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We here present how a self-consistent solution of the dynamical mean-field theory equations can be obtained
using exact diagonalization of an Anderson impurity model with accuracies comparable to those found using
renormalization group or quantum Monte Carlo methods. We show how one can solve a correlated quantum
impurity coupled to several hundred uncorrelated bath sites, using a restricted active basis set. The number of bath
sites determines the resolution of the obtained spectral function, which consists of peaks with an approximate
spacing proportional to the bandwidth divided by the number of bath sites. The self-consistency cycle is performed
on the real-frequency axis and expressed as numerical stable matrix operations. The same impurity solver has
been used on ligand field and finite size cluster calculations and is capable of treating involved Hamiltonians
including the full rotational invariant Coulomb interaction, spin-orbit coupling, and low-symmetry crystal fields.
The proposed method allows for the calculation of a variety of correlation functions at little extra cost.
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I. INTRODUCTION

Theoretical understanding of correlated electron systems is
often hindered by the exponential scaling of the computation
time and memory required as a function of system size. For
systems where the local density or Hartree Fock approxima-
tions fail, there exists a real computational problem. Obtaining
quantum chemical ab initio solutions is impossible for many
systems [1]. Even small systems containing only three or four
open d- or f -shell ions can be too large to compute. Nonethe-
less, one can obtain information on open-shell compounds
in the approximation of a single correlated site interacting
with mean-field approximated neighbors or bath sites. Such
an embedded impurity in a mean-field approximated bath can
either be realized by the requirement that the density or the
one-particle Green’s function is equivalent on the mean-field
approximated sites and the impurity. The latter results in the
dynamical mean-field theory (DMFT) [2–14]. In either case
the one-particle energies and hopping integrals can be obtained
directly from density functional theory [14–19] or Hartree
Fock calculations [20].

In the case of transition-metal oxides, the mean-field
approximated neighbors are, in first approximation, the ligand
O atoms. If one only includes a single transition-metal
impurity interacting with ligand orbitals, one obtains multiplet
ligand field theory [19,21,22]. Ligand field theory is one of
the oldest methods used to solve the Schrödinger equation.
Nonetheless, for correlated insulators it is still a very powerful
approximation. For correlated metals, ligand field theory is
clearly not sufficient. In this case one needs to include a
full band, which leads to an Anderson impurity model. In
an (cluster) Anderson impurity model there are Nτ partially
filled impurity levels (spin, orbital, and cluster site) with
correlations between the electrons occupying these levels,
each interacting with Nb partially filled bath sites. This is
a highly nontrivial problem whereby, in general, the basis
size scales exponentially in the number of total sites and
levels (Nτ + Nτ × Nb) included in the problem. Nonetheless,

an infinite Anderson impurity model can be solved. Several
methods are available; each has its virtues, but all have
shortcomings.

Since the introduction of DMFT there has been an enor-
mous development on how to solve an Anderson impurity
Hamiltonian. For the single-site Hubbard model there exist
beautiful solutions using numerical renormalization group
(NRG) theory [23–32] or density renormalization group
theory [33–36]. These methods are hard to apply to situa-
tions with multiple interacting orbitals or sites. Hirsch Fye
(HF) [5,6,37–40] and continuous time (CT) [41–47] quantum
Monte Carlo (QMC) methods can be rather efficient for
the single-site Hubbard model, as well as some extensions
including several correlated fermions, but seem to have prob-
lems with low-symmetry interactions and systems where the
Green’s function has off-diagonal terms. A further drawback
of QMC implementations is the use of imaginary instead of
real frequencies, which leads to an ill-conditioned inversion
problem [48–50].

Exact diagonalization (ED) techniques [51–62] can be ap-
plied very generally, are implemented using real frequencies,
and pose no requirement on the Hamiltonian other than that it
should be reasonably sparse. The problem with this method,
though, is that the mean-field approximated bath has to be
represented by a small number of discrete states in order
to keep the exponentially growing many-body Hilbert space
tractable [63]. This can be improved by selecting a certain
subset of many-body states as the basis. Reasonable results
for a single Ce 4f shell interacting with a free-electron-like
band have been obtained by selecting only certain basis
functions [64–66]. The question of which states to include can
be formalized using a configuration interaction [58,62,67–69]
or coupled cluster expansion [70–73]. For DMFT on the Bethe
lattice one can, with the use of a configuration interaction
expansion of the basis, optimize the basis in such a way
that one can obtain a converged ground state [58,60–62]. The
configurations included in these calculations are optimized to
represent the ground state, but not the excited states needed in
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the calculation of the one-particle Green’s function. Presently,
configuration interaction calculations do not converge the
Green’s function, which is an important ingredient in DMFT.

Here we show how a general solution of the dynamical
mean-field equations can be obtained. We use an ED technique
which can include the full rotational invariant Coulomb
interaction, spin-orbit coupling, as well as low-symmetry
interactions. In the current paper we show the solution of
the Hubbard model on a Bethe lattice at T = 0. Extensions
to higher temperatures might be possible, but have not been
tested [52,74]. The impurity solver has been used in several
multiorbital or multisite calculations [19,75,76] and the inclu-
sion of five (open d-shell) or seven (open f -shell) correlated
orbitals or eight (two-dimensional cluster) correlated sites
coupled to several hundreds of uncorrelated bath sites is, in
principle, possible, albeit not yet implemented in the DMFT
scheme.

The method presented here is similar to a recently in-
dependently implemented variational approach based on the
configuration interaction expansion by Lin and Demkov [62].
As shown in their publication, it is crucial to use an optimized
bath parametrization, which they obtain with the use of natural
orbitals. The main difference with our method is that we do
not use a configuration interaction expansion of the many-body
basis states, but search for the ≈109 Slater determinants with
the largest contribution in the full basis. We thus do not need to
set the configurations before the calculation starts, but establish
during the calculation which determinants need to be included.
This leads to a different basis for the ground state and excited
states. The resulting method allows for the inclusion of several
hundreds of discretized bath sites. On this basis we are able to
find a converged ground state as well as a converged Green’s
function.

In the main part of the paper we first introduce how to
implement the DMFT self-consistency loop using numerically
stable matrix operations on real-frequency representations
of the Green’s functions and self-energy. We continue by
showing how one can solve the Anderson impurity problem
using ED including several hundred bath sites. The paper is
written to convey the general idea and overview of the method
without too much detail. Additional details and mathematically
rigorous definitions are placed in the appendixes. After the
method is introduced, we show results for the Hubbard
model on a Bethe lattice as a function of U and number of
discretized bath sites. An important result is that the critical
value of U , for which the metal-insulator transition takes
place, depends on the number of sites included. We compare
our results to analytically known sum rules, to NRG results
by Bulla [23–27], as well as to results obtained from QMC
calculations. Good agreement in terms of the quasiparticle
weight and bandwidth is obtained. The same is true for the
Hubbard bands, which show the same weight, position, and
width as found in other methods.

Appendix A discusses the notation used in this paper.
In Appendix B we show the relation between different
representations of the Green’s function. In Appendix C the
Lanczos algorithm is explained. In Appendix D we discuss the
optimized many electron sparse Slater determinant basis used
in the Lanczos algorithm. Appendix E explains the optimized
one-particle basis functions or orbitals used. In Appendix F

we discuss the reduction of poles in the Green’s functions
used, which is equivalent to choosing an optimized number
of one-electron basis functions to represent the Anderson
impurity Hamiltonian.

II. THE DMFT SELF-CONSISTENCY LOOP

The self-consistency loop in the DMFT calculations breaks
down in four parts [55]. In the calculation one repeats
steps 1 to 4 until the bath and impurity Green’s function
are converged and do not change between loops. Most
DMFT implementations use Green’s functions represented
on imaginary frequencies in the self-consistent loop. As
the transformation between Green’s functions represented
on the real and imaginary axis is bijective, this is possible
without loss of information. The disadvantage is that the
transformation is also ill conditioned, which requires one to
use extraordinarily large numerical accuracy on the imaginary
axis [49]. To circumvent these numerical problems we perform
the entire calculation using Green’s functions represented on
the real-frequency axis.

The Green’s functions and self-energy are expressed as a
sum over δ functions, which can be related to the resolvent
of a matrix. One can apply unitary transformations on the
matrix representing the Green’s function without changing the
Green’s function and this is used during the self-consistency
loop. Important to note is that during the entire calculation
the Green’s function is expressed as a discrete sum of δ

functions with zero width with variable weight and energy.
These poles representing the Green’s functions and self-
energy are never replaced by a sum over Lorentzians with
finite broadening inside the self-consistency loop. A finite
broadening is included only when plots on the real axis
are made. More details about the different representations
can be found in Appendix B. Below we show the DMFT
self-consistency loop as implemented in this paper based on
Green’s functions and self-energies represented by a sum of δ

functions on the real-frequency axis.

A. From bath Green’s function to Anderson
impurity Hamiltonian

We start our self-consistency loop with a known (T = 0)
retarded bath Green’s function [Gb(ω)]. This could be the
noninteracting Green’s function [G0(ω)] if no better approx-
imation is known. The first task is to define the Anderson
impurity Hamiltonian (HA), given the bath Green’s function.
This is a straightforward task. The bath Green’s function is
defined and stored by Nb + 1 numerical values of αi and Nb

values of βi as

Gb(ω) = 1

ω − αb
1 − ∑Nb

j=1
βb

j

2

ω−αb
j+1

. (1)

Nb defines the number of discretization points of the Green’s
function as well as the number of bath orbitals in the Anderson
impurity Hamiltonian. This form of the Green’s function can
easily be obtained from any other representation as shown in
Appendix B. For cases where the impurity consists of multiple
orbitals, sites, or spin states, α and β are matrices of dimension
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FIG. 1. (Color online) Possible bath geometries. The impurity is
labeled by i and represented by a square. The bath sites are labeled
by bi [panels (a) and (b)] or by b, ci , and vi . The site occupation is
indicated by the filling. For efficient calculations bath sites should
either be occupied or empty.

Nτ by Nτ , with τ labeling the internal spin, orbital, and site
degree of freedom of the impurity. We as much as possible
suppress summations over τ using the definitions as given in
Appendix A.

The Anderson impurity Hamiltonian has, besides the
additional correlations on the impurity site, an interaction of
βj with a bath site at onsite energy αj+1. Graphically, one can
represent this Hamiltonian and Green’s function with a single
impurity interacting with Nb bath sites as shown in panel (a)
of Fig. 1. In formula this is

HA = Hi + αb
1a

†
i ai +

Nb∑
j=1

βb
j (a†

i abj
+ a

†
bj

ai ) + αb
j+1a

†
bj

abj
,

(2)

with i (bj ) labeling the impurity (bath) and j an index for
the different discretized bath states. Hi is the many-body
Hamiltonian which only acts on the impurity sites,

Hi =
∑
τ,τ ′

ετ,τ ′a
†
i,τ ai,τ ′ +

∑
τ,τ ′,τ ′′,τ ′′′

Uτ,τ ′,τ ′′,τ ′′′a
†
i,τ a

†
i,τ ′ai,τ ′′ai,τ ′′′ ,

(3)

with ε and U numerical parameters defining the one- and
two-electron parts of the many-body Hamiltonian and τ being
an index for the different fermion quantum states (orbital, spin,
and site) within the impurity, which here has been written out
explicitly.

B. From Anderson impurity Hamiltonian to
impurity Green’s function

Once the Anderson impurity Hamiltonian is known, the
ground state of this Hamiltonian is obtained and the impurity
Green’s function [Gc(ω)] is calculated. This step is discussed
in more detail in the next section. Here we just state that the
resulting impurity Green’s function can be expressed as

Gc(ω) = 1

ω − αc
1 − ∑Nc

j=1
βc

j
2

ω−αc
j+1

, (4)

with αc
i and βc

i numerical values defining the Green’s function.
Nc defines the number of poles in the impurity Green’s function
and should be at least as large as the number of poles in the

bath Green’s function and probably even slightly larger. In the
current paper we use Nc = 1000.

C. From impurity and bath Green’s function
to impurity self-energy

From the bath Green’s function and the impurity Green’s
function, one can calculate the impurity self-energy [2–14]:

�c(ω) = Gb(ω)−1 − Gc(ω)−1. (5)

Using the previous definitions of Gb(ω) and Gc(ω) this yields

�c(ω) = αc
1 − αb

1 +
Nc∑
j=1

βc
j

2

ω − αc
j+1

−
Nb∑
j=1

βb
j

2

ω − αb
j+1

, (6)

which can be regrouped as

�c(ω) = α�
1 +

N�∑
j=1

β�
j

2

ω − α�
j+1

, (7)

with α� and β� numerical values defining the self-energy as
a function of ω.

