. the position of the delta function on the real-
frequency axis. In Figure 4 we show the first 22 expansion coefficients as a function
of the position of the pole on the real frequency axis. For the symmetric part of the
Green’s function (even expansion coefficients) we notice that all expansion coefficients
are positive due to causality and they decay exponentially with increasing order of
the Legendre polynomial.
For a given numerical accuracy with which G(τ) is known, one can now define

the number of poles n on the real frequency axis that represents G(τ) with the given
accuracy. All expansion coefficients smaller than the accuracy of the Green’s function
for all values of ω0 are not important in determining the Green’s function. For an
accuracy of 10−4 and a maximum energy of the pole at 5/β the even expansion
coefficients α0 to α6 are large enough to be determined. This leaves 4 numbers, which
can be uniquely created by linearly combining 4 poles at different energy. In fact there
might be solutions with less poles, but there will at least be one solution with 4 poles.
Naturally there will be infinitely many different solutions with more than 4 poles.
In Figure 5 we show the number of poles that completely determine the Green’s

function on the Matsubara axis for different maximal pole energies. We here assume
that the Green’s function on the Matsubara axis is known upto 10 digits accuracy.
As one can see the Green’s functions can be represented by a relatively small number
of poles. From ligand-field theory or finite-size cluster calculations of valence band
photo emission spectroscopy for transition metal compounds, we know that several
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Fig. 5. Number of poles needed on the real frequency axis to exactly represent the Green’s
function on the Matsubara axis with 10 digits accuracy as a function of the energy of the
largest pole. Many solutions with this amount of poles, or with more poles might exist and
linear combinations of two solutions will also be a solution.

hundred poles are needed to converge the multiplets and charge-transfer excitations,
which can further increase to a thousand poles for spectral functions of rare earth
compounds. This kind of detail is not easily represented using Matsubara frequencies
unless one is able to use arbitrary precision math on the imaginary axis. As the later is
not suited for heavy numerical work we will review methods that discard completely
the transformation to the imaginary axis. This then does pose the question on how
to calculate the self-energy in a numerically stable fashion avoiding the problem of
loss of significance as outlined above.

4 DMFT on the real frequency axis

To prevent the numerical problems inherent to the Matsubara representation of in-
volved spectral functions, Lu et al. [30] devised a scheme fully on the real-frequency
axis, which can be seen as an extension of the work on a Bethe lattice by Si et al. [45].
All Green’s functions and self-energies are represented as a sum over poles that reside
exactly on the real axis:

G(ω) = lim
η→0+

∑

j

b†j
1

ω + iη − aj bj , (14)

with aj and bj matrices of dimension Nτ and aj proportional to the identity matrix.
Summing Green’s functions in this notation is trivial. Inverting the Green’s function,
which is needed in order to calculate a self-energy can be done by rewriting the
Green’s function as a resolvent of a Matrix. Following appendix B of the work of Lu
et al. [30] one can rewrite the Green’s function as:

G(ω) = lim
η→0+

1

ω − α0 +
∑
i βi
† 1
ω−αi βi

, (15)

with αj and βj matrices of dimension Nτ determined by the matrices aj and bj .
The algorithm involves once a block Lanczos tri-diagonalization routine and once a
diagonalization of a block tri-diagonal matrix, both nummerical stable algorithms,
it’s inverse is then easily calculated as:

G(ω)−1 = ω − α0 +
∑

i

βi
† 1

ω − αiβi. (16)
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In order to reduce the number of poles one can combine two closely-located poles into
one, such that the first moments of the spectral function are retained. Appendix F of
the work of Lu et al. [30] shows the numerical detail on how this can be implemented.
Several different choices can be made, whereby one can choose for a fixed spaced
mesh, a mesh that has more dense points close to the Fermi energy or optimize both
the mesh spacing as well as the pole intensity at the same time. The optimal choice
will depend on the quantity of interest.
The resulting set of equations allow one to do the full DMFT self-consistency loop

directly on the real frequency axis.

