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We present a nonperturbative, divergence-free series expansion of Green’s functions using effective
operators. The method is especially suited for computing correlators of complex operators as a series
of correlation functions of simpler forms. We apply the method to study low-energy excitations in resonant
inelastic x-ray scattering (RIXS) in doped one- and two-dimensional single-band Hubbard models. The
RIXS operator is expanded into polynomials of spin, density, and current operators weighted by
fundamental x-ray spectral functions. These operators couple to different polarization channels resulting
in simple selection rules. The incident photon energy dependent coefficients help to pinpoint main RIXS
contributions from different degrees of freedom. We show in particular that, with parameters pertaining to
cuprate superconductors, local spin excitation dominates the RIXS spectral weight over a wide doping
range in the cross-polarization channel.
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Our understanding in many aspects of physics has
benefited tremendously from perturbation theory. One of
its triumphs lies in the practical calculation of various
scattering cross sections and correlation functions in many
branches of physics ranging from quantum electrodynamics
to condensed matter. Although widely successful, such
perturbative approaches require the “perturbing part” to
be small to ensure convergence. This is not always a given,
especially for systems that involve different degrees of
freedom with comparable energy scales. The divergence
of series expansions in quantum electrodynamics was
discussed early on [1]. Fueled by recent advances in
numerical diagrammatic methods aimed to tackle the
many-body problem in regimes with competing interactions
[2–7], it has been realized that divergent series need to be
treated with care [7–16]. We here present an alternative
expansion scheme for the calculation of correlation func-
tions that does not depend on small parameters and con-
verges for any Hamiltonian. The difference between our
projection method and standard perturbation theory is much
like the difference between a Fourier series that can describe
functions with poles and a Taylor series with finite range of
convergence [17].
We apply our theory to describe the transition process

of resonant inelastic x-ray scattering (RIXS), which has
emerged in recent years as a versatile tool for studying the
energy-momentum structure of charge, spin, orbital, and
lattice excitations in solids [18]. RIXS is a second-order
process, described by a four-point two-particle Green’s
function. In the first step, a core electron is promoted into
an empty valence state by absorbing a high-energy photon.
The created core hole interacts with its environment, and
eventually decays into an excited state after certain lifetime

by emitting a photon. Detailed information of various
elementary excitations is then encoded in the change of
energy, momentum, and polarization between the incident
and scattered photons. The high photon flux provided
by modern synchrotron x-ray sources and its energy-
momentum window make RIXS an appealing complement
to more established methods such as inelastic neutron
scattering (INS). There are clear parallels between the
two—both processes can be cast into the form of a
momentum space correlation function:

χðq;ωÞ ¼ −i
Z

dteiωthO†
qðtÞOqð0Þi: ð1Þ

While the results of INS can be directly communicated as the
dynamic spin correlation function by identifying the oper-
ator Oq with the spin operator Sq, the complex structure of
the RIXS operator originated from its nontrivial intermedi-
ate state prevents a direct interpretation of the measured
spectra.
One recognizes the challenges in finding an effective

theory for RIXS when realizing that the intermediate state
in RIXS is the final state in x-ray absorption spectroscopy
(XAS). For XAS, it is well known that core-valence
interactions lead to excitons or resonances with asymmetric
line shapes, e.g., edge singularities [19–21], combined with
multiplets and charge-transfer shakeup excitations [22,23].
No small parameters are present in the intermediate state,
and previously proposed series expansions based on the
assumption that the core-hole lifetime 1=Γ is small [24–26]
turned out to be nonconvergent [27,28]. The lack of
concrete understanding of RIXS cross section greatly limits
its potential as a true alternative to INS. One acute example
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is the ongoing debate on the nature of the observed
dispersing low-energy RIXS feature in overdoped cuprates
[29–39]. On one hand, it was interpreted as damped
collective magnetic excitations [29–37], supported empiri-
cally by its similar momentum-space structure to that of
dynamic spin structure factor [29,37]. On the other hand, it
was argued to be originated from incoherent particle-hole
excitations [38,39], as canonical Fermi-liquid behavior is
expected at high doping levels.
In this Letter, we present an alternative expansionmethod

that does not depend on small parameters and is free from
divergences. The RIXS operator is expanded into a series of
effective operators composed of spin, density, and current
operators in the proximity of the core-hole site. Good
agreement with the exact solution can be reached within
the first few orders, whereby the exact rate of convergence is
model and material dependent. This approach provides an
unbiased survey of all possible low-energy excitations that
couple to the RIXS process with explicit considerations of
light polarizations and incident photon energy. The result is
an exact mapping of the scattering cross section to a set of
intrinsic correlation functions. Such a procedure is generally
applicable for a wide class of models.
Following Ref. [40], we start by rewriting Eq. (1), whose

imaginary part gives the RIXS intensity as

Iðωi; q;ωÞ ¼ −
1

π
Imh0jRϵiϵo

ωi;q
† 1

ωþ E0 −H þ i0þ
Rϵiϵo
ωi;qj0i;