In order for the self-energy to represent a physical quantity,
β�

j

2
must be larger than zero. This is fulfilled if for any pole

at energy αb
j originating from the bath Green’s function there

is a pole originating from the impurity Green’s function at the
same energy (αc

j ′ = αb
j ) with a larger weight (βc

j ′
2 − βc

j
2 > 0).

For calculations with infinity precision math and Nc → ∞,
this is the case and the self-energy will be physical. In real
calculations with Nb of the order of several hundred and with
computers with 16 digits accuracy, this will not be the case.
The self-energy can be made physical by merging poles with a
negative weight with poles in the neighborhood. If one orders
the poles representing the self-energy in Eq. (7) such that
α�

j < α�
j+1, then a pole with index j and β�

j

2
< 0 is merged

with the poles j − 1 and j + 1. The weight (β2) and energy
(α) of the new poles is chosen such to conserve locally the
zeroth and first moment and only introduce small errors in the
higher moments. The removal of the pole with the smallest
weight is done first and this is repeated until all poles have a
positive weight. This procedure reduces the number of poles in
the self-energy (N�) to a maximum of the number of poles in
the impurity Green’s function (Nc). The number can be smaller
if after merging a pole with negative weight with a neighbor
pole the result is still negative. Details of this procedure are
presented in Appendix F.

D. From impurity self-energy and noninteracting Green’s
function to the new bath Green’s function

The new bath Green’s function can be calculated by the
noninteracting Green’s function G0(ω) and the impurity self-
energy �c(ω). We take

G0(ω) = 1

ω − α1 − ∑N0
j=1

β2
j

ω−αj+1

, (8)

with αj and βj numerical values defining the noninteracting
Green’s function which is represented by N0 + 1 discrete
poles as the resolvent of an Anderson impurity matrix. The
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relation between the representation given here and the density
of states as one would obtain in a DFT calculation is given in
Appendix B. The new bath Green’s function can be obtained
from the self-energy and the noninteracting Green’s function:

Gnew
b (ω) = 1

ω − α1 − ∑N0
j=1

β2
j

ω−αj+1−�c(ω)

= 1

ω − α1 − ∑N0
j=1

β2
j

ω−αj+1−α�
1 −∑N�

j ′=1

β�
j ′

2

ω−α�
j ′+1

. (9)

The sum over j and j ′ can be simplified and combined into
a single sum by the diagonalization of the Anderson impurity
matrix (N0 times, for j = 1 to j = N0):

j (N�+1)∑
j ′=(j−1)(N�+1)+1

βb
j ′

2

ω − αb
j ′+1

= β2
j

ω − αj+1 − α�
1 − ∑N�

j ′=1

β�
j ′

2

ω−α�
j ′+1

. (10)

The resulting bath Green’s function is

Gnew
b (ω) = 1

ω − αb
1 − ∑Nb

j=1
βb

j

2

ω−αb
j+1

, (11)

with αb
1 = α1 and βb

j and αb
j numerical values obtained from

Eq. (10). The number of poles in the new bath Green’s function
(Nb) is equal to N0 × (N� + 1), which can become so large
that it is problematic in further calculations. The reduction of
the number of poles in Gnew

b is discussed in Appendix F.
The calculation of the new bath Green’s function, by adding

the self-energy to the noninteracting Green’s function as
presented in Eq. (9), feels slightly different from the algorithm
presented in most papers [8,55]. The current algorithm does
not require the explicit calculation of a local Green’s function.
The simplification of Eq. (9) furthermore only requires matrix
diagonalization, a standard and numerical stable algorithm.
During the entire self-consistency loop the Green’s functions
are defined as a discrete sum of poles with zero broadening.
The resulting bath Green’s function is given by a set of poles
whose energy and weight can be different from the starting bath
Green’s function. Nevertheless, Gnew

b (ω) has the same form as
Gb(ω) from which the first step of the DMFT self-consistency
loop started. After the calculation of Gnew

b one can restart the
loop until convergence is reached.

III. IMPURITY SOLVER

The dynamical mean-field self-consistency loop requires
one to solve an Anderson impurity model. The Anderson
impurity Hamiltonian can be represented as a matrix. The
ground state (ψ0) is given as the eigenfunction of this matrix
with the lowest eigenenergy. Once the ground state has been
calculated, the Green’s function is defined as

G(ω) = g+(ω) − g−(−ω)∗, (12)

with

g+(ω) = lim

→0+

〈ψ0|ai

1

ω − HA + i

2

a
†
i |ψ0〉 (13)

and

g−(ω) = lim

→0+

〈ψ0|a†
i

1

ω − HA + i

2

ai |ψ0〉. (14)

Here a
†
i (ai ) creates (annihilates) an electron at the impurity

site.
The definition of the Green’s function requires one to

calculate (twice) the resolvent of the Hamiltonian, which, in
general, is a computationally involved task. For the special
case where the Hamiltonian is tridiagonal, with ϕ0 = a

†
i |ψ0〉

(ϕ0 = ai |ψ0〉) the first element of the matrix, calculating its
resolvent is trivial and can be written as a continued fraction:⎛

⎜⎜⎜⎜⎜⎜⎝

ω − a1 −b1 0 0 0
−b1 ω − a2 −b2 0 0

0 −b2
. . .

. . . 0

0 0
. . .

. . . −bn

0 0 0 −bn ω − an+1

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

[1,1]

= 1

ω − a1 − b2
1

ω−a2− b2
2

ω−···

. (15)

Creating the Hamiltonian in tridiagonal form is done using a
Lanczos algorithm, which creates the Krylov basis as

ϕn = Hna
†
i |ψ0〉. (16)

After orthonormalization, the Hamiltonian is tridiagonal on
this basis and the Green’s function can be obtained using
Eq. (15).

Although the Lanczos algorithm works great on large
sparse matrices, the problem encountered for an impurity
coupled to a partially filled band has not been generally
solved. The reason is the exponentially fast growing number
of basis states needed. If one works on a basis of single
Slater determinants, then the number of Slater determinants
needed for a half-filled band approximated by 300 poles is
[300!/(150!)2]2 ≈ 8.8 × 10177. Storing a single vector of this
format is far beyond reach of any computational method.
Luckily, one can reduce the number to far below 109, which can
be handled with current computers. This can be done because
not all of the 10177 determinants are equally important. The
state where in a solid all electrons sit in one corner of the
crystal and the rest of the crystal has no electrons is so high
in energy and so unlikely that one can safely neglect it in the
calculation. The method used here searches for the 109 most
important determinants in the total space available and uses
these to represent the ground state.

The amount of optimization possible depends highly on the
Hamiltonian as well as on the one-particle orbitals used to
create the Slater determinants. Optimization works generally
better when the Hamiltonian spreads over a larger energy scale,
with more or less empty and occupied orbitals. Although
this is not something one can choose, nature often provides
one with a separation of energy scales. Most solids have a
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separation in bands according to their atomic orbital character.
The different character of bands can be used and for real
calculations optimizing the one-particle orbitals can mean the
difference between a trivial and an impossible calculation.

The importance of the optimization of the one-electron
orbitals used in the calculation becomes clear if one looks
at a noninteracting system. For the case of noninteracting
electrons, one can easily write down the ground state as a
single Slater determinant, which is a product of all Bloch waves
with energies smaller than the Fermi energy. If one would not
choose the Bloch waves as the one-particle basis, but some
local orbital basis, then each orbital can be partially occupied
and an exponential growing number of Slater determinants is
needed as a function of system size.

For correlated systems, the one electron basis that leads to
a ground state that can be represented by a minimal number
of Slater determinants, is a basis based on natural orbitals.
This is a one-particle basis set defined such that the density
matrix for the ground state of the many-body Hamiltonian is
diagonal. The disadvantage of such a basis set is that one can
only obtain it after the ground-state calculation is finished.
As all our calculations are done iteratively, this is not a real
problem and an optimal basis set is determined together with
the ground state.

For fully correlated systems we do not know better single
Slater determinant basis sets than the natural orbital basis
set. For impurity models, where only a few orbitals have
full correlations and the others are treated on a (dynamical)
mean-field level, the introduction of natural orbitals mixes
correlated and mean-field approximated sites. This is not
convenient as it complicates the Hamiltonian and results in
a fully correlated problem. We therefore only allow basis
rotations within the correlated orbital set and within the
mean-field approximated orbital set, but do not mix these two
different orbital sets.

In order to realize an optimized basis without mixing
correlated and uncorrelated fermions, we need to define a way
to rotate the one-particle basis of the bath and impurity such
that a minimum number of Slater determinants is needed in the
full many-body calculation without mixing the bath orbitals
with the impurity orbitals. In Fig. 1 we show three different
possible representations of the impurity problem, which are
related to each other by a unitary transformation of the bath
orbitals.

The representation as shown in Fig. 1(a) has the advantage
that bath orbitals with a high onsite energy are basically empty
and bath orbitals with a low energy are basically fully occupied.
The disadvantage is that each bath orbital directly interacts
with the impurity site and therefore is important. One can
make a unitary transformation of the bath sites and change
the bath geometry such that the impurity site only interacts
with one bath orbital, which again interacts with one other
bath orbital, etc., as shown in Fig. 1(b). In this geometry the
bath orbitals further away from the impurity are less important
than those close to the impurity. Each bath orbital is partially
occupied and the ground state is given by an exponential
growing number of Slater determinants when the number of
bath sites is increased. The solution is to couple the impurity
to two separate chains, one representing the occupied states
of the bath and one representing the unoccupied states of the

bath. In order to be able to choose any filling of the impurity
and still only have fully occupied or fully empty states, one
needs an additional bath site, which for an impurity with a
filling of n has a filling of 1 − n. The resulting total number
of electrons is always integer. This bath geometry is shown in
Fig. 1(c).

Within our calculations we obtain a similar geometry as
shown in Fig. 1(c) automatically. We require the density matrix
of the impurity as well as the density matrix of the bath to be
diagonal. In order to reach this situation, we need a starting
point, which allows one to calculate the ground state and
density matrix of a basis including hundreds of orbitals. We
therefore define a noninteracting reference system which gives
a good starting point. Using this reference basis leads exactly
to the bath geometry as shown in Fig. 1(c). In Appendix E we
discuss the transition between the different representations in
more detail.

IV. RESULTS

A. Dependence on U and number of bath sites

In order to test the algorithm as described in the previous
two sections, we calculate the Hubbard model on a Bethe
lattice for different values of the Coulomb interaction U . The
obtained impurity Green’s function can be seen in Fig. 2. The
impurity Green’s functions are represented by a sum of Nc

δ functions at some energy and with some weight, such that
their sum in the limit where Nc goes to infinity represents the
continuous Green’s function. The plotted spectra are created by
replacing the sum over δ functions by a sum over Lorenzians.
The spectra in the top row are a sum of Lorenzians with a
full width at half maximum of 
 = 0.01; the spectra in the
bottom row are created from a sum of Lorenzians with a full
width at half maximum of 
 = 0.1. From left to right we show
calculations including 3, 11, 31, 101, and 301 bath sites. Each
panel shows calculations for U = 0 to 2 in steps of 0.25 in
units of the bandwidth.

For U equal to zero, the impurity Green’s function has
exactly the same number of poles as the bath Green’s function.
For large U , the number of poles in either the upper or the lower
Hubbard band is, again, roughly equal to the number of poles
in the bath Green’s function, although the total number of
poles in the impurity Green’s function, in principle, is allowed
to be much larger. Numerically, it turns out that in the large U

limit, from the 1000 poles we include in the impurity Green’s
function, only a fraction, roughly equal to the number of poles
in the bath Green’s function, carries appreciable weight.

The calculations show a systematic convergence with
increasing numbers of poles in the bath Green’s function. For
large and small values of U the increase in number of poles
enhances the spectral resolution. In order to get continuous
spectra, one needs to broaden by a Lorentzian with full width
at half maximum equal to three times the bandwidth divided by
the number of poles in the bath Green’s function. The inclusion
of 300 poles in the bath Green’s function thus allows one to
get a spectral resolution of 1% of the band width.

Close to the metal-insulator transition there are substantial
differences when the number of poles in the bath Green’s
function is enhanced. With only 3 poles in the bath Green’s
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FIG. 2. (Color online) All panels show the DMFT impurity Green’s function for different values of U ranging from 0 to 2 in steps of 0.25
in units of the bandwidth of G0. The different columns show the spectral function for 3, 11, 31, 101, or 301 poles in the bath Green’s function
and thus sites in the Anderson impurity calculation. The impurity Green’s function in all calculations consists of 1000 poles. The panels in the
top row show the spectral functions broadened with a Lorentzian of full width at half maximum 0.01. The panels in the bottom row show the
same spectral functions as the top row, but broadened with a Lorentzian of full width at half maximum 0.1.

function, we find the metal-insulator transition to take place
between U = 0.5 and U = 0.75. With 11 poles the transition
takes place between U = 1.0 and U = 1.25. For 31 and 101
bath sites the transition takes place between U = 1.25 and
U = 1.5. For 301 bath sites we even find a metallic solution
for U = 1.50 [77]. In principle, there is a large range of values
of U where one can find both a metallic and an insulating
solution. The calculations here always started from a metallic
bath Green’s function. When both solutions are possible we
show the metallic solution. The fact that the metal-insulator
transition is reduced in U when fewer poles are included in
the bath Green’s function becomes clear if one looks at the
approximations made. Due to the discretization of the bath
Green’s function, the system considered, in principle, always
becomes an insulator, with a gap equal to the bandwidth
divided by the number of poles considered. The smaller the
number of poles considered, the larger is the gap in the bath
Green’s function. Coulomb repulsion enhances this gap. The

enhancement of the gap due to correlations is more effective
if one already starts with a reasonably large gap for the
uncorrelated system.