5 Enlarging the number of bath sites

The remaining challenge to tackle is how to solve the Anderson impurity model with
several hundred of bath sites without running into the problem of an exponentially
large Hilbert space. Here one can use ideas from quantum chemistry and renormal-
ization group theory that allow one to optimize the basis set such that at each step
of the calculation only a finite number of determinants is important. Using standard
quantum chemistry methods whereby the bath orbitals are transformed to their nat-
ural impurity basis, one can converge the ground-state with only a few (about 10)
bath orbitals per spin-orbital [28,29,52]. The convergence of the Green’s function,
which plays a central part in DMFT, requires a much larger basis, i.e., the optimized
basis for the ground-state does not represent the excited states well.
Within a Lanczos routine the spectral function is represented on a Krylov basis

defined by the states that span the Hilbert space given by ψn = Hψn−1 with ψ1 =
Tψ0. Here ψ0 is the ground-state, T is an operator that either removes or adds
an electron to an orbital τ , and H is the interacting Hamiltonian. For an optimal
representation of the excited states, the basis set should be optimized at each step
during this iterative procedure. This allows one not only to converge the ground-state,
but also to give a good representation of the spectral function.
The result is an algorithm that can handle several hundred of bath orbitals with

all the advantages of exact-diagonalization routines. In Figure 6 we show the DMFT
spectral function of the Hubbard model for a semi-circular G0(ω) as a function of
the value of U and the number of included bath orbitals. With small broadening
(applied after the calculation is finished), one can observe discrete peaks in the Green’s
function for a small number of bath sites, which become quasi-continuous when the
number of bath sites is increased. Once a larger broadening is applied, one finds
that the Green’s functions with more than 30 bath orbitals are reasonably converged.
One should be very careful though with calculations that do not have enough bath
orbitals. The critical value of U separating metallic from insulating solutions changes
with the number of bath orbitals included. This is understandable, as the bath Green’s
function is discretized and the impurity actually always hybridizes with a gaped and
thus insulating state. Once there is a gap at the Fermi energy it becomes easier for
correlations to widen the gap and thus create an insulator.

6 Spectroscopy in DMFT

One of the great advantages of real-frequency DMFT using a Lanczos-based solver is
that once a self-consistent solution is obtained, several types of spectroscopy can be
directly calculated. The spectral function (I) of any linear-response spectroscopy is
given as:

IT (ω) = − 1
π
Im[GT (ω)] (17)
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Fig. 6. Figure reproduced from Lu et al. [30]. All panels show the DMFT impurity Greens
function for different values of U ranging from 0 to 2 in steps of 0.25 in units of the bandwidth
of G0(ω). The different columns show the spectral function for 3, 11, 31, 101, or 301 poles in
the bath Greens function and thus sites in the Anderson impurity calculation. The impurity
Greens function in all calculations consists of 1000 poles. The panels in the top row show
the spectral functions broadened with a Lorentzian of full width at half maximum 0.01. The
panels in the bottom row show the same spectral functions as the top row, but broadened
with a Lorentzian of full width at half maximum 0.1. (This figure is subject to copyright
protection and is not covered by a Creative Commons license.)

and
GT (ω) =

〈
ψ0

∣∣∣∣T
† 1

ω −H + iΓ/2T
∣∣∣∣ψ0
〉
, (18)

with ψ0 the Anderson impurity ground state, H the Anderson impurity Hamiltonian
and T an operator describing the excitation made during the experiment. This spec-
trum can be calculated in the same fashion as the Green’s function. The only restric-
tion (inherent to the single-site approximation we discuss here) is that T can only act
on the impurity site, therefor one can calculate, for example, the total magnon density
of states but not its dispersion without going beyond the single-site approximation.
For neutron scattering, one would replace the operator T by the spin operator

acting on the impurity site, which allows one to calculate both the total spin density
of states as well as orbital excitations in e.g., rare-earth compounds. Several forms
of core level spectroscopy can be calculated, including core level photo emmission (T
annihilates a core electron and H includes the core-valence interaction explicitly),
X-ray absorption spectroscopy (T annihilates a core electron and creates a valence
electrons and again H includes the core-valence interaction explicitly), or inelastic
X-ray scattering where T has the same form as in X-ray absorption spectroscopy
with different orbital-dependent matrix elements.
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Fig. 7. Figure reproduced from Haverkort et al. [53]. Core level X-ray absorption (left panel)
and core level photo-emission (right panel) spectra calculated for different values of U = Q
within the Hubbard model on a Bethe lattice solved within the DMFT approximation.
Spectra for a metallic (insulating) ground state are shown with thin black (thick blue) lines.
(This figure is subject to copyright protection and is not covered by a Creative Commons
license.)

