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The determination of the electron neutrino mass by electron capture in 163Ho relies on a precise understanding
of the deexcitation of a core hole after an electron-capture event. Here we present an ab initio calculation of the
electron-capture spectrum of 163Ho, i.e., the 163Ho decay rate as a function of the energy distribution between the
163Dy daughter atom and the neutrino. Our current level of theory includes all intra-atomic decay channels and
many-body interactions on a basis of fully relativistic bound orbitals. We use theoretical methods developed and
extensively used for the calculation of core level spectroscopy on correlated electron materials. Our comparison
to experimental electron-capture data critically tests the accuracy of these theories. We find that relativistic
interactions beyond the Dirac equation lead to only minor shifts of the spectral peaks. The electronic relaxation
after an electron-capture event due to the modified nuclear potential leads to a mixing of different edges, but, due
to conservation of angular momentum of each scattered electron, no additional structures emerge. Many-body
Coulomb interactions lead to the formation of multiplets and to additional peaks corresponding to multiple core
holes created via Auger decay. Multiplets crucially change the appearance of the resonances on a Rydberg energy
scale. The additional structures due to Auger decay are, although clearly visible, relatively weak compared to the
single core hole states and are incidentally far away from the end-point region of the spectrum. As the end point of
the spectrum is affected most by the neutrino mass, these additional states do not directly influence the statistics
for determining the neutrino mass. The multiplet broadening and Auger shake-up of the main core-level edges
do, however, change the apparent linewidth and accompanying lifetime of these edges. Fitting core-level edges,
either in electron-capture spectroscopy or in x-ray absorption spectroscopy, by a single resonance thus leads to
an underestimation of the core hole lifetime.

DOI: 10.1103/PhysRevC.97.054620

I. INTRODUCTION

The existence of a finite neutrino mass, implied by observed
neutrino flavor oscillations, is a clear indication for physics
beyond the standard model of particle physics. Knowledge of
the exact values of the different neutrino masses and their
mixing angles can thus be used to test theories trying to
extend the standard model. The experimental determination of
neutrino masses, however, remains difficult as the masses are
very small and neutrinos interact very weakly with other matter.
In the case of electron neutrinos, the mass can be determined
from the analysis of low energy electron capture (EC) or
via β decay. Presently, two nuclides are considered for the
determination of the electron neutrino and anti-neutrino mass:
163Ho and 3H, respectively [1]. The possibility to determine
the neutrino mass from the analysis of these spectra relies on a
precise knowledge of the expected spectral shape for the case
of massless neutrinos.

The reason why 163Ho is the best nuclide to investigate
the electron neutrino mass is that it has the smallest energy
available of all possible nuclides for the electron-capture
process. This energy is given by the difference between
the mass of the parent 163

67 Ho and daughter 163
66 Dy atoms,

and corresponds to QEC = 2833 ± 30stat ± 15syst eV [2].

This total decay energy is shared between the neutrino (kinetic
energy and rest mass Eν =

√
p2

νc
2 + m2

νc
4) and excitations

of the resulting 163Dy atom (electronic excitations as well as
the recoil energy, or excited phonons in a solid, of the 163Dy
nucleus). In particular, the fact that neutrinos have a finite mass
implies that the maximum energy that can be stored in the
atomic excitation of the daughter atom is QEC − mνc

2. As a
result the finite mass of electron neutrinos can be investigated
by analyzing the end-point region of the electron-capture
spectrum of 163Ho.

To enhance the sensitivity for detection of effects arising
from a finite electron neutrino mass, a calorimetric measure-
ment of the electron-capture spectrum was suggested [3]. The
small QEC of 163Ho means that the fraction of events in the
small energy region below the end point of the spectrum is large
enough to allow for such a measurement. This measurement
can be performed by enclosing the 163Ho source in a suitable
detector able to precisely measure energies below 10 keV.
In modern experiments—such as the Electron Capture in
163Ho (ECHo) experiment [4], the Electron Capture Decay of
163Ho to Measure the Electron Neutrino Mass with sub-eV
sensitivity (HOLMES) experiment [5], and the Neutrino Mass
via Electron Capture Spectroscopy (NUMECS) experiment
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[6]—small activities of 163Ho, on the order of 10–100 Bq, are
enclosed in absorbers of low temperature microcalorimeters
[7]. Large arrays of very high energy resolution detectors
(�EFWHM < 3 eV) are employed in these experiments in order
to acquire enough events to be sensitive to deviation in the
spectral shape at the end-point region due to neutrinos with
sub-eV mass.

In 163Ho there are 67 protons, 96 neutrons, and 67 electrons
present, of which 20 electrons (the electrons in the ns and
np1/2 shells) have a substantial overlap with the nucleus and
thus directly contribute to the electron-capture amplitude. This
gives rise to seven resonances labeled M1 to P1 and M2 to O2

for capture events from the 3s to 6s and 3p1/2 to 5p1/2 shells,
respectively. The K and L shells are outside the spectrum
window given by the small energy difference of the 163Ho and
163Dy ground states (QEC).

Electrons in an atom are not independent identities and, due
to strong Coulomb forces, all electrons react when one electron
is captured. The calorimetrically measured spectrum is thus not
given by just seven peaks, as several additional shake-up and
shake-off structures, or multiplets, appear. Previous theoretical
calculations of the electron-capture spectrum of 163Ho stressed
the importance of additional satellites that appear in these
spectra [4,8–12]. From these papers it becomes clear that a
more complete understanding of the electronic relaxation after
electron capture is needed in order to better describe the present
experimental spectra and to reduce systematic uncertainties
related to an inadequate understanding of the 163Ho spectrum
close to the end point. This aspect is of fundamental importance
to reach sub-eV sensitivity on the electron neutrino mass in
163Ho-based experiments.

In this work, we provide an important step in the quanti-
tative understanding of the 163Ho spectrum through ab initio
calculations of the electron-capture spectra restricted to the
sharp resonances corresponding to bound states of a 163Ho
(163Dy) atom embedded in Au. The approach used in this paper
is based on the theory of core-level spectroscopy which has
been extensively developed in the field of condensed matter
physics [13–17] and can be extended to the calculation of
electron capture [18,19]. Core-level spectroscopy is widely
used to determine valuable information on the low energy
states in a multitude of materials. In our present approach,
methods developed in quantum chemistry (i.e., configuration
interaction) are used to calculate the many-body ground state,
and Green’s function methods are used to describe the electron-
capture process. The theoretical description we develop yields
Green’s function propagators describing the time evolution of a
Dy atom having a multi-configurational electronic many-body
wave function corresponding to the ground state of Ho with one
additional core hole. The result is an electron-capture spectrum
(up to an overall intensity scaling) restricted to bound states
calculated from first principles.

The 163Ho spectral shape we have obtained with our
approach agrees well with the available data and predicts
additional features which could be observed once spectra with
higher statistics and better energy resolution are available.
To facilitate a detailed understanding of the electron-capture
resonances and of the most important processes determining
the spectral line shape, we systematically investigate the

influence of different interactions. In Sec. II we first present
our final results and compare them to experimental data. Next,
in Secs. II A–II D, we subsequently examine the influence
of different relaxation channels. We start with no relaxation
(Sec. II A) and then add relaxation due to the modified nuclear
and valence potentials (Sec. II B), relaxation due to inter-core-
level Coulomb scattering (Sec. II C), and finally relaxation that
changes the occupation of the 4f valence shell (Sec. II D).

