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For strongly correlated systems analytical
methods usually involve uncontrolled approx-
imations. Therefore stochastical methods such
as quantum Monte-Carlo (QMC) or quantum
cluster methods are often used. Apart from sta-
tistical errors, these methods often produce very
accurate results, but the results are obtained
on the imaginary time or frequency axis. This
leaves the problem of analytically continuing
the results to the real frequency axis, which is
an ill-posed problem. Small changes in the data
on the imaginary axis can lead to large changes
on the real axis. Since the imaginary axis data
contain statistical noise, the analytical continu-
ation is very difficult.
This problem can be treated within the Bayesian
theory [1]. The problem is regularized by intro-
ducing an entropy in terms of the deviation of
the real axis output spectrum from some default
function. The importance of the entropy is con-
trolled by a parameter α, which is determined
using statistical arguments [1]. This method is
referred to as the Maximum Entropy (MaxEnt)
method. It has been rather successful in per-
forming analytical continuations.

We have studied [2] how the accuracy of this
method can be improved. The error in the out-
put spectral function can be split up in a statis-
tical error, due to the noise in the input data,
and a systematic error, due to the deviation
of the default function from the true spectrum.
The choice of α determines the relative size of
these errors. In the classical MaxEnt method the
most probable α is chosen [1]. We find that this
choice can make the statistical error unneces-
sary large.

The input data is typically given as a number
Nsample of samples, Gν(τ), where each sam-
ple gives a (noisy) version of the imaginary
time function G(τ). We find that the accuracy
can sometimes be improved by splitting up the
samples in Ncalc sub sets (batches). We then
perform Ncalc MaxEnt calculations, each with

Nsample / Ncalc samples, and then average the re-
sults, instead of performing one MaxEnt calcu-
lation with Nsample samples. This ‘batching’ ap-
proach reduces the statistical error at the cost of
an increase in the systematic error.

We have also studied the possibility of an iter-
ative MaxEnt method, where the output is used
to define a new default function. This usually
works poorly. Although there is an improve-
ment in the systematic error, we find that this
is usually overwhelmed by an increase in the
statistical error. However, if the data are split in
batches, as discussed above, the importance of
the statistical error can be reduced to the point
where the approach improves the total accuracy.

We focus on a response function, the opti-
cal conductivity σ(ω). A typical σ(ω) is intro-
duced, which in the following will be referred
to as the ‘exact’ σ(ω). This model of σ(ω)
can be transformed accurately to the imaginary
axis. Statistical noise with the magnitude σ0 are
added to the imaginary axis data, which is then
transformed back to the real axis, using vari-
ous modifications of the MaxEnt method. If a
given method worked perfectly, the σ(ω) that
we started from would be recovered. The devi-
ation

w =
∫ ∞

0
[σexact(ω)−σcalc(ω)]2dω

≡ wstat +wsyst ,
(1)

from the ‘exact’ σ(ω) is then a measure of the
accuracy of different approaches. Here we have
also introduced statistical and systematic errors.

The inset of Fig. 1 shows the default model used
to calculate the entropy as well as the the model
optical conductivity. From this model, we gen-
erate data for imaginary time with 100 samples,
each with the statistical noise σ0. For σ0 = 0.01,
a classical MaxEnt calculation prescribes the
value α = 40, which is used in the following.
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Figure 1: Statistical (wstat), systematic (wsyst) and
total (w) errors in MaxEnt calculations for the spec-
trum and default model in the inset, using 100 sam-
ples, each with the accuracy σ0. The thick full red
line shows w when one MaxEnt calculation is per-
formed using all 100 samples and the thick broken
blue line the result when 5 MaxEnt calculations are
averaged, each calculation using 20 samples. The
cross corresponds to a classical MaxEnt calculation
for σ0 = 0.01, which gives α≈ 40, used in the figure.
The figure illustrates that the error can be substan-
tially reduced by batching the data.

Figure 1 shows the statistical and systematic
errors as a function of σ0. The figure illus-
trates that the statistical error (green dotted
curve) is much larger than the systematic error
(black dotted curve). This is also illustrated in
Fig. 2(a). This shows the result of 20 MaxEnt
calculations with different realizations of the
noise, each with 100 samples with the accu-
racy σ0 = 0.01. The thick red line shows the ex-
act spectrum. The calculated spectra (thin green
lines) scatter strongly around the exact result, il-
lustrating the large statistical error. On the aver-
age, these spectra also deviate somewhat from
the exact result, illustrating a small systematic
error.