B. Comparison to literature

The calculations of the dynamical mean-field solution of
the Hubbard model on the Bethe lattice can be compared to a
huge amount of literature data. We here include three examples
explicitly. For the metallic cases we compare the ED to the
NRG results as obtained by Bulla et al. [23–27]. NRG in
this case is a highly efficient method and the comparison thus
provides a stringent test on the current method. We furthermore
compare our ED to QMC calculations. We used both the HF
algorithm as well as the CT algorithm as implemented in the
TRIQS package [45,46,78]. In order to avoid the analytical
continuation of the QMC spectra from the imaginary to the real
axis, we transformed our results to the imaginary time axis. In
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the third section we compare to analytically known sum rules
for the Green’s function and self-energy of a Hubbard model
on a Bethe lattices solved within the DMFT approximation.

1. Comparison to NRG results

In Fig. 3 we show a comparison between our results ob-
tained with ED and the results obtained by Bulla et al. [23–27]
using NRG. We find the position and weight of the upper
Hubbard band, the lower Hubbard band, and the quasiparticle
peak to be extremely similar. However, there are evidently two
differences.

First, the ED results show extra wiggles, almost like
noise, compared to the NRG calculations. Such extra features
have been reported before, but no full interpretation nor
understanding exists [36,77,79–82]. It has been shown that for
an antiferromagnetic solution the upper and lower Hubbard

(units of band width)
-2 -1 0 1 2

-I
m

[
(

)]
G

U=0.00

U=0.50

U=1.00

U=1.25

Nb=301

-2 -1 0 1 2 -2 -1 0 1 2
(units of band width) (units of band width)

-I
m

[
(

)]
G

=0.01

Nb=301 =0.2

FIG. 3. (Color online) Comparison between the NRG results as
obtained by Bulla et al. [23–27] (solid curves with red thin lines) and
our calculations (thick blue lines) for U = 0.0, 0.5, 1.0, and 1.25. Top
panel show a Lorentzian broadening of full width at half maximum
of 0.01; bottom panels show a Lorentzian broadening of full width at
half maximum of 0.2 on both the ED and NRG results (left) or only
the ED results (right).

bands show magnon sidebands [53]. For the paramagnetic
solution it is not obvious that these features (paramagnon
sidebands) should exist as well. In our calculations these
wiggles are most probably related to numerical instabilities in
the Lanczos algorithm. The use of iterative schemes including
Lanczos, as well as the use of tridiagonal matrices to represent
the Green’s function, can lead to numerical instabilities when
using finite precision math. This is not just a problem of ED,
but is a numerical challenge for any method using a Krylov
basis set on which the Hamiltonian is tridiagonal. All of these
methods should take care to prevent number loss within the
algorithm when creating the Krylov basis.

Second, the ED results are sharper at the high-energy side
of the upper and lower Hubbard bands. These spectra still have
a tail that decays for ω → ∞, but with much smaller spectral
weight. The NRG results are obtained on a logarithmic mesh;
therefore, the accuracy close to the Fermi energy is higher than
the accuracy of the Hubbard bands. In practice, this can be
overcome by an additional broadening at higher frequencies.
If one compares the NRG results to our results broadened by a
Lorentzian of full width at half maximum of 0.2 the agreement
at the Hubbard bands is perfect, as can be seen in the bottom
panels of Fig. 3. The overall agreement between our ED results
and the NRG results is considerably good.

2. Comparison to QMC results

In order to further compare our numerical results, we
performed QMC calculations. They are performed at an inverse
temperature of β = 200 in units of the band-width of G0. The
spin-up and spin-down Green’s functions are averaged in order
to force a paramagnetic solution. The HF [83,84] calculations
use 1600 steps in β for 1.0 � U � 2.0 and 1200 steps for
0.0 � U � 0.75. In the case of CT QMC calculations, 10 000 τ

points (1025 Matsubara frequencies) were used to sample G(τ )
[G(iω)], respectively. For both the HF and the CT QMC, it was
ensured that the Green’s function obeys the correct asymptotic
behavior (noise reduction of the numerical data). The ED and
NRG results are obtained at β → ∞, i.e., at 0 K, but the QMC
ones are obtained at finite temperature. The former Green’s
function is the ground-state expectation value, whereas the
latter represents the statistical average at finite temperature,
which does lead to differences in the metallic regime close
to the metal-insulator transition. In order to transform the
real-frequency results to the imaginary time axis, we included
a fictitious temperature (βf = 200) in the transformation.

In the left panel of Fig. 4 we show our ED results, the
QMC results, and the NRG results for U = 0 to U = 2 in
steps of 0.25. They seem to agree well. (Note that one cannot
distinguish the four lines plotted in the left panel of Fig. 4.)
In imaginary time Green’s functions the spectral complexity
is encoded in the fine details. Hence, one should compare
the differences between the three Green’s functions obtained
by different methods in more detail. In the right four panels
of Fig. 4 we show the difference between G(τ ) calculated
with (1) ED and CT-QMC, (2) ED and HF-QMC, (3) NRG
and CT-QMC, and (4) NRG and HF-QMC. One should first
observe that up to the statistical accuracy with which the QMC
calculations have been preformed the HF and the CT algorithm
give the same results. For the metallic cases the differences
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FIG. 4. (Color online) Comparison between the QMC calculations obtained with the CT (TRIQS package [45,46,78]) or HF algorithm and
the ED or NRG (Bulla et al. [23–27]) results for U = 0.0 to U = 2.0 in steps of 0.25. From left to right we show G(τ ) calculated with the four
different methods, the difference between our method and CT-QMC, the difference between our method and HF-QMC, the difference between
NRG and CT-QMC, and the difference between NRG and HF-QMC. The difference plots are multiplied by a factor of 100 (20 for U = 1.25)
compared to the plots in the left panel.

between our ED calculations and QMC calculations become
larger if one gets closer to the metal-to-insulator transition.
The same behavior is true for the comparison between NRG
and QMC. This is not related to numerical problems in either
of the two methods, but to the fact that the QMC calculations
are preformed at finite temperature (β = 200), whereas the ED
and the NRG results have been obtained at exactly 0 K. The
critical Uc decreases with temperature up to the critical point;
hence, at finite temperature the metal-to-insulator transition
occurs for lower U values than at T = 0 K [85]. In fact, with
increasing U one notices that in QMC the spectral weight
at the Fermi level in the metallic regime gets smaller than
in ED/NRG [G(β/2) ∝ A(w = 0)]. For the insulating case
we basically find, up to the statistical accuracy with which
the QMC calculations are preformed, agreement between all
different methods shown. Comparing with QMC and NRG we
find that the method works well. Note that the small differences
between QMC and NRG at τ = 0 are due to the coarse mesh
of the NRG data at large ω, which introduce problems in the
transformation from real frequency to imaginary time.

3. Comparison to analytical moment and
bath hybridization sum rules

Several analytical sum rules exist that relate the first four
moments of the impurity Green’s function, the first two
moments, and an additional constant of the self-energy, as
well as the first four moments of the bath Green’s function, to
analytically known expressions [86–91]. Furthermore, Koch
et al. [55] showed that the total hybridization between the
impurity and the bath is related to the first and second moments
of the noninteracting Green’s function. Their relations in our
present notation become particularly transparent. Given the
noninteracting Green’s function G0(ω) as defined in Eq. (8)

and the bath Green’s function Gb(ω) as defined in Eq. (1)
the hybridization sum rule states that a1 of the noninteracting
Green’s function is equal to ab

1 of the bath Green’s function.
Our implementation of the self-consistency loop as shown in
Sec. II and particularly Eq. (9) guarantees that this sum rule is
exactly fulfilled. The momentum sum rules need to be checked
against their numerical values. They are valid for continuous
Green’s functions and self-energy, but it is a priori not
obvious how the discretization used in the method presented
here influences the moments of the Green’s functions. The
reduction of poles as described in Appendix F, as well as
numerical instabilities, could, in principle, lead to a violation
of these sum rules. Below we show that the moment sum rules
are fulfilled very well with the method presented in this paper.

The moments of a Green’s function (or self-energy) are
defined as

M
(m)
G = 1

π

∫ ∞

−∞
−Im[G(ω)]ωmdω. (17)

Direct numerical evaluation of this integral is difficult due to
problems with number loss. One can rewrite this integral to a
series expansion in 1/ω whose expansion coefficients are given
by M

(m)
G [88]. With the use of the Kramers-Kronig relations,

G(ω) = i

π

∫ ∞

−∞

G(ω′)
ω − ω′ dω′, (18)

one can rewrite the Green’s function as a series expansion in
1/ω,

G(ω) =
∞∑

m=0

M
(m)
G

ωm+1
. (19)
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TABLE I. Comparison of the analytical and numerical moments of the impurity self-energy �c(ω) (top panel) and the impurity Green’s
function Gc(ω) (bottom panel) for 3 (Nb = 3) and 301 (Nb = 301) bath sites and different values of U . The zeroth and first moment of the
Gc(ω) are exactly equal to 0 and 1 for all U and number of bath orbitals. The even rows show the value of the moment, the odd rows show the
difference between the numerical and analytical value.

�c(ω) Analytical Nb = 3 Nb = 301

U U/2 U 2/4 U 3/8 M
(−1)
� M

(0)
� M

(1)
� M

(−1)
� M

(0)
� M

(1)
�

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
−4.9 × 10−31 7.1 × 10−16 −4.7 × 10−19 7.9 × 10−19 6.9 × 10−10 5.8 × 10−10

0.25 0.1250 0.0156 0.0020 0.1250 0.0156 0.0020 0.1250 0.0156 0.0019
0. 1.9 × 10−16 1.8 × 10−17 0. −2.8 × 10−5 −3.5 × 10−6

0.50 0.2500 0.0625 0.0156 0.2500 0.0625 0.0156 0.2500 0.0625 0.0156
1.1 × 10−16 3.6 × 10−16 9.0 × 10−17 0. −3.6 × 10−5 −9.2 × 10−6

0.75 0.3750 0.1406 0.0527 0.3750 0.1406 0.0527 0.3750 0.1406 0.0527
1.1 × 10−16 2.7 × 10−17 1.3 × 10−16 0. −5.4 × 10−5 −2.0 × 10−5

1.00 0.5000 0.2500 0.1250 0.5000 0.2500 0.1250 0.5000 0.2500 0.1250
0. 8.3 × 10−16 5.8 × 10−16 2.2 × 10−16 −2.1 × 10−5 −1.0 × 10−5

1.25 0.6250 0.3906 0.2441 0.6250 0.3906 0.2441 0.6250 0.3907 0.2442
0. −7.7 × 10−16 −5.0 × 10−16 0. 4.5 × 10−5 2.8 × 10−5

1.50 0.7500 0.5625 0.4219 0.7500 0.5625 0.4219 0.7500 0.5625 0.4219
0. 1.7 × 10−15 1.1 × 10−15 0. −9.9 × 10−6 −7.4 × 10−6

1.75 0.8750 0.7656 0.6699 0.8750 0.7656 0.6699 0.8750 0.7656 0.6699
0. −2.3 × 10−15 −8.8 × 10−16 0. −3.7 × 10−6 −3.2 × 10−6

2.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0. −1.5 × 10−15 −1.1 × 10−15 0. −5.5 × 10−6 −5.5 × 10−6

Gc(ω) Analytical Nb = 3 Nb = 301

U U/2 1/16 + U 2/2 3U/32 + U 3/2 M
(1)
Gc

M
(2)
Gc

M
(3)
Gc

M
(1)
Gc

M
(2)
Gc

M
(3)
Gc

0.00 0.0000 0.0625 0.0000 0.0000 0.0625 0.0000 0.0000 0.0625 0.0000
−4.9 × 10−31 7.2 × 10−16 2.7 × 10−30 6.6 × 10−18 −1.6 × 10−7 2.9 × 10−9

0.25 0.1250 0.0938 0.0313 0.1250 0.0938 0.0313 0.1250 0.0937 0.0312
0. 2.2 × 10−16 6.9 × 10−17 0. −2.5 × 10−5 −9.6 × 10−6