In the Appendixes we provide additional details on the
methods used. Appendixes A and B focus on the ground
state, with Appendix A describing the one-particle orbitals
and Appendix B detailing the many-electron ground state,
including quantum fluctuations. Appendixes C–E focus on
the capture process, with Appendix C discussing the rela-
tion between Fermi’s golden rule and the Green’s function
propagator, Appendix D describing the decoupling of nuclear,
electronic, and neutrino degrees of freedom, andAppendix E
providing the numerical values of the capture probabilities
of the different atomic orbitals. Appendix F discusses the
numerical stability of our procedure, which becomes an issue
due to the large difference in interactions present in our
Hamiltonian. Appendixes G and H relate to specific effects in
the electron-capture spectra. Appendix G provides additional
information on the mixing of principle quantum numbers due
to the modified nuclear potential, as discussed in Sec. II B of
the main text, while Appendix H discusses the consequences
of relativistic effects beyond the Dirac equation.

II. THE ELECTRON-CAPTURE SPECTRUM

The Hamiltonian describing the electron-capture process
needs to include the Coulomb interaction as well as the weak
nuclear force. The former describes the interactions between
the electrons and the potential of the nucleus, while the latter
describes the reaction of a nuclear proton and a captured (inner)
shell electron to a bound neutron and free neutrino. In order to
calculate the electron-capture spectrum one can treat the weak
interaction as a (time dependent) perturbation by defining a
transition operator T . The operator T removes an electron from
the 163Ho atom and transforms a nuclear proton to a neutron,
while simultaneously creating a neutrino. The electron-capture
spectrum is then defined by Fermi’s golden rule:

d�

dω
∝

∑
�Dy∗+ν

|〈�Dy∗+ν |T |�Ho〉|2δ(EHo,EDy∗ + Eν), (1)

where �Ho is the many-body ground state of a 163Ho atom
including both the electrons and the nucleus, �Dy∗+ν is one
of the many excited states of a Dy atom combined with one
additional electron neutrino, and EHo and EDy∗ + Eν are the
respective energies of these states.

Because the interaction between matter and neutrinos is
weak, one can write the wave function of an excited Dy atom
and one neutrino as a product state �Dy∗+ν = 	Z=66 × ψe−

Dy∗ ×
φν , where 	Z=66 is the nuclear wave function, ψe−

Dy∗ is one of
the electronic wave functions, and φν is one of the neutrino
wave functions. A similar expansion can be made for the
transition operator (see Appendix D for more information).
The separation allows one to sum explicitly over all neutrino
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momentum states, which due to the energy-momentum relation
(Eνe

=
√

p2
νe
c2 + m2

νe
c4) creates additional coefficients in the

expression for the spectral intensity [3]:

d�

dω
∝

∑
ψe−

Dy∗

∣∣〈ψe−
Dy∗

∣∣Te−
∣∣ψe−

Ho

〉∣∣2
δ(ω − EDy∗ + EDy)

× (Q − ω)
√

(Q − ω)2 − m2
ν, (2)

where we introduced the energy difference between the 163Ho
and Dy atomic ground states asQ = EHo − EDy and the energy
of the excited Dy atom as ω = Q − Eν .

Fermi’s golden rule requires one to sum over all possi-
ble excited states of the Dy atom. There are in principle
infinitely many excited states and for core-level resonances
infinitely many of them each carry an infinitesimally small
spectral weight [20]. Therefore, summing all final states is
not a practical way to calculate the spectrum. A numerically
more convenient way to treat the problem of describing these
spectra is to return to the Green’s function formalism and time
dependent perturbation theory from which Fermi’s golden rule
is derived.

Replacing the δ function by a response function of a clas-
sical harmonic oscillator and rewriting the final state energy
combined with the sum over all final states as the Hamiltonian
yields the Lehmann or spectral representation of the Green’s
function (see Appendix C for more information),

d�

dω
∝ (Q − ω)

√
(Q − ω)2 − m2

ν

× Im

[〈
ψe−

Ho

∣∣T †
e−

1

ω + i γ

2 − HDy + EHo
Te−

∣∣ψe−
Ho

〉

−〈
ψe−

Ho

∣∣T †
e−

1

ω + i γ

2 + HDy − EHo
Te−

∣∣ψe−
Ho

〉]
, (3)

where HDy is the Hamiltonian describing the interaction
between the electrons in the nuclear potential of the Dy atom.

The Green’s function in the Lehmann representation is
related to the time evolution of the state created after an
electron-capture event through a Fourier transform:

d�

dω
∝ (Q − ω)

√
(Q − ω)2 − m2

νe

×Re
∫ ∞

0
eiωt

〈
ψe−

Ho

∣∣T †
e− (t)Te−(0)

−T
†
e− (0)Te− (t)

∣∣ψe−
Ho

〉
dt, (4)

with t representing the time. The expectation value
〈ψe−

Ho|T †
e− (t)Te−(0)|ψe−

Ho〉 describes the process where one starts
with the wave function of a 163Ho atom in its ground state.
At time t = 0, an electron is removed from the atom by the
operator Te− and at the same time a proton is transformed into
a neutron, changing the nuclear charge by 1. The subsequent
wave function is not an eigenstate of the modified Hamiltonian
and this state is allowed to time propagate up to time t . At time
t , the operator T

†
e− recreates an electron and simultaneously

transforms a neutron into a proton. Measured is the probability
amplitude to return to the ground state of the 163Ho atom.
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FIG. 1. Theoretical electron-capture spectrum (red) assuming a
constant Lorentzian linewidth of 5 eV, convoluted with a Gaussian
distribution of 10 eV (full width at half maximum), compared to the
measured spectrum (black) [21]. The experimental and theoretical
intensities are scaled to represent the capture probability per atom,
per half-life of 163Ho. Differences in the apparent linewidths of the
different edges are due to the decay channels and unresolved multiplet
structure underlying the edges, included in the calculation. The inset
shows a shoulder and two additional peaks next to the 4s peak. These
features result from Auger decay creating double vacancies in the 4p

and 4d shell and an additional electron in the 4f shell. A similar
shoulder is left of the 3s peak which is too small for the experimental
resolution to resolve. (See Fig. 8 for a high resolution theoretical
spectrum with more extended labeling.)

The challenge to tackle is thus to find an accurate description
of the atomic 163Ho ground state as well as the time evolution of
this wave function after an electron is removed and the nuclear
potential changes. The many-body ground state of a 163Ho atom
is approximately given by a state where one fills all orbitals
of the 1s to 6s shells, 2p to 5p shells, and 3d to 4d shells,
and has an additional 11 electrons in the 4f shell, with local
quantum numbers L = 6, S = 3/2, and J = 15/2. The reason
this is only the approximate ground state is twofold. First,
the Coulomb repulsion is not infinitely larger than spin-orbit
coupling, making an L-S coupling scheme only approximately
valid. Second, Coulomb scattering of electrons from filled
shells into unoccupied shells mixes in other configurations.
The full ground state, and thorough details of the calculations,
are discussed in more detail in Appendix B.