ð2Þ

where j0i denotes the initial state of the system with energy
E0 determined by the HamiltonianH. q ¼ ki − ko and ω ¼
ωi − ωf are the momentum and energy transfer between the
incoming (i) and outgoing (o) photons with polarizations ϵi
and ϵo, respectively. The q-dependent RIXS operator Rϵiϵo

ωi;q

is obtained by a Fourier transform Rϵiϵo
ωi;q ¼

P
je

iq·rjRϵiϵo
ωi;j

of
the local operator,

Rϵiϵo
ωi;j

¼ Tϵo
j
† 1

ωi −H þ iΓ
Tϵi
j ; ð3Þ

which describes the RIXS process where a core hole is
created at site j by a dipole transition operator Tϵi

j and
subsequently annihilated locally by Tϵo

j
† after some lifetime

1=Γ. A generally valid assumption is imposed here that the
core hole is nondispersive, as the overlap of core-electron
wave functions is usually negligible between different sites.
To understand what excitations can be probed by RIXS,

it is favorable to express Rϵiϵo
ωi;j

as a sum of effective
operators that will consequently turn Eq. (2) into a series
of simpler correlation functions as

Rϵiϵo
ωi;j

¼
X
m;n

αm;nðϵi; ϵo;ωiÞOm;n; ð4Þ

where the operatorOm;n ¼ jmihnj brings a state jni to jmi. In
cases where jmi and jni are states in a complete orthonormal
Hilbert space, the expansion is trivial and αm;n is readily
given as αm;n ¼ hmjRjni [17]. Expansion over a complete
basis set is not practical due to the exponentially large size of
the Hilbert space. We want to expand R on operators that
couple exponentially many states sharing certain property n
to exponentially many states having propertym in common.
Two sufficient conditions for obtaining the expansion coef-
ficients in Eq. (4) for such operators are

Om;n† ¼ On;m;

Os;tOm;n ¼ δt;mOs;n: ð5Þ
Using these relations we obtain αm;n for any given wave
function jψi by multiplying Eq. (4) on the right by Ou;vjψi
and left by hψ jOt;s,

hψ jOt;sROu;vjψi ¼
X
m;n

αm;nhψ jOt;sOm;nOu;vjψi

¼ αs;uhψ jOt;vjψi; ð6Þ
from which it follows that

αs;uðϵi; ϵo;ωiÞ ¼
hψ jOs;sRϵiϵo

ωi;j
Ou;ujψi

hψ jOs;ujψi ; ð7Þ

where we used the freedom to choose t ¼ s and v ¼ u.
For RIXS (or any core-level spectroscopy in general), one

should bear in mind its local nature defined by the immobile
core hole and its short lifetime, which means that the
expansion of Rϵiϵo

ωi;j
will have a good convergence rate by

expanding over operators that act in the proximity of the
core-hole site j. Let us define the Fock space of a subsystem
LL ¼⊗l∈½L� Hl, where [L] denotes the core-hole site
(L ¼ 0) or its up to Lth-nearest neighbors (L ≥ 1). Hl is
the single-site Fock space at site l. Operators satisfying
Eq. (5) can then be defined as Om;n

L ≡ j ~mLih ~nLj ⊗ 1R,
where j ~mLi and j ~nLi are orthonormal basis states of LL and
1R is the identity operator acting on RL ¼⊗l∉½L� Hl.
In the following we consider the single-band Hubbard

model, althoughwenote that generalization to themultiorbital
case is straightforward. A multiorbital expansion restricted to
local spin operators can be found in Ref. [40]. The single-site
Fock space in this case is spanned by states with zero, single,
and double occupations fj∅i; j↓i; j↑i; j↑↓ig. In the zeroth-
order (L ¼ 0) expansion, there are in total 4 × 4 ¼ 16

operators Om;n
0 , among which only

P
2
n¼0ð2nÞ2 ¼ 6 particle-

number-conserving ones couple to the RIXS process, namely

O0;0 ¼ nð0Þ; O3;3 ¼ nð2Þ;

O1;1 ¼ 1

2
nð1Þ − Sz; O1;2 ¼ Sx − iSy;