0.50 0.2500 0.1875 0.1094 0.2500 0.1875 0.1094 0.2500 0.1875 0.1093
1.1 × 10−16 4.7 × 10−16 3.5 × 10−16 0. −3.6 × 10−5 −2.7 × 10−5

0.75 0.3750 0.3438 0.2813 0.3750 0.3438 0.2813 0.3750 0.3437 0.2812
1.1 × 10−16 1.1 × 10−16 2.2 × 10−16 1.1 × 10−16 −4.8 × 10−5 −5.4 × 10−5

1.00 0.5000 0.5625 0.5938 0.5000 0.5625 0.5938 0.5000 0.5625 0.5937
0. 8.9 × 10−16 1.6 × 10−15 1.1 × 10−16 −2.6 × 10−5 −3.8 × 10−5

1.25 0.6250 0.8438 1.0938 0.6250 0.8437 1.0937 0.6250 0.8438 1.0938
0. −6.7 × 10−16 −1.3 × 10−15 1.1 × 10−16 4.2 × 10−5 7.8 × 10−5

1.50 0.7500 1.1875 1.8281 0.7500 1.1875 1.8281 0.7500 1.1875 1.8281
0. 1.8 × 10−15 4.0 × 10−15 1.1 × 10−16 −1.1 × 10−5 −2.4 × 10−5

1.75 0.8750 1.5938 2.8438 0.8750 1.5937 2.8437 0.8750 1.5937 2.8437
0. −2.2 × 10−15 −4.9 × 10−15 0. −3.5 × 10−6 −9.2 × 10−6

2.00 1.0000 2.0625 4.1875 1.0000 2.0625 4.1875 1.0000 2.0625 4.1875
0. −1.8 × 10−15 −4.4 × 10−15 0. −6.3 × 10−6 −1.9 × 10−5

The Green’s functions in our method are represented by a
sum over poles as

G(ω) =
∑

i

β2
i

ω − αi

. (20)

In order to calculate the moments of this Green’s function we
create a Laurent series of G(ω):

G(ω) =
∞∑

m=0

∑
i

β2
i α

m
i

ωm+1
. (21)

The moments of the Green’s function can thus be expressed in
term of αi and βi , which are used as numerical values to store

the Green’s function:

M
(m)
G =

∑
i

β2
i α

m
i . (22)

The analytical expressions for the moments of the Green’s
function of a one-band Hubbard model on a Bethe lattice with
W = 1, solved within the DMFT approximation, are

Gc(ω) = 1

ω1
+ U/2

ω2
+ 1/16 + U 2/2

ω3

+ 3U/32 + U 3/2

ω4
+ O

(
1

ω

)5

,
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M
(0)
Gc

= 1,

M
(1)
Gc

= U/2, (23)

M
(2)
Gc

= 1/16 + U 2/2,

M
(3)
Gc

= 3U/32 + U 3/2.

For the self-energy they are

�c(ω) = U/2

ω0
+ U 2/4

ω1
+ U 3/8

ω2
+ O

(
1

ω

)3

,

M
(−1)
�c

= U/2,
(24)

M
(0)
�c

= U 2/4,

M
(1)
�c

= U 3/8,

where we defined M
(−1)
�c

as the prefactor of 1/ω0 in the series
expansion in 1/ω.

In Table I we compare our numerical results with the
analytical values. The top half of the table shows the moments
of the self-energy; the bottom half shows the moments of
the impurity Green’s function. The calculations are done for
U = 0 to U = 2.0 in steps of 0.25 the same steps as used
for the spectra shown in Fig. 2. We show calculations for
Nb = 3 and Nb = 301. The even rows show the analytical and
numerical moments; the odd rows show the difference between
the numerical and analytical values. The first moment of the
Green’s function is not included as this is exactly equal to 1
for all calculations. We find that already for three bath sites
there is perfect (down to the numerical precision possible in a
computer ∼10−16) agreement between our numerical and the
analytical results. It might be surprising that the moments are
represented so well, whereas the spectra (see the left panels
of Fig. 2) are not converged in the number of bath sites: For
Nb = 3 we find roughly two peaks per Hubbard band and
a transition to the insulating state at much too low values
of U . This shows once again that the moments of a Green’s
function can be used as a criteria to falsify a numerical method,
but even if a numerical method has several moments of the
Green’s function correct it does not imply that the method
works. It might come as a surprise that the moments of the
Green’s function are better reproduced with Nb = 3 (15 digits
correct) than with Nb = 301 (5 digits correct). This is most
probably related to number loss in the calculations, which is
a larger concern when more bath states are included and also
probably the reason why increasing the basis to include 1001
bath orbitals did not improve the spectral function further. In
any case, we can conclude that the analytically known values
for the first four moments of the Green’s function and the two
moments of the self-energy as well as the constant offset in
the self-energy are well reproduced in our method.

V. CONCLUSION

In this paper we present an efficient ED-based real-
frequency solver for the general Anderson impurity problem
and DMFT. It alleviates the exponential increasing Hilbert
space encountered by conventional ED algorithms as a
function of the number of bath sites. A specific bath geometry

is realized upon which basis set optimization can be applied.
The restricted Hilbert space allows calculations including a few
hundred bath sites at moderate cost, which solve for spectral
functions with energy resolution better than 1/O(102) of the
bandwidth. Good agreement with other methods including
NRG, HF-QMC, and CT-QMC is obtained for model systems
over a wide parameter space.
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APPENDIX A: NOTATION

In the main paper as well as in the appendixes we use τ

as an index for the different fermion quantum states (spin,
orbital, site) within the impurity. Nτ is the total number of
these degrees of freedom. In most equations the sum over τ

is suppressed. For example, let α be an Nτ by Nτ matrix with
elements ατ,τ ′ , then

αa†a ≡
Nτ ,Nτ∑
τ,τ ′

ατ,τ ′a†
τ aτ ′ . (A1)

The same notation and suppression of internal degrees of
freedom are used for the bath sites.

The sum of a scalar and a matrix is used as a shorthand for
the sum of a scalar times the identity matrix. The inverse of
a matrix is given by a fraction and the resolvent of a matrix
is assumed to be taken such that the poles are in quadrants III
and IV. In formula this is

1

ω − α
≡ lim

η→0+

1

ωI − α + iη
, (A2)

with I an Nτ -by-Nτ identity matrix and α a general Nτ -by-Nτ

matrix.
The square of a matrix, divided by another matrix should

be read as the product of three matrices:

β2

ω − α
≡ β† 1

ω − α
β , (A3)

with α and β Nτ -by-Nτ matrices.
We define sites as a set of one-electron states that arise from

the quantization of the bath Green’s function. The term site is
chosen because for a finite size tight binding lattice model
this quantization can be taken to overlap with the real sites
in the lattice model. As stated above, each site (including the
impurity) can have additional degrees of freedom labeled by
τ . The impurity site is labeled by i, the bath sites are labeled
by bj or by b, vj , and cj . One-electron states are defined by
creating an electron at a given site: a

†
i or a

†
bj

for impurity
or bath sites. We recombine bath sites to optimize our basis
and bath geometry. The relation between the new (bς ) and
old (bj ) sites is given by a unitary rotation matrix U with
element uj ;ς such that a

†
bς

= ∑
j uj ;ςa

†
bj

. A given filling of
these sites defines a single Slater determinant function labeled
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by φ. For N electrons, the set of Slater determinants is given
by all subsets Di of length N of the possible fermions (τ ) at
either the impurity (i) or the bath (bj ) sites:

|φi〉 = �γ∈Di
a†

γ |0〉. (A4)

The operator a†
γ creates a single electron with quantum

numbers (τ , i, bj ) indexed by γ . The Slater determinant φi

thus represents a state with N electrons. Given a set of Slater
determinants, one can define the ground state ψ as a linear
combination of these many-electron determinants,

ψ =
∑

i

αiφi, (A5)

with αi numerical factors defining the state and
∑

i |αi |2 = 1
to normalize the state. We use, generally, ψ to label a many-
Slater-determinant eigenstate on a given basis and ϕ to label
a many-Slater-determinant basis state, which is part of the
Krylov basis of the Hamiltonian starting from a specific state.

APPENDIX B: TRANSFORMATIONS BETWEEN
DIFFERENT REPRESENTATIONS OF

THE GREEN’S FUNCTION

In this paper the Green’s function (and self-energy) is
expressed as an analytical function involving the sum over
αi and βi , with βi related to the spectral weight and αi related
to the energy of the poles. We use different representations of
the Green’s function in different parts of the code. The Lanczos
algorithm produces the Green’s function as a continued
fraction, Eq. (B13). The DMFT self-consistency loop is written
using the Green’s function as a sum over poles, Eq. (B2), and
as the inverse of the sum over several poles, Eq. (B10). In all
cases the Green’s function can be represented as the resolvent
of a matrix (H ) and transformations between the different
representations of the Green’s function are unitary matrix
transformations of this matrix. The basis of the matrix H can
be interpreted as sites and H as the Hamiltonian determining
the onsite energy and hopping of a single-electron between
different sites.

The Green’s functions are always represented as a set of
δ functions. Only when the Green’s function is plotted, after
the full self-consistency is reached, we broaden the Green’s
function. (Replace the sum over δ functions by a sum over
Lorentzians.) In Fig. 2 we show two different Lorentzian
broadenings [full with at half maximum of 0.01 (top) and
0.1 (bottom)]. The transformation to the imaginary axis as
shown in figure 4 is done without a broadening on the Green’s
function. The transformation from the real to imaginary axis
involves an integral of a kernel times the Green’s function,
which can be performed straightforwardly when the Green’s
function is given as a list of δ functions at energy αi and
weight β2

i .
In this section we discuss the transformations between the

different representations in more detail. If one starts from
a density functional theory calculation, the noninteracting
Green’s function is often only known by the spectral function
or density of states represented by a list of energies and

intensities (Ak,ωi,k
). This defines the Green’s function as

G(ω) = lim
η→0+

∑
k,i

Ak,ωi,k

ω − ωi,k + iη
. (B1)

Combining the sum over momenta (k) and quantized energies
ωi,k into a single sum and rewriting the numerical parameters
as αi and βi , we get

G(ω) =
N∑

i=1

β2
i

ω − αi

. (B2)

We would like to find a matrix whose resolvent is equal to this
Green’s function, such that numerical operators on the Green’s
function can be implemented as matrix operations. In order to
do this we define the matrix

He =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1 0 0 0 0
0 α2 0 0 0

0 0
. . . 0 0

0 0 0
. . . 0

0 0 0 0 αN

⎞
⎟⎟⎟⎟⎟⎟⎠

(B3)

and the vector

χ0 = {β1,β2, . . . ,βN−1,βN }. (B4)

Using He and χ0, the Green’s function is defined as the inner
product of χ0 and the resolvent of He:

G(ω) = 〈χ0| 1

ω − He

|χ0〉. (B5)

Transformations between different representations of the
Green’s function as shown for example in Fig. 1 can now
be written as matrix transformations on He:

G(ω) = 〈Uχ0| 1

ω − U †HeU
|Uχ0〉. (B6)

In order to define the different unitary transformations U that
relate the Green’s function in the representation as shown
in Eq. (B2) to the Green’s function in the tridiagonal or
Anderson representation as depicted in Fig. 1 we take two
steps. In the first step we create H1, which is a dense matrix
whose top leftmost element of the resolvent represents the
Green’s function. In the second step we apply a unitary matrix
transformation on the elements 2 to N of H1 to obtain the
Green’s function represented by a tridiagonal (Ht ) or Anderson
(HA) Hamiltonian. In the first step we define U1 such that

H1 = U
†
1HeU1,

with

U1χ0 = {1,0,0, . . . ,0},
and

G(ω) =〈{1,0, . . . ,0}| 1

ω − H1
|{1,0, . . . ,0}〉

=(ω − H1)−1
[1,1], (B7)

whereby the exponent in the last equation represents a matrix
inversion and the subscript [1,1] represents the element at
position 1 after the matrix inversion. H1 is a dense matrix of
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dimension N by N with N equal to the number of poles in the
Green’s function as defined in Eq. (B2). The elements of H1

are given as

h
(1)
i,j = 〈χj |He|χi〉, (B8)

with χ0 = {β1,β2, . . . ,βN−1,βN } as defined in Eq. (B4) and χi

for 1 � i < N obtained from a Gram-Schmidt orthonormal-
ization of a set of unit vectors that span the basis of He.