Because our calculation is restricted to bound states only,
the spectrum is in principle given by a discrete set of δ
functions. In order to plot the spectra and to compare them
to experiment we added an additional broadening. In most of
the calculations we included a Lorentzian lifetime broadening
of the core hole of 1 eV full width at half maximum (FWHM).
In Fig. 1 we compare the calculated spectrum to data obtained
in calorimetric measurements. To find a good comparison in
both peak maximum and overall linewidth we used an edge
independent Lorentzian linewidth of 5 eV and convoluted the
spectrum with a Gaussian distribution of 10 eV FWHM to
account for detector broadening.
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Given the level of theory used we find a satisfactory
agreement between theory and experiment, including correct
energies and relative intensities of the M1, M2, N1, and N2

edges. The shoulder structure at the high energy side of the N1

edge is reproduced in our calculations with roughly the cor-
rect position and intensity of these additional structures. The
maximum discrepancy between the measured and calculated
peak positions is about 20 eV. We expect that this can be
improved by expanding our one-particle basis with states
from higher shells, by including the chemical shift induced by
gold surrounding the 163Ho, and by adding the self-energies
of the excited states due to decay into continuum states. The
self-energies are complex, with the real and imaginary parts
having different effects on the spectra. While the imaginary
part determines the linewidth of the edges, the real part shifts
the edge energy by an amount of roughly the same order of
magnitude as the imaginary part. Consequently, we expect
that these corrections together would yield the experimentally
observed energies.

Between the N1 and M2 edges, there is a discrepancy
between the experimental and theoretical intensity. The shape
of the tails of the resonances is not captured completely on
the current level of theory. This indicates that approximating
the spectrum by Lorentzian-shaped resonances of bound states
is not sufficient to describe the tails of the spectrum. Explicit
lifetime broadening due to Auger and fluorescence decay into
continuum states should be included in future calculations.

Additionally, we find that although all states are broadened
with the same lifetime, the different resonances appear to
have different widths, in agreement with experiment. This
is a direct result of the decay of the core excited states
due to an electron-capture event into bound states, which is
explicitly included in our calculations. To better understand
these effects, in the following sections, we continue by building
the spectrum in a step by step fashion. In Secs. II A–II D we
do not include any experimental (Gaussian) broadening in the
theory. Furthermore, we reduced the additional broadening
added in our theory to account for decay into continuum states
from 5 to 1 eV. This leads to sharper peaks in the calculation
than one would expect in the experiment, but it also allows one
to discuss more clearly the multiplet effects and the broadening
that arises from them.

A. The electron-capture spectrum without atomic relaxation

At time t = 0, the operator T creates a core hole in any one
of the ns or np1/2 orbitals of the 163Ho atom. If one would freeze
the wave function into this state (i.e., �(t) = T �Ho), then the
spectrum would consist of separated δ functions corresponding
to the ns and np1/2 orbitals from which the electron is captured
into the nucleus. In Fig. 2 we show this spectrum (where all
relaxation processes are neglected) in black. For comparison,
the blue spectrum in the background shows the calculation after
including all interactions and relaxations into bound orbitals.

The spectrum obtained without the inclusion of relaxation
processes is already in quite good agreement with the full
calculation. The full calculation does have several additional
shoulders and peaks which would change peak widths at the
resolution level of Fig. 1, but the overall intensity and energy
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FIG. 2. The theoretical electron-capture spectrum neglecting all
electronic relaxation (black) compared to the full calculation (blue).
The black spectrum resembles the situation shortly after the electron-
capture event as described in Sec. II A. Directly after the capture event
only the main lines (no shake-up) appear. Hence the black spectrum
does not contain the additional excitations or multiplets as in the full
calculation (blue). Both calculations assume a constant Lorentzian
linewidth of 1 eV.

are quite reasonable for the simplified calculation. The energy
shifts of the largest peaks are of the order of several eV and
the intensity of the peaks is changed by no more than a few
percent and recovered if one integrates the whole spectrum.
This observation is related to sum rules stating that further
decay of the state created by electron capture can shift spectral
weight but does not change the integrated spectral weight.

B. The electron-capture spectrum including relaxation
due to modified nuclear and core hole potentials

The first additional relaxation process one can consider is
due to the modified nuclear and core hole potentials. Since the
potential of the nucleus is spherical and angular momentum
is conserved, scattering of the holes is restricted to orbitals of
the same angular momentum (κ), but with different principle
quantum number. In a diagrammatic language this means
including the diagrams in Fig. 3 into the calculation of the
spectrum. These diagrams only allow the created hole to scatter
between states which already could have been created by

ns ms

+

np1/2 mp1/2

FIG. 3. Core hole scattering due to a change in the spherical
nuclear and core hole potential after an electron-capture event. These
processes only allow for changes in principle quantum numbers of the
core hole. Hence, the major deexcitation energies are slightly shifted,
but no additional excitations emerge (see text).
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FIG. 4. Theoretical electron-capture spectrum including relax-
ation due to modified nuclear and core hole potentials (black)
compared to the full calculation (blue). The black spectrum includes
electron scattering which conserves the angular momenta of the
scattered electron in the spherical atomic potential, as described in
Sec. II B. The peak energies shift by a maximum of ∼3 eV compared
to the spectra in Fig. 2.

the transition operator T acting on the 163Ho ground state.
The Hilbert space needed to describe Te−ψe−

Ho is sufficient to
describe scattering due to the modified nuclear and core hole
potentials. In other words, this modified interaction leads to
mixing between the hole orbitals and induces a level repulsion
between them. Owing to conservation of angular momentum
this spherical potential does not lead to additional shake-up
peaks. In terms of a time dependent picture, the operator T
can annihilate an electron from the ns orbital, the resulting
hole then scatters into the ms orbital, and after a time t the
operator T † places the electron back. Capture events from,
for example, the 163Ho 1s orbital thus have a significance, as
these orbitals are not orthogonal to the Dy ns orbitals. For
these off-diagonal terms it is important to remember that these
scattering events can induce a change in sign and thus the
corresponding contributions to the Green’s function come with
a phase such that the holes moving via different paths interfere
with each other. These phases can change if one is above or
below a resonance, leading to Fano-like line shapes. The full
Green’s function matrix showing how electrons captured in the
ns shell can propagate to the ms shell and thereby influence
the electron-capture spectrum is shown in Appendix G.

Overall the influence of these off-diagonal elements in
163Ho leads to a shift of the major peaks of up to 3 eV, which
is relatively modest. At this level of theory the major peaks
are shifted to their final positions on the eV scale. This implies
that the major excitation peaks can be understood by holes
moving in a potential induced by core and valence electrons
and a mixing of these holes due to the modified nuclear
charge and Coulomb repulsion. For comparison we included
the spectra calculated including all scattering processes as
a blue background in Fig. 4. Relaxation and mixing due to
off-diagonal elements do not cause the shoulders and further
excitation peaks present in the full calculations.

np3/2 mp1/2

4f 4f

+

nd ms

4f 4f

+

4f mp1/2

np3/2 4f

+

4f ms

nd 4f

FIG. 5. Coulomb repulsion between the core and 4f valence
electrons can transfer angular momentum from the core hole to the
4f valence shell. These relaxation processes lead to core holes in
shells from which EC is not directly possible (p3/2 or d). Hence,
additional spectral features emerge (see Fig. 6). Top: direct terms.
Bottom: exchange terms.