O2;2 ¼ 1

2
nð1Þ þ Sz; O2;1 ¼ Sx þ iSy; ð8Þ
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which are the linear combinations of local spin operators
Sx, Sy, Sz and density operators nð0Þ ¼ ð1 − n↑Þð1 − n↓Þ,
nð1Þ ¼ P

σnσð1 − nσ̄Þ, and nð2Þ ¼ n↑n↓ defining the com-
plete set of on-site excitations. Among the other 10
operators, 8 (2) change the particle number by 1 (2), which
can combine with operators on neighboring sites to form
number-conserving ones in higher-order expansions. An
expansion including two (three) sites generates 256 (4096)
operators, and 70 (924) of them are number conserving
[17]. Although this is a rapidly growing series, the expan-
sion converges within the first few orders [41]. In addition,
the number of operators can be further reduced by consid-
ering the local symmetry and light polarizations. For
systems with local inversion symmetry, only Sz has a
nonzero coefficient in the L ¼ 0 expansion for the
cross-polarization channel (ϵi · ϵ�o ¼ 0 and assuming
ϵi × ϵ�o∥z), or nð0Þ and nð1Þ for the parallel-polarization
(ϵi · ϵ�o ¼ 1) one.
The Hamiltonian of the model we study reads

H ¼ −t
X
hi;ji;σ

d†i;σdj;σ − t0
X

hhi;jii;σ
d†i;σdj;σ þ U

X
i

ndi↑n
d
i↓

þ Uc

X
i;σ;l;σ0

ndiσn
c
ilσ0 þ ζc

X
i

lci · s
c
i ; ð9Þ

which is defined on a one-dimensional chain or a two-
dimensional square lattice. The first line of Eq. (9)
describes the hoppings of the d electrons between nearest
(h; i) and next-nearest (hh; ii) neighboring sites with local
Coulomb interaction U, and the second line accounts for
the repulsion Uc between the d states and the core states c
with spin-orbit coupling ζc. The numerical results will be
evaluated with parameters given in the Supplemental
Material [17]. For both 1D and 2D, the calculation is
performed on 12-site clusters with periodic boundary
conditions using the many-body package QUANTY [43,44].
We first show the results for the 1D case. The

exact q-integrated RIXS cross sections in the parallel-
polarization channel for the hole-doped case with occupa-
tion n ¼ 0.83 are plotted in Fig. 1, in comparison to the
approximate ones with effective operators Om;n

L expanded
up to next-nearest neighbors (L ≤ 2). The incident photon
energy ωi is tuned to the maximum of the XAS spectra
(“resonance”) [17] for Fig. 1(a) and also “detuned” at
t ¼ 0.4 eV higher for Fig. 1(b). All spectra are broadened
by a Lorentzian function with full width at half maximum
of 0.05t for plotting.
Within the L ¼ 0 expansion, regardless of doping and

incident photon energy (see Fig. 1 and Supplemental
Material [17]), the approximate cross sections only resem-
ble the exact ones on the higher-energy end, while the low-
energy spectral weight is suppressed. This highlights the
importance of nonlocal charge fluctuations as pointed out
by earlier studies [27,38]. The missing spectral weight can

be largely restored by including the neighboring sites in
the expansion, and the L ¼ 2 approximation reproduces
almost fully the exact solution. The convergence rate can be
quantified by comparing the spectral moments μn ¼R
ωnAðωÞdω between the exact and approximate RIXS

cross sections. A good convergence of the spectral weight
μ0 and its center of mass μ1=μ0 is reached for L ≥ 1 with
different ωi values both before and after the resonance [17].
To address the relation between RIXS and the charge

response function, we performed a partial expansion in
the L ¼ 0 subspace using only the density operator
n ¼ nð1Þ þ 2nð2Þ. The resultant dynamic charge structure
factor NðωÞ is shown in Fig. 1(a). The large discrepancy
between the RIXS cross section and NðωÞ suggests that a
direct association between the two should be discouraged.
Their fundamental difference is not difficult to understand.
In the presence of large on-site repulsion, the local charge
fluctuation is associated with an energy scale of U and
thus strongly suppressed. The RIXS process, on the other
hand, involves other low-energy excitations as shown by
the additional effective operators such as S0 · S1 [45],
which corresponds to a two-spin excitation and contributes
to the lower-energy RIXS spectral weight.
Figure 2 shows the 1D exact and approximate RIXS cross