We next group the 100 samples in Ncalc = 5
batches, each with 20 samples, and perform 5
MaxEnt calculations. The statistical noise of the
data in each MaxEnt calculations is then in-
creased by a factor

√
5. This increases both the

Figure 2: Optical conductivity using different methods. 100 samples, each with the accuracy σ0 = 0.01 were
given. (a) Each curve shows results of a classical MaxEnt calculation using all 100 samples. The figure
shows 20 such curves, each corresponding to a different realization of the noise. (b) Each curve shows the
average of five MaxEnt calculations, each using 20 samples. (c) Each curve shows the results of iterating the
calculations in (a) once, using the output in (a) as a default function in the next MaxEnt calculation. (d) Each
curve shows the results of iterating MaxEnt calculations five times. Ncalc = 100 was used, and the default
function was obtained from the average of these Ncalc calculations.
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systematic and statistical errors of each calcu-
lation somewhat. Averaging these calculations,
however, reduces the statistical error by a factor
5.

In Fig. 1 this leads to a large net reduction in the
statistical error (dotted red line), which more
than compensates for the increase of the sys-
tematic error (thin chain blue line). This is also
illustrated in Fig. 2(b), which shows 20 such re-
sults, each one obtained by averaging 5 MaxEnt
calculations with 20 samples, but with different
realizations of the noise. As is also illustrated in
Tab. 1, the spread between the curves is substan-
tially smaller than in Fig. 2(a), while the sys-
tematic error is somewhat larger. This leads to a
substantial improvement in the total error (thick
broken blue curve in Fig. 1).

Table 1: Statistical (wstat), systematic (wsyst) and
total (w) errors in the present MaxEnt calculations.
100 samples, each with the accuracy σ0 = 0.01,
were split up in Ncalc batches with 100 / Ncalc sam-
ples and used in Ncalc calculations. The average of
the outputs was used as a default model, perform-
ing Niter iterations.

Ncalc Niter wstat×104 wsyst×104 w×104

1 1 6.7 1.4 8.1
5 1 1.4 2.1 3.5
1 2 14 1.3 15

100 5 0.4 0.9 1.3

To provide a criterion for how to split up the
data in batches, we have estimated the change
in the statistical error when Ncalc is changed [2].
We compare calculations with Ncalc = Nsample

and Ncalc = Nsample / 2 batches. In the second cal-
culation the statistical error is larger and the
systematic error is smaller. If the total differ-
ence between the two calculations is larger than
twice the estimated statistical difference, this
suggests that the reduction of the systematic er-
ror outweighs the increase of the statistical er-
ror and the second calculation is assumed to be
more accurate. In this way Ncalc is reduced un-
til this prescription predicts no further improve-
ment.

Once a MaxEnt calculation has been performed,
one can try to improve the default function by
using the output spectral function as a new de-
fault function. Such an iterative approach, how-

ever, is usually found to lead to poor results, as
is illustrated in Fig. 2(c). The spread between
between different calculations is larger than in
the non-iterated case in Fig. 2(a), due to an in-
creased statistical error. We next split up the
samples in Ncalc batches. Performing Niter = 5 it-
erations, the total error is reduced, as is shown
in Fig. 2(d). The use of Ncalc = 100 drastically
reduces the statistical error. The following it-
erations increase the statistical error substan-
tially, but it nevertheless remains small. At the
same time the iterations reduce the systematic
error, so that both are improved compared with
the non-iterated case (see Tab. 1 and compare
Fig. 2(d) with Figs. 2(a) and (b)). We have not
found a reliable criterion for when to stop the
iterations.

We are now in the position to discuss the lim-
its of accuracy that can be obtained in this ap-
proach. As before, we consider 100 samples
with the accuracy σ0 = 0.01 and allow for any
combination of α, Ncalc ≤ 100 and Niter ≤ 40.
Since the exact result is known, we can test
which combination gives the smallest error.
This leads to the results shown in Fig. 3.

Figure 3: Accuracy w of MaxEnt calculations for
100 samples, each with accuracy σ0 = 0.01. ‘One
calc.’ uses all samples in one MaxEnt calculation.
‘Several opt.’ and ‘Several est.’ split up the samples
in several batches and average the resulting MaxEnt
calculations. ‘Several opt.’ does this in the optimal
way and ‘Several est.’ uses a prescription for finding
the splitting when the exact result is not known. ‘It-
erated’ in addition uses the output spectral function
as default model in an iterative approach. The cross
shows the result of a classical MaxEnt calculation.

The curve ‘One calc.’ shows the result of a tra-
ditional MaxEnt calculation, using all the sam-
ples in one calculation. A classical MaxEnt cal-
culation prescribes α≈ 40, which is shown by
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a cross. This value of α is not optimal, and
a larger α would have given a smaller error.
We next introduce batching of the samples. We
find the number of batches which gives the best
agreement with the ‘exact’ σ(ω). This (‘Several
opt.’) leads to a much higher accuracy for small
values of α. For large values of α, one batch
gives the best accuracy, and the curve falls on
top of the curve ‘One calc.’. In actual applica-
tions, when the exact result is not known, the
criterion for dividing the samples in batches has

to be used. This approach (‘Several est.’) leads
to almost as good results. Finally, the curve
‘Iterated’ shows results when iterations are al-
lowed. This leads to a substantial improvement
in the accuracy.
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