C. The electron-capture spectrum including inter-core
relaxation due to Coulomb repulsion

The next level of relaxation includes scattering between
core shells of different angular momentum. In a many-body
calculation, the angular momentum of a single electron does
not need to be conserved. Only the angular momentum of
all electrons together is conserved. In Ho the 4f shell is
partially filled and 163Ho has, in addition to a nuclear moment,
a local electronic magnetic (spin and angular) moment. For
the electrons one can change the angular momentum of the
core hole if one simultaneously changes the alignment of this
moment with respect to the valence moment. This allows
for p3/2 electrons to scatter into p1/2 holes or d electrons
to scatter into s holes. These interactions are given by the
diagrams in Fig. 5. The diagrams describe the process where
a p3/2 (d) electron scatters into a p1/2 (s) hole (created when
the electron was captured into the nucleus), transferring its
angular momentum to an f electron in the valence shell.
This gives rise to additional peaks shown in Fig. 6, which
are at the excitation energies of the 3p3/2, 3d, 4p3/2, and 4d
orbitals. The peaks are split into multiplets, as there are several
ways one can achieve the alignment of the core and valence
spin and angular momenta while fulfilling the conservation
rules imposed on them. The probability for this process, by
which the hole moves to a different excitation energy level,
depends on the corresponding scattering amplitude given by
the Coulomb interaction and the energy difference between the
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FIG. 6. Theoretical electron-capture spectra including inter-core
relaxation due to Coulomb repulsion (black) compared to the full
calculation (blue). Additional resonances compared to Fig. 4 appear
due to core holes in the 3p3/2, 3d3/2, and 3d5/2 orbitals in the range of
1600 to 1200 eV and core holes in the 4p3/2, 4d3/2, and 4d5/2 orbitals
in the range of 400 to 200 eV.

states that participate in the scattering process. Consequently,
the emerging peaks are much smaller than the main edges.

D. The electron-capture spectrum including relaxation
into all locally bound states

The last relaxation channel we include changes the number
of core holes and valence electrons. Coulomb interaction al-
lows for core electrons to scatter into the valence shell while si-
multaneously another core electron scatters into the previously
created core hole by an electron-capture event. Such processes
can occur if one includes the four-point vertex where four
different shells are involved in the scattering, as in Fig. 7, for in-
stance. However, many other diagrams are allowed. For the cre-
ated electrons, one must be in the 4f shell and the other in one
of the ns or np1/2 shells. The annihilated electrons can come

4d 4s

4p 4f

+

3d 3s

3d 4f

FIG. 7. Two of the 144 diagrams describing Auger decay includ-
ing the 4f valence shell. After the EC event shallow core electrons
can deexcite by filling the created core hole (4s or 3s in this example)
and transferring energy to another shallow core electron. The later
shallow core electron is transferred to the valence shell (4f ) such
that the atom is left with two core holes. These processes yield the
additional excitations in Fig. 8.
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FIG. 8. Theoretical spectrum including relaxation into all locally
bound states, calculated with a Lorentzian linewidth of γ = 1 eV
to reveal the contributions of the different excited states. The labels
denote which shells host holes and indicate when an additional
electron is present in the 4f shell. Due to Coulomb repulsion, the
peaks are split into multiplets. This spectrum is (apart from a different
broadening) the same as that shown in Fig. 1.

from any of the occupied shells, i.e., the 1s to 6s, 2p to 5p, or
3d to 4d shells. The only restriction on the scattering is that the
parity of the state needs to be conserved. This results in 144
different ways to create states with two core holes, with many
states having energies in the allowed range. Nonetheless, only
a few strong Auger states are observed, which are labeled in
Fig. 8 as 4p4d4f 12, 3d4d4f 12, and 3d3d4f 12, with one core
hole in each of the listed shells and 12 electrons in the 4f shell.

The corresponding scattering amplitude (i.e., the Coulomb
repulsion) is large if the involved orbitals have large overlap
with each other. This is the case if states have the same principle
quantum number. The 4p4d4f 12 state originates from the
electron capture of a 4s electron and subsequent scattering of a
4d electron into the 4s shell and a 4p electron into the 4f shell
(or 4d to 4f and 4p to 4s). The 3d4d4f 12 state arises from the
scattering of a 3d electron into the 3p1/2 shell after an electron
capture from this shell, and a simultaneous scattering of a 4d
electron into the 4f shell. The 3d3d4f 12 state is weaker as it
involves the change of principle quantum number of one of the
participating electrons. A 3d electron scatters into the 3p1/2

shell from which the electron was captured, and at the same
time another 3d electron scatters into the 4f shell.

At this point we are at a level of theory where we can
understand the shoulders of the 4s and 3s peaks in Fig. 1.
These features emerge from additional excitations due to Auger
decays, and are then smeared out by multiplet splitting of
the double and triple open shell states involved. Experiments
with higher resolution will be able to resolve these multiplets.
Because the intensity of possible multiplets is governed by
strict selection rules that involve the valence electrons, these
multiplets will strongly depend on the local symmetry of the
4f valence shell. Like x-ray absorption or core-level photoe-
mission, these line shapes can be used to determine the valence,
crystal-field state, or hybridization strength and corresponding
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mixed valence of the ground-state wave function of the 4f
shell of 163Ho.

Lastly, we note that additional Auger peaks appear in the
region between the 4s and 3p1/2 peaks, as well as on the left
flanks of 3s and 3p1/2 peaks, which can be best seen in Fig. 8.
With increased statistics these should become visible, crucially
checking the validity of our approach.

III. DISCUSSION

An important question to answer is to what extent do these
multi-core hole states influence the spectral line shape at the
end point, i.e., near ω = Q = 2833 eV? Here it is important to
note that although there are many two-core-hole states, there
is no strong state near the end-point region. The closest state
visible in our calculations is the state with two holes in the
3d shell, but the intensity of this state is several orders of
magnitude smaller than the intensity of the 3s state, which
still dominates the spectral end point. The fact that the spectral
end-point region is dominated by single core excited states can
be seen in Fig. 6, where the intensity of the reduced calculation
at the end point overlaps the full calculation (in blue).

There is an additional important consequence of our calcu-
lations that needs to be considered. The two-core-hole states
and multiplet splitting might not directly influence the spectral
end point, but they do change the line shape of the resonances.
The N2 edge (core hole in the 4p shell) appears much broader
than the M2 edge (core hole in the 3p shell). This is a
result of the larger multipole Coulomb interaction between
electrons in the 4p and 4f shells compared to the interaction
between electrons in the 3p and 4f shells. In general the
Coulomb interaction is strongest between electrons with the
same principle quantum number as these overlap more. It is
this interaction between the core electrons and the open 4f
valence shell which is largely responsible for the multiplet
splitting. These multiplets effectively broaden the state at the
resonance, but they do not change the lifetime of the core hole.
If one does not resolve all multiplets one thus finds a peak
with an apparent width that is different at resonance than in
the wings. Thus, lifetimes determined experimentally close to
the resonance cannot be used as valid lifetimes further away.
It therefore becomes crucial to include explicit calculations of
the core hole lifetime (due to Auger and fluorescence decay
into continuum states) in order to determine the exact shape of
the end point of the electron-capture spectrum needed for an
accurate determination of the neutrino mass.

IV. CONCLUSIONS

We have demonstrated that methods extensively used for
the calculation of core level spectra in solid state research, for
example x-ray absorption or x-ray photoelectron spectroscopy,
can be used to calculate the electron capture spectrum of 163Ho
as measured in a calorimeter. Our ab initio results possess a
level of accuracy which is sufficient to have predictive power
compared to the current state-of-the-art experimental spectra.
Notably, our results explain the additional peaks found above
the N1 line as Auger decay of the 4s electron capture into a
bound state with one extra 4f electron, one hole in a 4p orbital,

and one hole in the 4d orbital. Our calculations also explain
the extra line broadening of the N2 line as an effect induced
by an incidental degeneracy with Auger states. Both effects
were recently observed by Ranitzsch et al. [21] but were not
explained in their letter.

