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Hidden kagome-lattice picture and origin of high conductivity in delafossite PtCoO2
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We study the electronic structure of delafossite PtCoO2 to elucidate its extremely small resistivity and high
mobility. The band exhibits steep dispersion near the Fermi level despite the fact that it is formed mainly by Pt
d orbitals that are typically localized. We propose a picture based on two hidden kagome-lattice-like electronic
structures: one originating from Pt s + px/py orbitals, and the other from Pt d3z2−r2 + dxy/dx2−y2 orbitals, each
placed on the bonds of the triangular lattice. In particular, we find that the underlying Pt s + px/py bands actually
determine the steepness of the original dispersion, so that the large Fermi velocity can be attributed to the
large width of the Pt s + px/py band. In addition, the kagome-like electronic structure gives rise to “orbital-
momentum locking” on the Fermi surface, which reduces the electron scattering by impurities. We conclude that
the combination of the large Fermi velocity and the orbital-momentum locking is likely to be the origin of the
extremely small resistivity in PtCoO2.
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I. INTRODUCTION

The past decade has seen considerable attention paid to
an unusual series of metals: PdCoO2, PdRhO2, PdCrO2, and
PtCoO2 [1]. Their strongly two-dimensional conduction takes
place in triangular lattice layers of Pd or Pt, separated by
layers of edge-sharing transition metal-oxygen octahedra in a
three formula unit stacking sequence known as the delafossite
structure. They are particularly notable for their high electrical
conductivity, which is similar to that of elemental Cu or
Ag at room temperature even though their volume carrier
density is a factor of 3 lower. At low temperatures, their
mean free paths are as high as tens of microns, paving the
way for an investigation of new regimes of electrical transport
[2–5]. Recent work on bulk single crystals with well-defined
electrical contact geometries defined using focused ion beam
sculpting has established the lowest room-temperature resis-
tivity among the series to be that of PtCoO2 : 1.8 μ� cm
[6]. Intuitively, it is difficult to imagine a three-component
oxide having a resistivity this low, and there is a strong
motivation to try and understand why this happens. That is the
purpose of this paper. From the electronic structure point of
view, both first-principles band-structure calculations [8–10]
and experiments such as the de Haas–van Alphen [7] and
angle-resolved photoemission [9,11] measurements show a
very dispersive band crossing the Fermi level. Although this
is consistent with the high conductivity, it is itself puzzling
since the orbital projection within first-principles calculations
shows that the band crossing the Fermi level mainly originates
from Pt d orbitals (Refs. [8,10]; see also Fig. 3), which usually
give a narrow bandwidth and a small Fermi velocity. The
possibility of a contribution of s orbitals has been discussed
in this context [1,7].

In the present work, we study the electronic structure of
PtCoO2, and we show that the steep band intersecting the
Fermi level is composed of a mixture of two hidden kagome-
like electronic structures, one originating from Pt 6s, 6px,
and 6py orbitals, and the other from Pt 5d3z2−r2 , 5dx2−y2 ,
and 5dxy. The linear combination of the orbitals forms a
basis for a hypothetical atomic orbital on a kagome lattice
placed at the bond center of the delafossite triangular lattice.
In particular, the s + px/py kagome-like electronic structure
has a very large bandwidth of 30 eV, which gives rise to
the steep dispersion of the band intersecting the Fermi level
in the original band structure, despite the fact that d-orbital
character is much stronger than s + px/py character in this
band. Speaking of a kagome lattice (to be precise, a tight-
binding model on a kagome lattice with one orbital per site),
one may think of Dirac cones at the K and K ′ points, or the
presence of a flat band [12]. Here, however, we will focus
on another aspect of the kagome-like electronic structure,
namely the presence of the quadratic band crossing point
[13] at the � point: the kagome lattice is known to have this
degeneracy with the Berry phase 2π , as a touching of the flat
band and one of the dispersive bands. This degenerate point
is robust under a sixfold rotational symmetry along with an
antiunitary symmetry, so that the present system is expected to
have peculiar properties derived from this touching, although
the degeneracy is lifted in the actual band structure due to
spin-orbit coupling. In fact, in the electronic structure of
PtCoO2, the orbital character varies along the Fermi surface,
as sketched in Fig. 1, giving rise to “orbital-momentum
locking,” which reduces the rate of the electron scattering
by impurities [14]. We conclude that the combination of
the large Fermi velocity and the orbital-momentum locking
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FIG. 1. Schematic figure of the orbital-momentum locking. The
figure shows how the orbital character varies along the Fermi surface.

is likely to be the origin of the extremely small resistivity
in PtCoO2.

II. BAND STRUCTURE

The first-principles band calculation of PtCoO2, whose
crystal structure is shown in Fig. 2, was performed using
the WIEN2K package [16] with the PBE-GGA exchange-
correlation functional [17] and adopting the lattice parameters
obtained in Ref. [8]. The value of RKmax is set to 8, and
1000 k-points are taken for the self-consistent calculation.
In our first-principles calculation, we have omitted spin-orbit
coupling for the sake of the clarity of the argument regard-
ing the hidden kagome-like electronic structure, but we will
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FIG. 2. The crystal structure of PtCoO2 depicted using VESTA

[15]. The inset shows the triangular lattice of Pt atoms.
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FIG. 3. (a) First-principles band structure of PtCoO2. The thick-
ness represents the strength of the d-orbital character. (b) The band
structure of the 20-orbital tight-binding model. (c) The density of
states of PtCoO2.

consider spin-orbit coupling in Sec. V. The calculation result
is shown in Figs. 3(a) and 3(c). This calculation shows that
the bands around the Fermi level have strong Pt d orbital
character, which is expected to give a narrow bandwidth.
However, the band dispersion around the Fermi level is very
steep, consistent with that observed experimentally [11], and
with its very high room-temperature conductivity.