sections in the cross-polarization channel. Similar to the
parallel-polarization results, an overall improvement of the
approximation can be achieved by extending the expansion
range. Contrary to the former case where the inclusion of
nonlocal excitation is essential, the majority of the spectral
weight is already captured here at all dopings by a local
expansion [17]. This observation indicates that the RIXS
spectrum consists mainly of dynamic spin structure factor
not only in undopedmagnetic insulators [40] but also up to a
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FIG. 1. Exact and approximate q-integrated RIXS cross section
for 1D Hubbard model with n ¼ 0.83 in the parallel-polarization
channel after subtracting the elastic peak. The incident photon
energy is tuned (a) to the L3 resonance and (b) at t ¼ 0.4 eV
higher for the lower panel. The dynamic charge structure factor
NðωÞ is also plotted for comparison (see text).
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high doping range. This seemingly surprising result can be
explained by examining the relevant nonlocal effective
operators. The cross-polarization channel couples to those
operators that break inversion symmetry such as a spin-
pair exchange js;l ¼ ðc†0;σcl;σ − c†0;σ̄cl;σ̄Þ − H:c: between the
core-hole site and the lth-nearest-neighbor sites. Such
processes are strongly prohibited compared to a local
spin excitation when large local repulsion U is present.
Nonetheless, these nonlocal contributions can give rise to a
nontrivial ωi dependence of the RIXS spectra. While the
energy of local spin excitations is ωi independent, as shown
by the constant μ1=μ0 values of L ¼ 0 spectra [or equiv-
alently SðωÞ] [17], the nonlocal spin-flip process will move
to higher energy with increasing ωi. The difference of ωi
dependence is crucial for pinpointing the nature of the
experimentally observed low-energy feature of the cross-
polarization RIXS in doped cuprates [34–36,38].
Figure 3(a) shows the coefficient αðωiÞ for Sz;0 and js;1

for n ¼ 0.83. While the resonant energy of αSz;0 coincides
with the XAS, that of αjs;1 is located at ∼0.3 eV higher. The
relative weight of nonlocal excitations thus increases by
detuning the incident photon to higher energies. Therefore,
while the dominant spectral weight in the cross-polarization
channel still originates from the local spin excitations at
moderate doping levels (Fig. 2), the relative increase
of nonlocal contributions at high detuning energies may
give rise to a fluorescencelike behavior [17]. Figures 3(b)
and 3(c) show the expansion coefficients of operators Sz;l
and js;l that appear in higher-order expansions. The near
exponential convergence rate as a function of lattice
spacing l confirms the assumption that the most important
excitations happen locally around the core-hole site.
In the last part we address the relation between the cross-

polarization RIXS and SðωÞ in the hole-doped 2D Hubbard
model using the presented method. Figure 4 shows the
q-integrated and q ¼ ð2π=3; 0Þ RIXS cross sections

together with SðωÞ obtained by L ¼ 0 expansion. The
higher-order expansions are shown in the Supplemental
Material [17]. We find that the convergence rate for the 2D
Hubbard model is slightly slower than for the 1D case. At
half filling, as shown in Figs. 4(a) and 4(b), the cross-
polarized RIXS probes nearly exact the local spin excita-
tions at low energy, as evidenced by their almost identical
spectral weight and line shape. Upon hole doping, while the
discrepancy between the two increases due to growing
nonlocal charge and spin fluctuations, the RIXS spectral
weight originated from local excitations remains dominant.
Even for the highly overdoped n ¼ 0.67 case [Figs. 4(c)
and 4(f)], which was deemed to be fully describable
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by Fermi-liquid theory [38], the local excitations still
constitute about 60% of the total spectral weight, in line
with recent experiments [36]. This finding supports earlier
“paramagnon” interpretations [29,30,34] of the low-energy
feature in cross-polarization RIXS on doped cuprates and
suggests that considerations based purely on quasiparticles
cannot account for the full spectral weight.
In summary, we presented a method to generate a

divergence-free series expansion of Green’s functions using
effective operators. We applied the method to expand the
RIXS operator into a sum of spin, density, and current
operators. The result is an exact mapping of the scattering
cross section to a set of intrinsic correlation functions,
independent of the model and parameters used. The
coefficients of the effective operators encode the energy
and polarization dependence of RIXS and help to identify
the main excitations contributing to the RIXS spectral
weight. A quantitative connection between the RIXS cross
section and intrinsic correlation functions is provided.
Using realistic models tailored to specific materials may
help to resolve confusions in the understanding of current
measurements and guide future experimental works.

We thank L. J. P. Ament, T. P. Devereaux, and K.
Wohlfeld for discussion.
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