The Anderson representation of the Green’s function where
the site under consideration interacts with N − 1 noninteract-
ing other sites is given by the Hamiltonian

HA =

⎛
⎜⎜⎜⎜⎜⎜⎝

αA
1 βA

1 βA
2 . . . βA

N−1
βA

1 αA
2 0 0 0

βA
2 0

. . . 0 0
... 0 0

. . . 0
βA

N−1 0 0 0 αA
N

⎞
⎟⎟⎟⎟⎟⎟⎠

(B9)

and the corresponding Green’s function is given as

G(ω) = 1

ω − αA
1 − ∑N−1

i=1
βA

i

2

ω−αA
i+1

. (B10)

The unitary transformation relating the Hamiltonian HA

in Eq. (B9) to H1 as defined in Eq. (B8) is given by the
eigenvectors of H ′

1 with the elements of H ′
1 defined as

h
′(1)
i,j = (1 − δi,0)(1 − δ0,j )h(1)

i,j . (B11)

A different unitary transformation of H1 can lead to the
representation of the Green’s function where the site under
consideration interacts with exactly one other site, which in
turn interacts with one more site, building a one-dimensional
chain of interactions. The Hamiltonian in this case is given by

Ht =

⎛
⎜⎜⎜⎜⎜⎜⎝

αt
1 βt

1 0 0 0
βt

1 αt
2 βt

2 0 0

0 βt
2

. . .
. . . 0

0 0
. . .

. . . βt
N−1

0 0 0 βt
N−1 αt

N

⎞
⎟⎟⎟⎟⎟⎟⎠

(B12)

and the Green’s function is given as

G(ω) = 1

ω − αt
1 − βt

1
2

ω−αt
2−

βt
2

2

ω−···

. (B13)

Ht is the tridiagonal form of H1 whose elements are defined in
Eq. (B8). This tridiagonal matrix is obtained by a standard
Lanczos tridiagonalization routine. (See Appendix C and
references therein.)

APPENDIX C: LANCZOS

There are several good review articles around describing the
Lanczos algorithm [52,92]. In general, we would not advise to
implement the complete Lanczos routines itself, but to use one
of the libraries available [93,94]. In this appendix we provide
a short overview of the basic idea behind the Lanczos routine,
which will help the reader in understanding the implementation
of the Lanczos routines on a sparse, continuously optimized

basis set. The Lanczos routines can be used to find the ground
state of a large sparse matrix. Once the ground state is found,
the same routine can be used to calculate spectral functions,
including the one-particle Green’s function. Here we provide
some information on both procedures.

1. Finding the ground state of a large sparse matrix

The Hamiltonian H can be represented on a basis as a
large, sparse matrix. We can shift the onsite energy of this
matrix such that all eigenvalues are negative. Next we define
an arbitrary, random wave function ϕ0. This wave function can
be written as a linear combination of eigenstates,

ϕ0 =
∑

i

αiψi, (C1)

with ψi eigenstates of H such that

Hψi = Eiψi. (C2)

The states ψi are taken to be ordered such that

Ei � Ei+1 < 0. (C3)

The state ψ0 is the ground state one would like to determine.
The state ϕ1 is defined by the recurrent relation

ϕi+1 = Hϕi√
〈ϕi |H 2|ϕi〉

. (C4)

Besides normalization, ϕ1 is given by

ϕ1 =
∑

i

Eiαiψi. (C5)

As |E0| � |Ei | and Ei < 0 ∀ i, the overlap of ϕ1 with the
ground state ψ0 is larger than the overlap of ϕ0:

|〈ϕ1|ψ0〉| � |〈ϕ0|ψ0〉|. (C6)

Repeatedly applying Eq. (C4) will lead to convergence of ψi

to the ground state: limi→∞ ϕi = ψ0.
Although the above-described algorithm works and is

extreme robust, convergence can be exponentially slow. In
order to improve convergence, we define a Krylov space with
a fraction of the size of the total Hamiltonian and diagonalize
the matrix on this new basis. Starting from a random vector
ϕ0, we define the Krylov basis by the recurrent relations:

˜̃ϕi+1 = Hϕi,

ϕ̃i+1 = ˜̃ϕi+1 − 〈ϕi | ˜̃ϕi+1〉ϕi − 〈ϕi−1| ˜̃ϕi+1〉ϕi−1,

ϕi+1 = ϕ̃i+1√〈ϕ̃i+1|ϕ̃i+1〉
. (C7)

The first step defines the basis according to the idea that Hϕi is
closer to the ground state than ϕi . The second step assures that
ϕi is orthogonal to ϕj for all i �= j . The last step in Eq. (C7)
assures normalization of ϕi .

For large enough Krylov basis sets one can diagonalize
the Hamiltonian in the Krylov basis, which is tridiagonal, and
obtain the ground state of the full Hamiltonian. In practice,
it works better to take moderately large Krylov basis sets
(somewhere between 10 and 100) and obtain the ground state
from the Hamiltonian in this basis. This function is then taken
as the starting point for a new Krylov basis [95–99]. These
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steps are repeated until the state is converged to the ground
state of the full Hamiltonian. A good method to check the
convergence is to test if

|〈ψ0|H |ψ0〉|2 = 〈ψ0|H 2|ψ0〉. (C8)

It is useful to note that numerical stability is an issue in this
algorithm and numerical errors can build up, which should be
dealt with using for example Kahan summation, additional
orthogonalization, and restarting often enough [95–99]. In
order to improve convergence and numerical stability one can
shift the Hamiltonian such that not all eigenstates are negative,
but the zero of energy is closer to the actual ground-state
energy. Furthermore, for systems with a large number of
degenerate eigenstates it can be useful to use a block Lanczos
algorithm where not one, but several eigenstates are created
simultaneously. There is not one single strategy that works
best for all Hamiltonians; therefore, implementations should
change strategy when convergence becomes slow.

2. Calculating spectral functions using Lanczos

In order to calculate spectral or Green’s functions, one
needs to obtain the resolvent of the Hamiltonian projected
to a particular state. In general,

g(ω) = lim

→0+

〈ψ0|T †
i

1

ω − H + i

2

Ti |ψ0〉, (C9)

with T = a (a†,a†
↑a↓, . . .) for the Green’s function related to

photoemission (inverse photoemission, spin susceptibility, ...).
We define

ϕ0 = T ψ0√
〈ψ0|T †T |ψ0〉

(C10)

and the Krylov basis by ϕj as defined by the recurrence
relations as given in Eq. (C7). On this basis, the Hamiltonian
(HKrylov) is tridiagonal and can be parametrized by αi and βi :

HKrylov =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1 β1 0 0 0
β1 α2 β2 0 0

0 β2
. . .

. . . 0

0 0
. . .

. . . βn

0 0 0 βn αn+1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C11)

The resolvent of a tridiagonal matrix is given as a continued
fraction,⎛

⎜⎜⎜⎜⎜⎜⎝

ω − α1 −β1 0 0 0
−β1 ω − α2 −β2 0 0

0 −β2
. . .

. . . 0

0 0
. . .

. . . −βn

0 0 0 −βn ω − αn+1

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

[1,1]

= 1

ω − α1 − β2
1

ω−α2− β2
2

ω−···

, (C12)

which allows for a straightforward calculation of the Green’s
function corresponding to the transition operator T .

For the calculation of spectral functions (as with the
calculation of the ground state) one should be aware that the
construct of the Krylov basis includes a fundamental numerical
unstable algorithm. Additional orthonormalization steps can
be mandatory in order to obtain correct results.

APPENDIX D: LANCZOS ON A SPARSE BASIS

The number of Slater determinants available in the many-
particle basis is so large (≈10100) that most of them have to
be neglected. This is allowed as long as the total weight of the
neglected states is small. In this section a method is discussed
to find the ≈109 determinants with the largest weight in a
relatively short time period. The general physically relevant
Hamiltonian is given in second quantization as

H =
∑
γ,γ ′

εγ,γ ′a†
γ aγ ′ +

∑
γ,γ ′,γ ′′,γ ′′′

Uγ,γ ′,γ ′′,γ ′′′a†
γ a

†
γ ′aγ ′′ aγ ′′′ ,

(D1)
with γ an index for spin, orbital, and site index (bath as
well as impurity site) of the fermions included in the one-
particle orbital basis. Note that the Hamiltonian in Eq. (D1)
is extremely general. The method described here to find the
lowest ≈109 determinants from a much larger basis set can be
used for finite size lattice models with correlations (Heisenberg
spin-exchange model, tJ model, Hubbard model) [76,100],
ligand field theory calculations [19], or other forms of quantum
chemistry models where one needs to diagonalize large sparse
matrices.

The idea behind the method is to first define a relatively
small basis, consisting of only a few Slater determinants,
based on the Hartree-Fock or DFT energies of the orbitals.
In this basis the ground-state wave function is found as a
linear combination of the Slater determinants present in the
basis. One then can rotate the one-particle orbitals to minimize
the number of Slater determinants needed as described in
Appendix E. If there are Slater determinants in the basis that
do not contribute noticeably to the ground-state wave function,
these states are removed from the basis. Next, the basis is
enlarged by acting with the Hamiltonian on the ground-state
wave function in the small basis allowing all states that couple
to this state but were not in the basis set to enter. One continues
by finding the ground-state wave function in this new basis.
These steps are repeated until convergence is reached, which
can take up to a hundred loops. Nonetheless, finding the
ground state even for rather involved basis sets is relatively
fast (subsecond on a laptop) as one starts with very small
basis sets and each time the basis set is increased one can
use the converged ground-state calculation of the previous
basis set as a starting point. In order to understand the basics
of the algorithm, one can look at a graphical representation
of the one-electron states or sites, single-Slater-determinant
many-electron basis states, and multi-Slater-determinant
eigenstates.

In Fig. 5 the evolution of the basis states is shown. The
one-electron states are represented by circles for the bath sites
and a square for the impurity site. Solid circles are occupied,
open circles are empty. The bath sites are labeled by vi for the
valence bath, ci for the conduction bath, and b for one site at an
energy such that its occupation is 1 − n, with n the impurity
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FIG. 5. (Color online) Graphical representation of the evolution of the basis set during the Lanczos cycles which determine the ground-state
wave function.

occupation. In the top panel we show two basis functions,
labeled φ1 and φ2. The valence bath sites are fully occupied
(solid circles) and the conduction bath sites are completely
empty (open circles). There is furthermore one electron either
at the impurity site i, or at the bath site labeled by b. This
defines the two basis functions: φ1 and φ2. The ground state in
this basis will be some linear combination of these two Slater
determinants: ψ1

0 = αφ1 + βφ2.
Acting with the Hamiltonian on ψ1

0 allows the electron from
the valence bath site labeled v1 to hop to either site b or the
impurity site or allows the electron at the impurity site to hop
to the conduction bath site c1. Hψ1

0 defines a new function

ϕ2
0 = Hψ1

0 /(
√

〈ψ1
0 |H 2|ψ1

0 〉). In order to represent this new
function one needs two more basis states as indicated in the
middle panel of Fig. 5:

ϕ2
0 ∝〈φ1|H

∣∣ψ1
0

〉
φ1 + 〈φ2|H

∣∣ψ1
0

〉
φ2

+ 〈φ3|H
∣∣ψ1

0

〉
φ3 + 〈φ4|H

∣∣ψ1
0

〉
φ4. (D2)

The basis states φ1 to φ4 span the new, larger basis. The
function ϕ2

0 , in general, will not be an eigenstate in the
new, larger basis. In this new basis, one can find, with
the use of a Lanczos algorithm the new ground state without

too much effort. The ground state in this basis will be, in
general, some linear combination of four basis functions:
ψ2

0 = αφ1 + βφ2 + γφ3 + δφ4. Once the ground state in
this new basis has been found, one can act with the full
Hamiltonian on this state, which again will enlarge the
basis needed to represent this new state. The third basis
is shown in the bottom panel of Fig. 5. The third ground
state is given as some linear combination of these eight
states.

Within this loop the size of the basis set grows exponentially
and only a few steps can normally be done before the basis
set size is so large that one cannot store the eigenstates
anymore. The solution is to remove those basis states that
do not noticeably contribute to the ground state.

Given a basis set defined by the states φj and the ground

state as ψ0 = ∑Nj

j αjφj , all states φj are removed from the
basis for which α2

j < ε with ε ≈ 10−16. This new basis is
then enlarged by acting with the Hamiltonian on the ground
state (ψ0) and adding those Slater determinants to the basis
needed to represent Hψ0. In this new basis the ground state
is found, the determinants not needed to represent the ground
state are removed, and the basis is extended again by acting
with the Hamiltonian on the ground state and adding those
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determinants needed to represent Hψ0. This is repeated until
convergence is reached, which can take up to 100 repetitions
(generally less). For a converged calculation 〈ψ0|H 2|ψ0〉 =
〈ψ0|H |ψ0〉2, which is fulfilled for all calculations in this paper
up to the numerical accuracy (∼10−14), one can obtain with
floating point (double) precision. One should note that even
for a converged calculation acting with the Hamiltonian on the
ground state in a given basis will add states to the basis that
were not included before. It is just that after diagonalization the
new ground state has negligible weight in these determinants
such that they are removed from the basis by the truncation
procedure (and added again if one would go for another loop).
It can also happen that states removed in an early loop of the
calculation will reenter and become important in a later stage
of the calculation.