Future experimental spectra with higher statistics will show
additional peaks on the low energy shoulder of the M edges
as well as one additional peak relatively close to the spectral
end point due to a state with two core holes in the 3d shell.
Spectra with improved energy resolution will resolve several
of the multiplet features revealed in our calculations. These
features can be used as an internal consistency check, as the
intensity distribution among the multiplets within one shell
contains detailed information on the local symmetry, valence,
and crystal-field splittings of the 163Ho 4f ground state.
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APPENDIX A: ONE-PARTICLE SPIN ORBITALS AND
MANY-ELECTRON STATES

The one-particle orbitals used as a basis in our calculations
are fully relativistic, numerical atomic orbitals calculated on
an interpolated logarithmic grid. The spin orbitals are formally
labeled by the principle quantum number n and the relativistic
angular momentum quantum number κ . We adopt the notation
to label the spin orbitals by the angular momentum (l) of the
large part of the wave function and the total angular momentum
j , in line with the non-relativistic labeling of these orbitals.

The basis orbitals are calculated using a finite size nucleus
in order to capture the overlap of the ns and np1/2 orbitals
with the nucleus. This overlap defines the transition matrix
elements. The final many-body calculations use the full Dirac-
Coulomb-Breit interaction. To capture most of the change in
charge density due to charge fluctuations into highly excited
orbitals, the basis orbitals are calculated self-consistently on a
density functional theory level using the FPLO software package
[22–24]. We choose density functional theory as our starting
point for the basis orbitals over Hartree-Fock orbitals because
minimizing the error in energy differences is more important
than minimizing the ground-state energy.

Many-body states � can be written as linear combinations
over Slater determinants φ:

� =
∑

i

αiφi, (A1)

where αi are numerical factors defining the state and∑
i |αi |2 = 1 to normalize the state. For N electrons, the set

of Slater determinants φi is given by all subsets Di of length
N of the possible spin orbitals given by the principle quantum
number n and the angular momenta l, j = l ± 1/2 and m:

|φi〉 =
∏

{n,l,j,m}∈Di

c
†
nljm|0〉. (A2)
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j m j m

FIG. 9. Coulomb scattering vertex where angular momentum j

is transferred. As Coulomb repulsion conserves only total angular
momentum J , the ground state can be described in neither an L-S
coupling scheme nor a j -j coupling scheme (see text).

APPENDIX B: ATOMIC GROUND STATE OF 163Ho

The Hund’s rule ground state of neutral 163Ho with configu-
ration [Xe]6s24f11 has L = 6, S = 3/2, and J = 15/2. While
Coulomb repulsion (and corresponding multiplet splitting) in
the lanthanide series (order of 10 eV) is much larger than
spin-orbit coupling (order of 100 meV), the ground state is
not a pure state in an L-S coupling scheme. The many-body

calculations are done using QUANTY, a many-body script
language developed for spectroscopy calculations [25]. For the
ground state in our calculation we find J = 15/2 (J (J + 1) =
63.75), L = 6.07 (L(L + 1) ≈ 42.90), and S = 1.45 (S(S +
1) ≈ 3.56). These numbers are close to L-S coupling scheme
values, but not exact. One can understand the ground state in
a perturbative fashion starting from a j -j coupling scheme
ground state. In a j -j coupling scheme, the j = 5/2 shell
is completely occupied and the remaining five electrons go
into the j = 7/2 shell. For the state with Jz = −J , the only
unoccupied spin orbitals would be those with j = 7/2 and
m = 3/2, m = 5/2, or m = 7/2. Coulomb interaction allows
scattering of the form depicted in Fig. 9 with the condition that
the z component of total angular momentum is conserved, i.e.,
m + m′′ = m′ + m′′′. Thus, the Coulomb interaction allows
electrons to scatter from the j = 5/2 and m = 3/2 or m = 5/2
into the j = 7/2 spin orbital with the same m. Scattering into
states with j = 7/2 and m < 3/2 is forbidden due to the Pauli
principle. Additionally, scattering into the m = 7/2 state is
prohibited by conservation of angular momentum. Overall,
the amount of scattering between the spin orbitals can be best
quantified by looking at the single-particle density matrix:

ρjm,j ′m′ ≡ 〈
ψe–

Ho

∣∣c†4fjm
c4fj ′m′

∣∣ψe–

Ho

〉 ≈

− 5
2 − 3

2 − 1
2

1
2

3
2

5
2 − 7

2 − 5
2 − 3

2 − 1
2

1
2

3
2

5
2

7
2 m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 0 0 0 0 0 0 0 0 0 0 0 0 0 − 5
2

0 1 0 0 0 0 0 0 0 0 0 0 0 0 − 3
2

0 0 1 0 0 0 0 0 0 0 0 0 0 0 − 1
2

0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
2

0 0 0 0 0.88 0 0 0 0 0 0 0.33 0 0 3
2

0 0 0 0 0 0.94 0 0 0 0 0 0 0.23 0 5
2

0 0 0 0 0 0 1 0 0 0 0 0 0 0 − 7
2

0 0 0 0 0 0 0 1 0 0 0 0 0 0 − 5
2

0 0 0 0 0 0 0 0 1 0 0 0 0 0 − 3
2

0 0 0 0 0 0 0 0 0 1 0 0 0 0 − 1
2

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
2

0 0 0 0 0.33 0 0 0 0 0 0 0.12 0 0 3
2

0 0 0 0 0 0.23 0 0 0 0 0 0 0.06 0 5
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 7
2

(B1)

Here m,m′ denote the z component of angular momenta j, j ′.
The first six columns (rows) correspond to j = 5/2 (j ′ = 5/2)
and the eight remaining ones to j = 7/2 (j ′ = 7/2).

Scattering into the 4fj=7/2 shell does not only happen
starting from the 4fj=5/2 shell, but can also happen starting
from the 4d or even the 3d shell, with the additional side
condition that two electrons must scatter simultaneously from
the d to the f shell in order to conserve parity. Once two
electrons are scattered into the 4f shell, further scattering
processes into the new empty core states are possible, which
influences the density matrices of the core states further.

APPENDIX C: RELATION BETWEEN FERMI’S GOLDEN
RULE AND THE GREEN’S FUNCTION PROPAGATOR

DESCRIBING TIME EVOLUTION

Most recent theoretical calculations of electron-capture
spectra start from Fermi’s golden rule [3,4,8–12]. This formal-
ism requires one to sum over all final states after an electron-
capture event. As the energy of the excited atom is above the
autoionization energy threshold, there are infinitely many of
these states, each with an infinitesimally small spectral weight
[20]. The resulting spectrum is not given by a set of perfect
Lorentzian shaped lines, but consists of multiple resonances
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with possible asymmetric line shapes [26,27]. These effects
can be well treated using Green’s functions describing the
core-level spectrum [17], which is the method of choice for
our calculations.