Higher order response functions such as resonant raman spectroscopy or the
emerging technique of resonant inelastic X-ray scattering can also be calculated by
adding an additional interaction:

GT1,T2(ω,Ω) =

〈
ψ0

∣∣∣∣T
†
1

1

ω −H∗ − iΓ1/2T
†
2

1

Ω−H + iΓ2/2T2
1

ω −H + iΓ1/2T1
∣∣∣∣ψ0
〉
,

(19)
where T1 and T2 describe the excitation and de-excitation process in a resonant
Raman experiment. ω and Ω are the incident photon energy and Raman energy loss,
respectively.
The great advantage of DMFT is that it can capture band excitations as well as

excitons and the hard-to-describe intermediate regime of resonances. In spectroscopy
one can divide excitations into three different categories depending on the interac-
tion strength between the electron-hole pair created by promoting an electron in the
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Fig. 8. Figure reproduced from Haverkort et al. [54] 3p to 3d IXS excitations in MnO.
(a,b,d,e) Large momentum transfer, octupole transitions into excitonic states. (c,f) Small
momentum transfer, dipole transitions into resonances; (a–c) including only a local basis,
(d–f) including local correlations as well as the full dynamical mean-field approximated
band-structure in the theory. Experimental data reproduced from Gordon et al. [55].

occupied bands into the empty ones. If this interaction is weak, one observes ba-
sically a convolution of the band structure of the occupied and unoccupied bands.
If the interaction is very strong a bound state is formed and one observes a single
excitonic peak outside the continuum. Often this peak has an internal structure due
to multiplet effects. In the intermediate regime, one observes resonances with typ-
ical asymmetric line-shapes that are notoriously hard to describe theoretically. All
these types of excitations are found in different materials with important properties
resulting from the interplay between local and itinerant states.
In Figure 7 we show an example of the transition from band excitations to excitions

via resonances with the variation of U and Q. With U being the Coulomb repulsion
within the Hubbard band and Q the Coulomb repulsion between a deeper dispersion-
less occupied band and the valence band. We show both the absorption spectra (the
electron is transfered from the core level into the valence band) as well as the photo
emission spectra (the electron is removed from the core level). More details on the
description of excitons, resonances and band transitions using DMFT can be found
in the original paper by Haverkort et al. [53].
An example of a real material and experiment where both excitons and resonances

are observed is the case of 3p to 3d excitations as observed in non-resonant inelastic
X-ray scattering of MnO. At low energy transfer one finds a few strongly bound ex-
citons, whereas at higher energy transfer one finds a broad continuum. The excitonic
bound states are well modeled using a ligand-field model, in which the solid is
approximated by a single atom interacting with it nearest neighbor ligand atoms. In
the case of MnO this equivalents to a single Mn d shell interacting with six O 2p shells
of the neighbors. Slight deviations may occur as, for example, one needs to include
the Mn 4s orbital into the tails of O 2p orbitals. While such approximations
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generally work very well for excitonic bound states in transition metal compounds [56],
they can not describe band transitions nor resonances. As shown in Figure 8, the res-
onance at hihger transfer energy in MnO is poorly described in ligand field theory.
In DMFT, however, such resonances can be captured and the transition into the
resonance between 50 to 60 eV is well described in addition to the excitons.
To summarize, we have presented how DMFT self-consistency loops can be

fully implemented on the real-frequency axis using an exact-diagonalization impu-
rity solver, and demonstrated that it is a method well suited to describe several types
of spectroscopy on correlated transition metal compounds with a reasonable compu-
tational effort.
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32. F.A. Wolf, I.P. McCulloch, O. Parcollet, U. Schollwöck, Phys. Rev. B 90, 115124 (2014)
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