The number of Slater determinants in the basis grows
exponentially as a function of the number of steps in this
algorithm. It is therefore of uttermost importance to remove
those determinants that have a negligible contribution to the
ground state. In order to find a ground-state wave function
that has most of its weight in only a few determinants, one
needs to optimize the one-particle orbitals. For a Hamiltonian
where all states are correlated, this is the basis of natural
orbitals. That is, in this case one rotates the one-particle
orbitals after each calculation of the ground state such that
the density matrix of the ground state is diagonal. For
calculations on an impurity model this is not most efficient, as it
mixes correlated impurity sites with noninteracting bath sites.
The natural orbitals for an impurity model are discussed in
Appendix E.

For a single band calculation the algorithm is rather
straightforward and robust. In a multiorbital case one needs
to be slightly careful concerning the symmetry of the wave
function related to the starting point. For example, in the case
of Co3+ as found in LaCoO3 one finds a local low spin state
t6
2g (S = 0) and local high spin state t4

2ge
2
g (S = 2) close in

energy [101]. If one starts the algorithm from a low (high) spin
initial state, one will (within the ligand field approximation)
converge to the low (high) spin eigenstates.

APPENDIX E: OPTIMIZING THE ONE-PARTICLE
BASIS—NATURAL ORBITALS FOR

IMPURITY PROBLEMS

The DMFT equations as implemented in this work require
one to calculate the ground state and Green’s function of
an Anderson impurity problem. Although only the impurity
has correlations, an Anderson impurity model is still highly
nontrivial and shows strong entanglement between the impu-
rity and bath orbitals in the ground state. The ground state
is generally not single-Slater-determinant representable. In
order to minimize the number of Slater determinants needed
to give a good representation of the ground state, we optimize
the one-particle basis set. In this section we show how to
do this.

We label the impurity site by i and the bath sites by bj , with
j ∈ [1,Nb]. The impurity might have several internal degrees
of freedom, as spin, orbital, or site, which will be labeled
by a further quantum number τ . The resulting Hamiltonian

is

HA =
∑

τ,τ ′,τ ′′,τ ′′′
Uτ,τ ′,τ ′′,τ ′′′a

†
i,τ a

†
i,τ ′ai,τ ′′ai,τ ′′′ +

∑
τ,τ ′

αi,τ ;i,τ ′a
†
i,τ ai,τ ′

+
∑
τ,τ ′

∑
j

βi,τ ;bj ,τ ′(a†
i,τ abj ,τ ′ + a

†
bj ,τ ′ai,τ )

+
∑
τ,τ ′

∑
j,j ′

αbj ,τ ;bj ′ ,τ ′a
†
bj ,τ

abj ′ ,τ ′ . (E1)

The aim is to find a unitary transformation of the one-particle
states labeled by τ , i, and bj such that the ground state can
be represented by a minimum amount of Slater determinants.
This transformation, however, should not mix impurity (i)
states with bath states (bj ). If we label the transformed states
by t , η, and bς , we can define the unitary transformation u

such that

a
†
i,t =

∑
τ

ui,τ ;i,t a
†
i,τ ,

(E2)
a
†
bς ,t =

∑
j,τ

uj,τ ;ς,t a
†
bj ,τ

.

The transformation on the impurity ui,τ ;i,t is taken such that
the density matrix of the ground state (ψ0) of HA is diagonal:

ni
t,t ′ = 〈ψ0|a†

i,t ai,t ′ |ψ0〉 = δt,t ′n
i
t,t ′ . (E3)

This is a trivial, noncostly step in the current method. The
many-body ground-state wave function (ψ0) is, as described
in Appendix D, first calculated on a small basis, which is
then gradually extended. After each calculation of the ground
state for a given basis we calculate the density matrix of the
impurity:

ni
τ,τ ′ = 〈ψ0|a†

i,τ ai,τ ′ |ψ0〉. (E4)

We can diagonalize this density matrix ni
τ,τ ′ and the eigen-

vectors of this matrix define the unitary transformation ui,τ ;i,t .
This transformation is applied to both ψ0 and HA. The loop to
calculate the ground state is continued by extending the basis
set as described in Appendix D.

The transformation of the bath states uj,τ ;ς,t is less trivial.
In principle, one would like to take the bath discretization to
be defined such that the bath density matrix is diagonal in the
basis chosen:

nb
ς,t ;ς ′,t ′ = 〈ψ0|a†

bς ,t abς ′ ,t ′ |ψ0〉 = δς,ς ′δt,t ′n
b
ς,t ;ς ′,t ′ . (E5)

If for an arbitrary bath discretization one could calculate ψ0,
one can easily calculate the bath density matrix a

†
bj ,τ

abj ′ ,τ ′

and the eigenvectors of this matrix define the optimal unitary
transformation. The problem that arises, though, is that for an
arbitrary bath discretization all bath states are important and
one cannot truncate the many-body wave function such that
only a few (maximally ≈109) Slater determinants are needed
to represent the wave function. Once a solution is found, we
can define a basis that would have been more efficient, but we
need to define the efficient basis before the calculation can be
done. The iterative method, which works well for the impurity
sites, is impractical for the bath sites as the number of orbitals
involved is too large.
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We need to define a unitary transformation uj,τ ;ς,t that
approximately leads to a diagonal density matrix, but can be
calculated before the many-body problem is solved. This is
done by introducing a noninteracting reference system:

H̃A =
∑
τ,τ ′

Vτ,τ ′a
†
i,τ ai,τ ′ +

∑
τ,τ ′

αi,τ ;i,τ ′a
†
i,τ ai,τ ′

+
∑
τ,τ ′

∑
j

βi,τ ;bj ,τ ′(a†
i,τ abj ,τ ′ + a

†
bj ,τ ′ai,τ )

+
∑
τ,τ ′

∑
j,j ′

αbj ,τ ;bj ′ ,τ ′a
†
bj ,τ

abj ′ ,τ ′ . (E6)

V is chosen such that the correct impurity occupation is
reproduced. The correct impurity occupation is known from
a previous step in the calculation, which is either a previous
DMFT loop or a previous calculation with a smaller many-
body basis set. The solution of the reference system, which
only has one-body interactions, is trivial. Diagonalization of
H̃A leads to a set of one-particle states that are a mixture of bath
(bj ,τ ) and impurity (i,τ ) states. The many-body ground state
(ψ0) is a single Slater determinant in which all one-particle
eigenstates of H̃A with an energy smaller than the chemical
potential are occupied. From this state we can calculate the
bath density matrix:

nb
j,τ ;j ′;τ ′ = 〈ψ0|a†

bj ,τ
abj ′ ,τ ′ |ψ0〉. (E7)

We can diagonalize this density matrix nb
j,τ ;j ′,τ ′ and the

eigenvectors of this matrix define the unitary transformation
uj,τ ;ς,t . This transformation is applied to the bath and thereby
minimizes the number of Slater determinants needed in the
calculation.

The optimized bath which leads to a diagonal density
matrix (nb

ς,t ;ς ′,t ′ ) for the ground state of the reference system
(H̃A) always has the same form. The resulting bath geometry
is depicted in Fig. 1(c). It is interesting to study this bath
geometry in a bit more detail. For the reference system the
impurity will have an occupation n, the bath site labeled
by b has an occupation 1 − n. The bath sites labeled by vj

are all fully occupied and the bath sites labeled by cj are
all completely empty. The many-body ground state for the
reference system is given by only four Slater determinants with
only partially filled states i and b, which define a molecular
bond between these two states. For a single band impurity with
τ labeling spin-up (↑) and spin-down (↓) states, this function
can be written as

|ψ0〉 = (αa
†
i,↑ + βa

†
b,↑)(αa

†
i,↓ + βa

†
b,↓)�j=Nv

j=1 a
†
vj ,↑a

†
vj ,↓|0〉,

(E8)

with α and β positive parameters such that α2 + β2 = 1 and
the indices as shown in Fig. 1(c).

The bath sites labeled by vj are fully occupied in the ground
state and the bath sites labeled by cj are completely empty.
Nonetheless, there is an interaction between the impurity site
and these bath sites. If the interaction between sites i and c1

(v1) is tic (tiv) and the interaction between sites b and c1 (v1) is
given by tbc (tbv), respectively, then the relation between these

interactions is

αtic + βtbc = 0,
(E9)

−βtiv + αtbv = 0.

The interaction between the occupied states at site i with
the unoccupied conduction bath sites c1 interferes with the
hopping from the occupied state at b such that the total
interaction cancels.

The basis obtained in the reference system is used as the
basis for the correlated Anderson impurity problem. Here the
molecular orbital formed between the states i and b becomes
partly unoccupied as one moves towards the Heitler-London
solution for correlated molecular bonds. The choice of this
basis allows one to select a few Slater determinants that are
important. For the calculations presented in this paper we never
needed more than a few thousand determinants to represent the
ground state.

APPENDIX F: REDUCTION OF THE NUMBER OF POLES

The number of poles in the bath Green’s function defines the
number of bath sites in the Anderson impurity Hamiltonian.
The current algorithm is able to include several hundreds of
such states. The new bath Green’s function has a dimension of
Nnew

b = N0 × (N� + 1), equation (9) and N� = Nc, Eq. (7).
The number of poles in the bath Green’s function thus grows
rapidly with each self-consistency loop and needs to be
reduced. Following the ideas of renormalization group theory,
one could choose a fixed set of energies on a logarithmic mesh
that is used to represent the bath Green’s function. Although
not a bad choice, especially as it allows one to represent the
Fermi energy with a large number of poles, we here opt for an
adaptive mesh. We want the Green’s function to be represented
by a large number of poles in those areas where the Green’s
function is large and by a smaller number of poles where the
Green’s function is small. In practice, we repeatedly remove
the pole with the smallest spectral weight and merge this pole
with the neighboring poles until the number of poles is reduced
to the number of bath orbitals one wants to include in the
calculation. The same procedure is used to remove poles with
a negative weight from the self-energy.

Starting from a Green’s function or self-energy represented
as

G(ω) =
N∑

j=1

β2
j

ω − αj

, (F1)

with αj < αj+1. We repeatedly determine the pole with the
smallest weight (minimal β2

j ) and remove this pole from the
Green’s function, whereby we locally keep the zeroth and first
moments conserved. Assuming that the pole with smallest
weight is found at position k, then after one iteration this leads
to the Green’s function,

G′(ω) =
N−1∑
j=1

β ′2
j

ω − α′
j

, (F2)
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with α′
j = αj (β ′2

j = β2
j ) for all j � k − 2, α′

j = αj+1 (β ′2
j =

β2
j+1) for all k + 1 � j � N − 1, and

β ′2
k−1 = β2

k−1 + αk+1 − αk

αk+1 − αk−1
β2

k ,

β ′2
k = β2

k+1 + αk − αk−1

αk+1 − αk−1
β2

k ,

α′
k−1 = αk−1β

2
k−1(αk+1 − αk−1) + αkβ

2
k (αk+1 − αk)

β2
k−1(αk+1 − αk−1) + β2

k (αk+1 − αk)
, (F3)

α′
k = αk+1β

2
k+1(αk+1 − αk−1) + αkβ

2
k (αk − αk−1)

β2
k+1(αk+1 − αk−1) + β2

k (αk − αk−1)
.

The equations look more involved than they are. The weight
of the pole at position k is split between the weight at positions
k − 1 and k + 1 weighted by the distance to the neighboring
pole. The energy (αk−1) of pole k − 1 is shifted such that the
first moment of poles k − 1 and k (multiplied by the partial
weight) is conserved (the same is true for αk+1):

β ′2
k−1α

′
k−1 = β2

k−1αk−1 + αkβ
2
k

αk+1 − αk

αk+1 − αk−1
,

β ′2
kα

′
k = β2

k+1αk+1 + αkβ
2
k

αk − αk−1

αk+1 − αk−1
. (F4)

This procedure conserves locally the zeroth and first
moments,

β ′2
k−1 + β ′2

k = β2
k−1 + β2

k + β2
k+1,

β ′2
k−1α

′
k−1 + β ′2

kα
′
k = β2

k−1αk−1 + β2
k αk + β2

k+1αk+1,

(F5)

and nonlocally only introduces small errors in the moments of
the full Green’s function.