In this section we obtain the expression for the electron-
capture spectrum in terms of the Green’s function propagator
starting from Fermi’s golden rule. In most textbooks these
equations would be derived from time dependent perturbation
theory [28]. Here we start from Fermi’s golden rule and from
this recreate the linear response functions used in frequency
and time domains. This allows us to connect to the current
electron-capture literature [3,4,8–12] and still end with a
formalism that can be solved with diagrammatic methods. For
a general transition between state �i and a set of states �f

induced by the transition operator T , Fermi’s golden rule states
that the transition rate � at energy ω is given by

d�

dω
∝

∑
f

|〈�f |T |�i〉|2δ(Ef − ω − Ei). (C1)

For a diagrammatic approach to the spectrum, or an approach in
terms of propagators, one has to consider virtual excitations on
top of the energetically allowed excitations which are encoded
in the above δ function. This is achieved by replacing the δ func-
tion by the response function of a classical damped harmonic
oscillator at eigenfrequency ω0 = Ef − Ei and damping γ :

δ(Ef − ω − Ei) → − lim
γ→0+

Im

[
Ef − Ei

ω2 − (Ef − Ei)2 + iγω

]

= − lim
γ→0+

Im

[
1

ω − (Ef − Ei) + iγ /2

− 1

ω + (Ef − Ei) + iγ /2

]
. (C2)

After factoring one finds two terms, one resonating at pos-
itive frequencies and one resonating at negative frequencies.
This additional term at negative frequencies can be directly
deduced from linear response theory [28] and arises naturally
from the causal response to the electron-capture event. In the
limit of infinitesimal width the term does not contribute to
the spectrum at positive frequencies ω and one thus recovers
Fermi’s golden rule as there are no measurable excitations at
negative frequencies. However, in numerical calculations with
finite γ , the additional term accounts for virtual excitations
which have tails. These tails slightly modify the spectral shape
at small positive frequencies.

Inserting the replacement of the δ function [Eq. (C2)] into
Eq. (C1) and at the same time expanding the square of the
expectation value of the transition operator, one gets

d�

dω
∝− lim

γ→0+
Im

∑
f

[
〈�i |T †|�f 〉

× 1

ω − (Ef − Ei) + iγ /2
〈�f |T |�i〉

−〈�i |T †|�f 〉 1

ω + (Ef − Ei) + iγ /2
〈�f |T |�i〉

]
. (C3)

As the final states �f define a complete set (
∑

f |�f 〉〈�f | =
1) of eigenstates of the Hamiltonian (H�f = Ef �f ), we can
replace the operator

∑
f |�f 〉g(Ef )〈�f | for any function g by

the same function acting on the Hamiltonian. Doing so yields
an expression of the Green’s function in the Lehmann spectral
representation:

d�

dω
∝ − lim

γ→0+
Im

[
〈�i |T † 1

ω − (H − Ei) + iγ /2
T |�i〉

−〈�i |T † 1

ω + (H − Ei) + iγ /2
T |�i〉

]
. (C4)

Here we have changed the computational task of calculating
all eigenstates of the Hamiltonian into the problem of finding
the resolvent of the Hamiltonian evaluated for a single state.
The latter can be performed using diagrammatic expansion
techniques known from quantum field theory as well as Lanc-
zos routines for finite size Hilbert spaces. For the numerical
calculations we replace γ by a small but finite width instead
of taking the limit γ → 0+.

The relation between the spectral (or Lehmann) represen-
tation of the Green’s function and the time evolution of the
system becomes clear if one Fourier-transforms the Green’s
function, which yields

d�

dω
∝ Re

∫ ∞

0
eiωt 〈�i |T †(t)T (0) − T †(0)T (t)|�i〉dt, (C5)

where T (t) = eiHtT e−iH t is the transition operator in the
Heisenberg picture. The expectation value 〈�i |T †(t)T (0)|�i〉
describes the probability amplitude that the system excited into
state T |�i〉 at time t = 0 remains in that state after time t . We
thus can describe the electron-capture spectrum by removing
an electron at t = 0 and looking at the time evolution of the
newly created state.

APPENDIX D: DECOUPLING OF ELECTRONIC,
NUCLEAR, AND NEUTRINO DEGREES OF FREEDOM

Since electron capture involves the atomic nucleus, the
electrons of the atom, as well as the created neutrino, all of
these particles must be included in the full wave function. It
is useful to decompose the full wave function into an electron
wave function, a nuclear wave function, and a neutrino wave
function whose product builds the full wave function. A similar
decoupling can then be performed on the electron-capture
operator describing the transition from 163Ho to 163Dy. In this
section we present how these different sectors of Fock space
can be decoupled and how to construct the electron-capture
operator acting on each of these sectors.

The wave functions � include the electrons as well as the
nucleus and possible neutrinos. The function �Ho represents
the atomic ground state of 163Ho restricted to the sector where
there are no free neutrinos available. The functions �Dy∗+νe

represent all states of the 163Dy atom, including all possible
electronic excitations, plus one electron neutrino. Owing to
weak interaction between the sectors in the Hamiltonian con-
taining a different number of neutrinos and modified nuclear
charge, the wave functions can be decomposed as direct
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product states of a nuclear wave function (	Z), an electron
wave function (ψe−

), and a neutrino wave function (φν):

|�Ho〉 = |	Z=67〉 ⊗ ∣∣ψe−
Ho

〉 ⊗ |0〉, (D1)

|�Dy∗+ν〉 = |	Z=66〉 ⊗ ∣∣ψe−
Dy∗

〉 ⊗ |φν〉. (D2)

The electron-capture event acts on these product states by
removing a proton from 	Z=67 while adding a neutron,
removing an inner shell electron from ψe−

Ho, and creating an
electron neutrino out of the vacuum |0〉. This is encoded in the
electron-capture operator which is given in second quantized
language as

Ttot =
∑

n,l,j,m
kr
ν ,lν ,jν ,mν

c
n,l,j,m
kr
ν ,lν ,jν ,mν

TnuclearT
n,l,j,m

electron T
kr
ν ,lν ,jν ,mν

neutrino , (D3)

where

T
n,l,j,m

electron = aψe− ,n,l,j,m,

T
kr
ν ,lν ,jν ,mν

neutrino = a
†
φν,kr

ν ,lν ,jν ,mν
, (D4)

and

Tnuclear	163
67 Ho ∝ 	163

66 Dy, (D5)

where we used that there is one unique ground state in terms
of total angular momentum and parity for both the 163Ho
(J = 7/2 parity odd) and 163Dy (J = 5/2 parity odd) nuclear
wave function. Since the neutrino interacts only via weak
force, we assume that the coefficients factor as c

n,l,j,m
kr
ν ,lν ,jν ,mν

=

c
ψe−
n,l,j,m × c

φν

kr
ν ,lν ,jν ,mν

. The neutrino part c
φν

kr
ν ,lν ,jν ,mν

can be ne-
glected for lν �= 0 and is approximately constant otherwise.
The full coefficient c

n,l,j,m
kr
ν ,lν ,jν ,mν

≈ pnlj is, up to an overall
scaling constant. We approximated pnlj by the overlap between
nucleus and orbital wave functions (see Appendix E for explicit
calculations). This yields, including conservation of angular
momentum, to leading order a non-vanishing contribution for
nlj ∈ {1s–6s,2p1/2–5p1/2}.