It should be noted that the shift in spectral weight introduced
by this procedure is generally small. For a spectrum with
bandwidth W represented by N poles the maximum shift of a
single pole (spectral weight times distance) is of order W/N2

and thus converges well as a function of N . It is expected that
many different algorithms to reduce the number of poles will
yield similar results and the procedure presented here might not
be the optimum. Any algorithm used should reduce the poles at
large energy (|α| � W ) with very small weight (β2 � 10−7)
as these are most probably spurious eigenstates introduced
by the Lanczos algorithm and destabilize the self-consistency
loops.
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[32] R. Žitko, Comput. Phys. Commun. 180, 1271 (2009).
[33] D. J. Garcı́a, K. Hallberg, and M. J. Rozenberg, Phys. Rev.

Lett. 93, 246403 (2004).
[34] S. Nishimoto, F. Gebhard, and E. Jeckelmann, J. Phys.:

Condens. Matter 16, 7063 (2004).
[35] K. A. Hallberg, Adv. Phys. 55, 477 (2006).
[36] E. Miranda, D. J. Garcı́a, K. Hallberg, and M. J. Rozenberg,

Phys. B (Amsterdam, Neth.) 403, 1465 (2008).

085102-17

http://dx.doi.org/10.1103/RevModPhys.71.1253
http://dx.doi.org/10.1103/RevModPhys.71.1253
http://dx.doi.org/10.1103/RevModPhys.71.1253
http://dx.doi.org/10.1103/RevModPhys.71.1253
http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1007/BF01312686
http://dx.doi.org/10.1007/BF01312686
http://dx.doi.org/10.1007/BF01312686
http://dx.doi.org/10.1007/BF01312686
http://dx.doi.org/10.1103/PhysRevB.45.6479
http://dx.doi.org/10.1103/PhysRevB.45.6479
http://dx.doi.org/10.1103/PhysRevB.45.6479
http://dx.doi.org/10.1103/PhysRevB.45.6479
http://dx.doi.org/10.1103/PhysRevLett.69.168
http://dx.doi.org/10.1103/PhysRevLett.69.168
http://dx.doi.org/10.1103/PhysRevLett.69.168
http://dx.doi.org/10.1103/PhysRevLett.69.168
http://dx.doi.org/10.1103/PhysRevLett.69.1236
http://dx.doi.org/10.1103/PhysRevLett.69.1236
http://dx.doi.org/10.1103/PhysRevLett.69.1236
http://dx.doi.org/10.1103/PhysRevLett.69.1236
http://dx.doi.org/10.1080/00018739500101526
http://dx.doi.org/10.1080/00018739500101526
http://dx.doi.org/10.1080/00018739500101526
http://dx.doi.org/10.1080/00018739500101526
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1063/1.1712502
http://dx.doi.org/10.1063/1.1712502
http://dx.doi.org/10.1063/1.1712502
http://dx.doi.org/10.1063/1.1712502
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1080/00018730701619647
http://dx.doi.org/10.1080/00018730701619647
http://dx.doi.org/10.1080/00018730701619647
http://dx.doi.org/10.1080/00018730701619647
http://dx.doi.org/10.1002/andp.201100250
http://dx.doi.org/10.1002/andp.201100250
http://dx.doi.org/10.1002/andp.201100250
http://dx.doi.org/10.1002/andp.201100250
http://dx.doi.org/10.1103/PhysRevB.74.125120
http://dx.doi.org/10.1103/PhysRevB.74.125120
http://dx.doi.org/10.1103/PhysRevB.74.125120
http://dx.doi.org/10.1103/PhysRevB.74.125120
http://dx.doi.org/10.1103/PhysRevB.39.1708
http://dx.doi.org/10.1103/PhysRevB.39.1708
http://dx.doi.org/10.1103/PhysRevB.39.1708
http://dx.doi.org/10.1103/PhysRevB.39.1708
http://dx.doi.org/10.1103/PhysRevB.43.7570
http://dx.doi.org/10.1103/PhysRevB.43.7570
http://dx.doi.org/10.1103/PhysRevB.43.7570
http://dx.doi.org/10.1103/PhysRevB.43.7570
http://dx.doi.org/10.1142/S0217979201006495
http://dx.doi.org/10.1142/S0217979201006495
http://dx.doi.org/10.1142/S0217979201006495
http://dx.doi.org/10.1142/S0217979201006495
http://dx.doi.org/10.1103/PhysRevB.70.195104
http://dx.doi.org/10.1103/PhysRevB.70.195104
http://dx.doi.org/10.1103/PhysRevB.70.195104
http://dx.doi.org/10.1103/PhysRevB.70.195104
http://dx.doi.org/10.1103/PhysRevB.85.165113
http://dx.doi.org/10.1103/PhysRevB.85.165113
http://dx.doi.org/10.1103/PhysRevB.85.165113
http://dx.doi.org/10.1103/PhysRevB.85.165113
http://dx.doi.org/10.1103/PhysRevB.76.085109
http://dx.doi.org/10.1103/PhysRevB.76.085109
http://dx.doi.org/10.1103/PhysRevB.76.085109
http://dx.doi.org/10.1103/PhysRevB.76.085109
http://dx.doi.org/10.1039/qr9571100381
http://dx.doi.org/10.1039/qr9571100381
http://dx.doi.org/10.1039/qr9571100381
http://dx.doi.org/10.1039/qr9571100381
http://dx.doi.org/10.1103/PhysRevLett.83.136
http://dx.doi.org/10.1103/PhysRevLett.83.136
http://dx.doi.org/10.1103/PhysRevLett.83.136
http://dx.doi.org/10.1103/PhysRevLett.83.136
http://dx.doi.org/10.1103/PhysRevB.64.045103
http://dx.doi.org/10.1103/PhysRevB.64.045103
http://dx.doi.org/10.1103/PhysRevB.64.045103
http://dx.doi.org/10.1103/PhysRevB.64.045103
http://dx.doi.org/10.1103/PhysRevB.71.045122
http://dx.doi.org/10.1103/PhysRevB.71.045122
http://dx.doi.org/10.1103/PhysRevB.71.045122
http://dx.doi.org/10.1103/PhysRevB.71.045122
http://dx.doi.org/10.1080/14786430500070313
http://dx.doi.org/10.1080/14786430500070313
http://dx.doi.org/10.1080/14786430500070313
http://dx.doi.org/10.1080/14786430500070313
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/PhysRevB.61.12799
http://dx.doi.org/10.1103/PhysRevB.61.12799
http://dx.doi.org/10.1103/PhysRevB.61.12799
http://dx.doi.org/10.1103/PhysRevB.61.12799
http://dx.doi.org/10.1038/nphys538
http://dx.doi.org/10.1038/nphys538
http://dx.doi.org/10.1038/nphys538
http://dx.doi.org/10.1038/nphys538
http://dx.doi.org/10.1209/0295-5075/85/27001
http://dx.doi.org/10.1209/0295-5075/85/27001
http://dx.doi.org/10.1209/0295-5075/85/27001
http://dx.doi.org/10.1209/0295-5075/85/27001
http://dx.doi.org/10.1103/PhysRevB.79.214518
http://dx.doi.org/10.1103/PhysRevB.79.214518
http://dx.doi.org/10.1103/PhysRevB.79.214518
http://dx.doi.org/10.1103/PhysRevB.79.214518
http://dx.doi.org/10.1016/j.cpc.2009.02.007
http://dx.doi.org/10.1016/j.cpc.2009.02.007
http://dx.doi.org/10.1016/j.cpc.2009.02.007
http://dx.doi.org/10.1016/j.cpc.2009.02.007
http://dx.doi.org/10.1103/PhysRevLett.93.246403
http://dx.doi.org/10.1103/PhysRevLett.93.246403
http://dx.doi.org/10.1103/PhysRevLett.93.246403
http://dx.doi.org/10.1103/PhysRevLett.93.246403
http://dx.doi.org/10.1088/0953-8984/16/39/038
http://dx.doi.org/10.1088/0953-8984/16/39/038
http://dx.doi.org/10.1088/0953-8984/16/39/038
http://dx.doi.org/10.1088/0953-8984/16/39/038
http://dx.doi.org/10.1080/00018730600766432
http://dx.doi.org/10.1080/00018730600766432
http://dx.doi.org/10.1080/00018730600766432
http://dx.doi.org/10.1080/00018730600766432
http://dx.doi.org/10.1016/j.physb.2007.10.169
http://dx.doi.org/10.1016/j.physb.2007.10.169
http://dx.doi.org/10.1016/j.physb.2007.10.169
http://dx.doi.org/10.1016/j.physb.2007.10.169
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[91] N. Blümer, Ph.D. thesis, Universität Augsburg, 2003.
[92] A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, Rev.

Mod. Phys. 78, 275 (2006).
[93] K. J. Maschhoff and D. C. Sorensen, Proceedings of the

Copper Mountain Conference on Iterative Methods (1996),
http://www.mgnet.org/mgnet/Conferences/CMCIM96/Psfiles/
maschhoff.ps.gz.

[94] L. Bergamaschi and M. Putti, Comput. Methods Appl. Mech.
Eng. 191, 5233 (2002).

[95] D. Calvetti, L. Reichel, and D. C. Sorensen, Electron. Trans.
Numer. Anal. 2, 21 (1994).

[96] K. Wu, A. Canning, H. D. Simon, and L. W. Wang, J. Comput.
Phys. 154, 156 (1999).

[97] S. Sundar and B. K. Bhagavan, Comput. Math. Appl. 39, 211
(2000).

[98] K. S. Wu and H. Simon, SIAM J. Matrix Anal. Appl. 22, 602
(2000).

[99] E. Kokiopoulou, C. Bekas, and E. Gallopoulos, Appl. Numer.
Math. 49, 39 (2004).

[100] M. Le Tacon, G. Ghiringhelli, J. Chaloupka, M. M. Sala,
V. Hinkov, M. W. Haverkort, M. Minola, M. Bakr, K. J. Zhou,
S. Blanco-Canosa et al., Nat. Phys. 7, 725 (2011).

[101] M. W. Haverkort, Z. Hu, J. Cezar, T. Burnus, H. Hartmann,
M. Reuther, C. Zobel, T. Lorenz, A. Tanaka, N. Brookes et al.,
Phys. Rev. Lett. 97, 176405 (2006).