With the above decomposition of wave functions and
electron-capture operator we can now factor Fermi’s golden
rule. Starting from the asymptotic transition rate

R�Ho→�Dy∗+ν
(EDy∗ + Eν)

∝ δ(EDy∗ + Eν − EHo)|〈�Dy∗+ν |T |�Ho〉|2, (D6)

we can express Fermi’s golden rule as

� ∝
∫

dωρ(ω)R�Ho→�Dy∗+ν
(ω), (D7)

where the density of states is denoted as

ρ(ω) ≡
∑

�Dy∗+νe

δ(ω − EDy∗ − Eν). (D8)

The sum runs over all exited Dy states plus a single electron
neutrino

∑
�Dy∗+νe

= ∑
ψe−

Dy∗

∑
qr

ν ,lν ,jν ,mν
. Using the decompo-

sition of the wave functions and the electron-capture operator,
the transition rate can be written as

� ∝
∫

dω
∑
ψe−

Dy∗

∑
qr

ν ,lν ,jν ,mν

δ(ω − EDy∗ − Eν)δ(ω − EHo)

×
∣∣∣∣∣∣

∑
n,l,j,m,kr

ν ,l
′
ν ,j

′
ν ,m

′
ν

c
n,l,j,m
kr
ν ,l

′
ν ,j

′
ν ,m

′
ν
〈	Z=66|Tnuclear|	Z=67〉

〈
ψe−

Dy∗
∣∣T n,l,j,m

electron

∣∣ψe−
Ho

〉〈φν

(
qr

ν ,lν,jν,mν

)|T kr
ν ,l

′
ν ,j

′
ν ,m

′
ν

neutrino |0〉
∣∣∣∣∣∣
2

. (D9)

Explicitly calculating the matrix elements yields

〈
φν

(
qr

ν ,lν,jν,mν

)∣∣T kr
ν ,l

′
ν ,j

′
ν ,m

′
ν

neutrino |0〉 = 〈
φν

(
qr

ν ,lν,jν,mν

)∣∣φν

(
kr
ν,l

′
ν,j

′
ν,m

′
ν

)〉 = δqr
ν ,kr

ν
δlν ,l′ν δjν ,j ′

ν
δmν,m′

ν
, (D10)

〈	Z=66|Tnuclear|	Z=67〉 ∝ 〈	Z=66|	Z=66〉 = 1, (D11)∑
n,l,j,m

c
n,l,j,m
qr

ν ,lν ,jν ,mν

〈
ψe−

Dy∗
∣∣T n,l,j,m

electron

∣∣ψe−
Ho

〉 = 〈
ψe−

Dy∗
∣∣Te−

∣∣ψe−
Ho

〉
, (D12)

where

Te− =
∑

n,l,j,m

pn,jT
n,l,j,m

electron . (D13)

We introduce a shift of variable ω → ω + EDy + Eν to ensure that ω represents the (calorimetrically measured) deposited
energy. The electron-capture spectrum is obtained by taking the derivative with respect to ω:

d�

dω
∝

∑
ψe−

Dy∗

∑
qr

ν ,lν ,jν ,mν

δ(ω − EDy∗ + EDy)δ(ω + EDy + Eν − EHo)
∣∣〈ψe−

Dy∗
∣∣Te−

∣∣ψe−
Ho

〉∣∣2
. (D14)
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Here the neutrinos are completely decoupled and conse-
quently free particles such that the sum over the neutrino states
can easily be evaluated as an integral over the neutrino’s kinetic
energy plus rest mass:

∑
qr

ν

∝
∫ ∞

0
dEν Eν

√
E2

ν − m2
ν . (D15)

Therefore, the spectral function reads

d�

dω
∝

∑
ψe−

Dy∗

∣∣〈ψe−
Dy∗

∣∣Te−
∣∣ψe−

Ho

〉∣∣2
δ(ω − EDy∗ + EDy)

× (Q − ω)
√

(Q − ω)2 − m2
νe
. (D16)

Now we repeat the steps from Appendix C and replace the δ
distribution by a Lorentzian such that we arrive at the final
result:

d�

dω
∝ (Q − ω)

√
(Q − ω)2 − m2

ν

× Im

[〈
ψe−

Ho

∣∣T † 1

ω + i γ

2 − HDy + EDy
T

∣∣ψe−
Ho

〉

−〈
ψe−

Ho

∣∣T † 1

ω + i γ

2 + HDy − EDy
T

∣∣ψe−
Ho

〉]
. (D17)

APPENDIX E: ELECTRON-CAPTURE TRANSITION
MATRIX ELEMENTS

As described in Appendix D the electron-capture operator
acting on the electrons is given as

Te− =
∑
nljm

pnlj anljm, nlj ∈ {1s–6s,2p1/2–5p1/2}. (E1)

Here the quantum numbers nlj label the 10 shells with large
cross sections in 163Ho. The probability amplitude, pnlj , is
approximated to be proportional to the overlap between the
electron and nuclear wave functions. For a nucleus of constant
density and radius R this yields

pnlj ∝
∫ R

0
Rnlj=1/2 (r)dr, (E2)

with Rnlj=1/2 the radial wave function of the large (small) part
of the one electron orbital with quantum numbers ns (np1/2).
The relative matrix elements are

p1s 1
p2s 0.3669 p2p1/2 0.0803
p3s 0.1712 p3p1/2 0.0395
p4s 0.0842 p4p1/2 0.0191
p5s 0.0338 p5p1/2 0.0069
p6s 0.0095

(E3)

normalized to the capture probability of the 1s shell.

APPENDIX F: NUMERICAL STABILITY
AND BLOCK LANCZOS

Using a Lanczos algorithm we determine the 163Ho ground
state before the electron-capture event |ψe–

Ho〉 using a multi-
configurational representation. After finding the ground state
of the Ho atom we are able to calculate the deexcitation
spectrum by looking at the time evolution of Te−|ψe–

Ho〉 in the
electronic potential of 163Dy using Eq. (D17). This accounts
for the fact that the holes are created in the 163Ho ground state
but the deexcitation energies are those of the Dy Hamiltonian
with Z = 66. Note that in a many-body language it is actually
not the Hamiltonian that changes during the electron-capture
event; the Fock space the many-body Hamiltonian acts upon
changes. The peak positions and additional structures in the
spectrum are directly encoded in the many-body Hamiltonian.
The peak intensities are given by the transition operator Te− and
the interference between electron-capture channels, multiplet
formation, and Auger decay. Both the intensity and peak energy
are calculated without experimental input. As a consequence,
the only parameters that cannot be calculated a priori within
this approach are the Q value, the total amplitude of the
spectrum (half-life of 163Ho), and, due to current restrictions
of the basis set, the width of the peaks.

As T acts on the 163Ho ground state, we obtain a linear
combination of 2s × 10i states which have one hole in each
of the inner shells (the subscripts denote 2s spin states and
10i inner shells from which electron capture is possible). The
energies of these holes vary widely between 16 eV for the
6s shell and 53 keV for 1s shell. This leads to numerical
instabilities (number loss) if the resolvent in Eq. (D17) is cal-
culated directly including all states. On computers with finite
numerical accuracy it is necessary to separate the different
energy scales. We achieve a separation of energy scales and
numerical stability with the use of a block Lanczos routine.
The starting vectors of our block algorithm are the 10 states
created by acting with each term in the operator Te− on |ψe–

Ho〉
separately. The resulting Green’s function in this basis is
represented by a 10 × 10 matrix. The full electron-capture
spectrum is given by the sum of all elements in this matrix,
including the off-diagonal terms.

In addition to numerical stability, the block Lanczos routine
has two other advantages. The first is that we do not need to sum
explicitly over all possible one- or two-hole excited states, as
their contributions to the spectrum appear naturally when the
Krylov space is built up by the Lanczos algorithm. The second
advantage is that we can easily restrict the Krylov space in
order to study the contribution of certain states. In Figs. 4 and
10 only the starting vectors and their matrix elements of the
Hamiltonian have been used. Thus, the contribution of single
holes sitting in the potential of the surrounding electrons is
separated from the other effects like the hole scattering into a
different orbital. To include the latter effect, we expand our
Krylov space to 2s × 10i × 100 states, where the 4f shell
is restricted to have 11 electrons. In this setting we obtain
the black spectrum in Fig. 6, which modifies Fig. 4 but still
neglects Auger decays and the corresponding double vacancy
excitations. These emerge if we remove the restriction on the
4f shell to have 11 electrons. All of these restrictions on the
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FIG. 10. Norm and phase of the Green’s function matrix Gns,n′s = 〈ψe−
Ho |c†ns((ω − HDy + iγ /2)−1 − (ω + HDy − iγ /2)−1)cn′s |ψe−

Ho 〉.
Diagonal elements show the spectrum resulting from the electron capture in the ns = n′s shell. Capture events from the ns shell show
resonances at all n′s binding energies. Off-diagonal elements show interference effects, i.e., how an electron annihilated in the ns shell can
be recreated in the n′s shell. For the calculation of the total intensity, the phase obtained during the scattering process is important, leading to
Fano-like [17,26,27,30] line shapes.

Krylov space are directly related to the restrictions on the
Hilbert space discussed in Sec. II.

APPENDIX G: HOLE MIXING OF PRINCIPLE
QUANTUM NUMBERS

After a capture event from, for example, the 1s orbital,
the nuclear potential changes. As the eigenorbitals of ψe−

Ho

are different from the eigenorbitals of ψe−
Dy, the 1s orbital

in the potential of Ho has an overlap with all orbitals of s
character in the potential of Dy. This leads to so-called overlap
and exchange corrections [29]. Where the overlap correction
changes the intensity of each of the edges, the exchange
correction leads to inferences between the edges.

For capture events in the s shell, the impact of the hole
mixing is shown in Fig. 10. These spectra show the one-particle
Green’s function (or propagator) after the creation of a core
hole in the ns shell. The diagonal panels show those functions
where the hole is created and annihilated in the same shell, and
the off-diagonal elements show the functions where the hole
is recreated in a different shell from which it was annihilated.
The overlap corrections change the peak height of the diagonal

terms at the energy of the resonance where the core hole was
created, and the exchange corrections lead to peaks at the other
binding energies for the diagonal spectra.

It is important to realize that the so-called exchange in-
teractions [29] come with a phase that changes across the
resonance. The two major panels in Fig. 10 show the norm
and phase of G(ns,n′s). The question of whether there is
constructive or destructive interference thus depends on the
energy one considers and should not be treated as a constant
scaling of the peak intensity. Even more important are the
off-diagonal elements in G(ns,n′s). The measured intensity
related to this Green’s function matrix is proportional to
−Im

∑
n,n′ pnspn′sG(ns,n′s,ω), where pns is the fractional

capture probability amplitude as defined in Eq. (E3). The off-
diagonal interference terms enter with relatively large capture
probabilities and are the main cause of the shift of intensity.
As the interference terms enter with a phase, the resonances
obtain Fano-like asymmetric line shapes [17,26,27,30], which
are important if one is interested in the tails of the spectrum.

To quantify the off-diagonal elements further, one can
investigate the Hamiltonian HDy on a basis of the states
cnlj |ψe−

Ho〉, with nlj ∈ {1s–6s,2p1/2–5p1/2}:

HDy =

c1s |�Ho〉 c2s |�Ho〉 c3s |�Ho〉 c4s |�Ho〉c5s |�Ho〉c6s |�Ho〉c2p 1
2
|�Ho〉c3p 1

2
|�Ho〉c4p 1

2
|�Ho〉c5p 1

2
|�Ho〉

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

53912.60 −451.69 −196.95 −94.82 −37.77 −10.37 0.0 0.0 0.0 0.0 c1s |�Ho〉
−451.69 9008.98 −131.76 −58.18 −22.60 −6.18 0.0 0.0 0.0 0.0 c2s |�Ho〉
−196.95 −131.76 2014.23 −43.18 −15.04 −4.06 0.0 0.0 0.0 0.0 c3s |�Ho〉
−94.82 −58.18 −43.18 403.24 −15.38 −3.97 0.0 0.0 0.0 0.0 c4s |�Ho〉
−37.77 −22.60 −15.04 −15.38 57.96 −4.38 0.0 0.0 0.0 0.0 c5s |�Ho〉
−10.37 −6.18 −4.06 −3.97 −4.38 21.63 0.0 0.0 0.0 0.0 c6s |�Ho〉

0.0 0.0 0.0 0.0 0.0 0.0 8528.50 −124.94 −52.81 −18.29 c2p 1
2
|�Ho〉

0.0 0.0 0.0 0.0 0.0 0.0 −124.94 1808.28 −44.04 −13.59 c3p 1
2
|�Ho〉

0.0 0.0 0.0 0.0 0.0 0.0 −52.81 −44.04 325.31 −14.18 c4p 1
2
|�Ho〉

0.0 0.0 0.0 0.0 0.0 0.0 −18.29 −13.59 −14.18 37.03 c5p 1
2
|�Ho〉

(G1)
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This 10 × 10 matrix defines G(nlj,n′lj,ω) to first order in the
Krylov basis expansion as

G(ω) = 1

ω + i γ

2 − HDy
− 1

ω + i γ

2 + HDy
, (G2)

where here HDy represents the 10 × 10 matrix created by
evaluating the full Hamiltonian (HDy) on a basis of the states
where one core hole is created as given in Eq. (G1).

The off-diagonal elements are at a maximum only a few
percent of the energy difference between the states they couple,
which explains the maximal energy shift of only a few eV and
the relatively modest intensity transfer between the resonances
when comparing the spectra shown in Figs. 4 and 6. For
the understanding of the line shape, the inference terms can
become crucial once realistic core hole lifetimes are included
due to decay into continuum states.

APPENDIX H: RELATIVISTIC CORRECTIONS BEYOND
THE DIRAC EQUATION FROM QUANTUM

ELECTRODYNAMICS

The discussed calculations include the Dirac-Coulomb
Hamiltonian and first order corrections due to quantum elec-
trodynamics. These corrections are the Breit interaction term
for the Coulomb repulsion. The density functional theory
calculations for the orbital wave functions defining our one-
particle basis set were done relativistically including the
Breit interaction. The interaction term in our Hamiltonian

10−11

10−9

10−7

10−4

10−3

10−1

0 500 1000 1500 2000 2500 3000

In
te

ns
it
y

(c
ou

nt
s

pe
r

ha
lf-

lif
e)

Energy (eV)

10−11

10−9

10−7

10−4

10−3

10−1

0 500 1000 1500 2000 2500 3000

FIG. 11. Theoretical electron-capture spectrum with (black) and
without (blue) Breit interaction terms for shell occupation conserving
scattering. Only a small amount of spectral weight is shifted between
the peaks.

also contains the Breit interaction but on the level of shell
occupation conserving scattering only. To test the importance
of the level of corrections beyond the Dirac equation due to
quantum electrodynamics we compare in Fig. 11 calculations
including the Breit terms to calculations where the Breit term
is neglected. Only very small changes are observed and further
relativistic corrections due to quantum electrodynamics are
assumed to be negligible.
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