085102-18

http://dx.doi.org/10.1103/PhysRevLett.56.2521
http://dx.doi.org/10.1103/PhysRevLett.56.2521
http://dx.doi.org/10.1103/PhysRevLett.56.2521
http://dx.doi.org/10.1103/PhysRevLett.56.2521
http://dx.doi.org/10.1103/PhysRevLett.69.1240
http://dx.doi.org/10.1103/PhysRevLett.69.1240
http://dx.doi.org/10.1103/PhysRevLett.69.1240
http://dx.doi.org/10.1103/PhysRevLett.69.1240
http://dx.doi.org/10.1103/PhysRevB.51.10411
http://dx.doi.org/10.1103/PhysRevB.51.10411
http://dx.doi.org/10.1103/PhysRevB.51.10411
http://dx.doi.org/10.1103/PhysRevB.51.10411
http://dx.doi.org/10.1103/PhysRevB.76.205120
http://dx.doi.org/10.1103/PhysRevB.76.205120
http://dx.doi.org/10.1103/PhysRevB.76.205120
http://dx.doi.org/10.1103/PhysRevB.76.205120
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1016/j.cpc.2010.12.050
http://dx.doi.org/10.1016/j.cpc.2010.12.050
http://dx.doi.org/10.1016/j.cpc.2010.12.050
http://dx.doi.org/10.1016/j.cpc.2010.12.050
http://dx.doi.org/10.1134/1.1800216
http://dx.doi.org/10.1134/1.1800216
http://dx.doi.org/10.1134/1.1800216
http://dx.doi.org/10.1134/1.1800216
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/PhysRevLett.97.076405
http://dx.doi.org/10.1103/PhysRevLett.97.076405
http://dx.doi.org/10.1103/PhysRevLett.97.076405
http://dx.doi.org/10.1103/PhysRevLett.97.076405
http://dx.doi.org/10.1103/PhysRevB.74.155107
http://dx.doi.org/10.1103/PhysRevB.74.155107
http://dx.doi.org/10.1103/PhysRevB.74.155107
http://dx.doi.org/10.1103/PhysRevB.74.155107
http://dx.doi.org/10.1209/0295-5075/82/57003
http://dx.doi.org/10.1209/0295-5075/82/57003
http://dx.doi.org/10.1209/0295-5075/82/57003
http://dx.doi.org/10.1209/0295-5075/82/57003
http://dx.doi.org/10.1016/0370-1573(95)00074-7
http://dx.doi.org/10.1016/0370-1573(95)00074-7
http://dx.doi.org/10.1016/0370-1573(95)00074-7
http://dx.doi.org/10.1016/0370-1573(95)00074-7
http://dx.doi.org/10.1103/PhysRevB.61.5147
http://dx.doi.org/10.1103/PhysRevB.61.5147
http://dx.doi.org/10.1103/PhysRevB.61.5147
http://dx.doi.org/10.1103/PhysRevB.61.5147
http://dx.doi.org/10.1103/PhysRevB.81.155107
http://dx.doi.org/10.1103/PhysRevB.81.155107
http://dx.doi.org/10.1103/PhysRevB.81.155107
http://dx.doi.org/10.1103/PhysRevB.81.155107
http://dx.doi.org/10.1103/PhysRevLett.72.1545
http://dx.doi.org/10.1103/PhysRevLett.72.1545
http://dx.doi.org/10.1103/PhysRevLett.72.1545
http://dx.doi.org/10.1103/PhysRevLett.72.1545
http://dx.doi.org/10.1103/PhysRevB.49.5065
http://dx.doi.org/10.1103/PhysRevB.49.5065
http://dx.doi.org/10.1103/PhysRevB.49.5065
http://dx.doi.org/10.1103/PhysRevB.49.5065
http://dx.doi.org/10.1103/PhysRevB.73.205121
http://dx.doi.org/10.1103/PhysRevB.73.205121
http://dx.doi.org/10.1103/PhysRevB.73.205121
http://dx.doi.org/10.1103/PhysRevB.73.205121
http://dx.doi.org/10.1103/PhysRevB.76.245116
http://dx.doi.org/10.1103/PhysRevB.76.245116
http://dx.doi.org/10.1103/PhysRevB.76.245116
http://dx.doi.org/10.1103/PhysRevB.76.245116
http://dx.doi.org/10.1103/PhysRevB.78.115102
http://dx.doi.org/10.1103/PhysRevB.78.115102
http://dx.doi.org/10.1103/PhysRevB.78.115102
http://dx.doi.org/10.1103/PhysRevB.78.115102
http://dx.doi.org/10.1103/PhysRevB.81.235125
http://dx.doi.org/10.1103/PhysRevB.81.235125
http://dx.doi.org/10.1103/PhysRevB.81.235125
http://dx.doi.org/10.1103/PhysRevB.81.235125
http://dx.doi.org/10.1088/0953-8984/24/5/053201
http://dx.doi.org/10.1088/0953-8984/24/5/053201
http://dx.doi.org/10.1088/0953-8984/24/5/053201
http://dx.doi.org/10.1088/0953-8984/24/5/053201
http://dx.doi.org/10.1063/1.3556707
http://dx.doi.org/10.1063/1.3556707
http://dx.doi.org/10.1063/1.3556707
http://dx.doi.org/10.1063/1.3556707
http://dx.doi.org/10.1103/PhysRevB.86.115136
http://dx.doi.org/10.1103/PhysRevB.86.115136
http://dx.doi.org/10.1103/PhysRevB.86.115136
http://dx.doi.org/10.1103/PhysRevB.86.115136
http://arxiv.org/abs/arXiv:1311.6819
http://dx.doi.org/10.1103/PhysRevB.86.165128
http://dx.doi.org/10.1103/PhysRevB.86.165128
http://dx.doi.org/10.1103/PhysRevB.86.165128
http://dx.doi.org/10.1103/PhysRevB.86.165128
http://dx.doi.org/10.1103/PhysRevB.88.035123
http://dx.doi.org/10.1103/PhysRevB.88.035123
http://dx.doi.org/10.1103/PhysRevB.88.035123
http://dx.doi.org/10.1103/PhysRevB.88.035123
http://dx.doi.org/10.1103/PhysRevB.64.165114
http://dx.doi.org/10.1103/PhysRevB.64.165114
http://dx.doi.org/10.1103/PhysRevB.64.165114
http://dx.doi.org/10.1103/PhysRevB.64.165114
http://dx.doi.org/10.1103/PhysRevB.28.4315
http://dx.doi.org/10.1103/PhysRevB.28.4315
http://dx.doi.org/10.1103/PhysRevB.28.4315
http://dx.doi.org/10.1103/PhysRevB.28.4315
http://dx.doi.org/10.1103/PhysRevLett.50.604
http://dx.doi.org/10.1103/PhysRevLett.50.604
http://dx.doi.org/10.1103/PhysRevLett.50.604
http://dx.doi.org/10.1103/PhysRevLett.50.604
http://dx.doi.org/10.1103/PhysRevB.31.4815
http://dx.doi.org/10.1103/PhysRevB.31.4815
http://dx.doi.org/10.1103/PhysRevB.31.4815
http://dx.doi.org/10.1103/PhysRevB.31.4815
http://dx.doi.org/10.1016/S0065-3276(08)60532-8
http://dx.doi.org/10.1016/S0065-3276(08)60532-8
http://dx.doi.org/10.1016/S0065-3276(08)60532-8
http://dx.doi.org/10.1016/S0065-3276(08)60532-8
http://dx.doi.org/10.1016/0022-5088(90)90575-5
http://dx.doi.org/10.1016/0022-5088(90)90575-5
http://dx.doi.org/10.1016/0022-5088(90)90575-5
http://dx.doi.org/10.1016/0022-5088(90)90575-5
http://dx.doi.org/10.1143/JPSJ.63.2788
http://dx.doi.org/10.1143/JPSJ.63.2788
http://dx.doi.org/10.1143/JPSJ.63.2788
http://dx.doi.org/10.1143/JPSJ.63.2788
http://dx.doi.org/10.1016/0009-2614(77)85042-2
http://dx.doi.org/10.1016/0009-2614(77)85042-2
http://dx.doi.org/10.1016/0009-2614(77)85042-2
http://dx.doi.org/10.1016/0009-2614(77)85042-2
http://dx.doi.org/10.1002/qua.560120850
http://dx.doi.org/10.1002/qua.560120850
http://dx.doi.org/10.1002/qua.560120850
http://dx.doi.org/10.1002/qua.560120850
http://dx.doi.org/10.1103/PhysRevA.24.1668
http://dx.doi.org/10.1103/PhysRevA.24.1668
http://dx.doi.org/10.1103/PhysRevA.24.1668
http://dx.doi.org/10.1103/PhysRevA.24.1668
http://dx.doi.org/10.1016/0370-1573(87)90073-1
http://dx.doi.org/10.1016/0370-1573(87)90073-1
http://dx.doi.org/10.1016/0370-1573(87)90073-1
http://dx.doi.org/10.1016/0370-1573(87)90073-1
http://dx.doi.org/10.1088/0953-8984/24/25/255602
http://dx.doi.org/10.1088/0953-8984/24/25/255602
http://dx.doi.org/10.1088/0953-8984/24/25/255602
http://dx.doi.org/10.1088/0953-8984/24/25/255602
http://dx.doi.org/10.1103/PhysRevLett.107.107402
http://dx.doi.org/10.1103/PhysRevLett.107.107402
http://dx.doi.org/10.1103/PhysRevLett.107.107402
http://dx.doi.org/10.1103/PhysRevLett.107.107402
http://dx.doi.org/10.1103/PhysRevB.72.113110
http://dx.doi.org/10.1103/PhysRevB.72.113110
http://dx.doi.org/10.1103/PhysRevB.72.113110
http://dx.doi.org/10.1103/PhysRevB.72.113110
http://dx.doi.org/10.1103/PhysRevB.84.075145
http://dx.doi.org/10.1103/PhysRevB.84.075145
http://dx.doi.org/10.1103/PhysRevB.84.075145
http://dx.doi.org/10.1103/PhysRevB.84.075145
http://dx.doi.org/10.1103/PhysRevB.77.075116
http://dx.doi.org/10.1103/PhysRevB.77.075116
http://dx.doi.org/10.1103/PhysRevB.77.075116
http://dx.doi.org/10.1103/PhysRevB.77.075116
http://dx.doi.org/10.1016/j.physb.2007.04.049
http://dx.doi.org/10.1016/j.physb.2007.04.049
http://dx.doi.org/10.1016/j.physb.2007.04.049
http://dx.doi.org/10.1016/j.physb.2007.04.049
http://dx.doi.org/10.1134/S0021364011220073
http://dx.doi.org/10.1134/S0021364011220073
http://dx.doi.org/10.1134/S0021364011220073
http://dx.doi.org/10.1134/S0021364011220073
http://dx.doi.org/10.1103/PhysRevB.79.085106
http://dx.doi.org/10.1103/PhysRevB.79.085106
http://dx.doi.org/10.1103/PhysRevB.79.085106
http://dx.doi.org/10.1103/PhysRevB.79.085106
http://dx.doi.org/10.1103/PhysRevB.82.165125
http://dx.doi.org/10.1103/PhysRevB.82.165125
http://dx.doi.org/10.1103/PhysRevB.82.165125
http://dx.doi.org/10.1103/PhysRevB.82.165125
http://dx.doi.org/10.1088/0953-8984/25/5/052201
http://dx.doi.org/10.1088/0953-8984/25/5/052201
http://dx.doi.org/10.1088/0953-8984/25/5/052201
http://dx.doi.org/10.1088/0953-8984/25/5/052201
http://dx.doi.org/10.1103/PhysRevLett.107.026401
http://dx.doi.org/10.1103/PhysRevLett.107.026401
http://dx.doi.org/10.1103/PhysRevLett.107.026401
http://dx.doi.org/10.1103/PhysRevLett.107.026401
http://dx.doi.org/10.1103/PhysRevB.55.16132
http://dx.doi.org/10.1103/PhysRevB.55.16132
http://dx.doi.org/10.1103/PhysRevB.55.16132
http://dx.doi.org/10.1103/PhysRevB.55.16132
http://dx.doi.org/10.1016/S0038-1098(97)00192-0
http://dx.doi.org/10.1016/S0038-1098(97)00192-0
http://dx.doi.org/10.1016/S0038-1098(97)00192-0
http://dx.doi.org/10.1016/S0038-1098(97)00192-0
http://dx.doi.org/10.1002/(SICI)1521-3951(199811)210:1<199::AID-PSSB199>3.0.CO;2-3
http://dx.doi.org/10.1002/(SICI)1521-3951(199811)210:1<199::AID-PSSB199>3.0.CO;2-3
http://dx.doi.org/10.1002/(SICI)1521-3951(199811)210:1<199::AID-PSSB199>3.0.CO;2-3
http://dx.doi.org/10.1002/(SICI)1521-3951(199811)210:1<199::AID-PSSB199>3.0.CO;2-3
http://dx.doi.org/10.1007/s100510050406
http://dx.doi.org/10.1007/s100510050406
http://dx.doi.org/10.1007/s100510050406
http://dx.doi.org/10.1007/s100510050406
http://dx.doi.org/10.1103/PhysRevB.57.6211
http://dx.doi.org/10.1103/PhysRevB.57.6211
http://dx.doi.org/10.1103/PhysRevB.57.6211
http://dx.doi.org/10.1103/PhysRevB.57.6211
http://dx.doi.org/10.1103/RevModPhys.78.275
http://dx.doi.org/10.1103/RevModPhys.78.275
http://dx.doi.org/10.1103/RevModPhys.78.275
http://dx.doi.org/10.1103/RevModPhys.78.275
http://www.mgnet.org/mgnet/Conferences/CMCIM96/Psfiles/maschhoff.ps.gz
http://dx.doi.org/10.1016/S0045-7825(02)00457-7
http://dx.doi.org/10.1016/S0045-7825(02)00457-7
http://dx.doi.org/10.1016/S0045-7825(02)00457-7
http://dx.doi.org/10.1016/S0045-7825(02)00457-7
http://dx.doi.org/10.1006/jcph.1999.6306
http://dx.doi.org/10.1006/jcph.1999.6306
http://dx.doi.org/10.1006/jcph.1999.6306
http://dx.doi.org/10.1006/jcph.1999.6306
http://dx.doi.org/10.1016/S0898-1221(00)00077-8
http://dx.doi.org/10.1016/S0898-1221(00)00077-8
http://dx.doi.org/10.1016/S0898-1221(00)00077-8
http://dx.doi.org/10.1016/S0898-1221(00)00077-8
http://dx.doi.org/10.1137/S0895479898334605
http://dx.doi.org/10.1137/S0895479898334605
http://dx.doi.org/10.1137/S0895479898334605
http://dx.doi.org/10.1137/S0895479898334605
http://dx.doi.org/10.1016/j.apnum.2003.11.011
http://dx.doi.org/10.1016/j.apnum.2003.11.011
http://dx.doi.org/10.1016/j.apnum.2003.11.011
http://dx.doi.org/10.1016/j.apnum.2003.11.011
http://dx.doi.org/10.1038/nphys2041
http://dx.doi.org/10.1038/nphys2041
http://dx.doi.org/10.1038/nphys2041
http://dx.doi.org/10.1038/nphys2041
http://dx.doi.org/10.1103/PhysRevLett.97.176405
http://dx.doi.org/10.1103/PhysRevLett.97.176405
http://dx.doi.org/10.1103/PhysRevLett.97.176405
http://dx.doi.org/10.1103/PhysRevLett.97.176405