III. ORBITAL DECOMPOSITION

To understand the origin of this steep dispersion, we first
construct a 20-orbital tight-binding model, which consists of
Pt s, p × 3, d × 5, Co d × 5, and O p × 3 orbitals, exploit-
ing maximally localized Wannier functions [18,19]. Some
of the nearest-neighbor hopping integrals obtained are given
in Table I. As shown in Fig. 3(b), the tight-binding model
accurately reproduces the original band structure. From this
model, we can extract a hypothetical band structure in which
only the hoppings among, say, the Pt s orbital are consid-
ered, with no other orbitals mixed. Similar hypothetical band
structures can also be obtained for Pt px/py, Pt d3z2−r2 , or
Pt dxy/dx2−y2 orbitals, as shown in Fig. 4. As expected, the
d-orbital-originated bands have a narrow bandwidth. In fact,
the mixture of Pt s and px/py gives rise to a band structure that
has a very large bandwidth with a steep dispersion, as shown
in Fig. 5(b). The steep band intersecting the Fermi level in
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TABLE I. The value of the nearest-neighbor hopping integrals
between s, px , py, and d3z2−r2 orbitals and the on-site energy of these
orbitals. t1 and t2 are the nearest-neighbor hoppings from (0,0) to
(1,0) and (0,1), respectively. (n, m) stands for na + mb, where a and
b are the primitive translation vectors shown in Fig. 2. The “on-site”
in the bottom row is the hopping within the same site.

s px py d3z2−r2

on-site 2.41 11.31 11.31 −1.30
s t1 −1.20

t2 −1.20
px t1 1.87 3.25

t2 −0.93 1.00
py t1 0.24

t2 1.62 −1.30 2.50
d3z2−r2 t1 −0.37 −0.63 −0.15

t2 −0.37 0.32 −0.55 −0.15
on-site −0.87

the original band structure can basically be decomposed into
Pt s + px/py and Pt d3z2−r2 + dxy/dx2−y2 orbital components,
where the steepness comes from the former, despite the fact
that a strong contribution near the Fermi level comes from the
latter.

If we look more closely into the Pt s + px/py band, it has
a Dirac-cone-like feature similar to that of the honeycomb
lattice. Figure 6 shows how the mixture of s and px/py

orbitals results in a Dirac-cone-like feature by hypothetically
varying the s-orbital on-site energy, i.e., when the s energy
level is lowered [Fig. 6(c)], the s and px/py bands are clearly
separated, but the Dirac cone becomes apparent when the s
level is raised and the bands are sufficiently mixed [Fig. 6(a)].
Speaking of the honeycomb lattice, the present Pt s + px/py

band has a total bandwidth of nearly 30 eV, which is even
larger than that of the graphene. Hence the large group veloc-
ity of the band intersecting the Fermi level in the original band
structure [dashed circles in Fig. 5(a)] can be traced back to the
steep dispersion of the Pt s + px/py bands.
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FIG. 4. Bands that consist solely of (a) Pt s, (b) Pt px/py, (c) Pt
dxy/dx2−y2 , or (d) Pt d3z2−r2 orbital components, extracted from the
20-orbital model derived from the first-principles band structure.
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FIG. 5. Band structure of models that consist of (a) Pt s, px/py,
d3z2−r2 , dxy/dx2−y2 , and Opz; (b) Pt s and px/py; and (c) Pt d3z2−r2

and dxy/dx2−y2 orbitals. Dashed circles in (a) denote the steep band
intersecting the Fermi level.

IV. HIDDEN KAGOME LATTICE AND ORBITAL
MOMENTUM LOCKING

To further understand the origin of this peculiar band
structure, we now try to construct a tight-binding model on
a triangular lattice for a simpler system that consists of only
s and px/py orbitals with no other bands mixing. To obtain
such a model, here we consider a simple hypothetical material,
Si on a triangular lattice (a = 5 Bohr and c = 10 Bohr),
where s and px/py hybridize with no other bands mixing.
In Fig. 7, we show the original band structure along with
the s + px/py three-orbital tight-binding model constructed
from maximally localized Wannier functions obtained using
VASP [20–22] and WANNIER90 [18] packages. Interestingly,
the band structure of this model [Fig. 7(b)] looks very similar
to the Pt s + px/py bands of PtCoO2 [Fig. 5(b)]; in the latter,
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FIG. 6. (a)–(c) Evolution of the s + px/py band structure upon
varying the on-site energy level of the s orbital. The thickness
represents the strength of the s-orbital component.
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FIG. 7. (a) First-principles band structure of triangular lattice Si.
(b) s + px/py three-orbital model derived from the first-principles
band structure.

the degeneracy of the lower two bands at the M point is
lifted, but otherwise the two band structures look just alike. In
Fig. 8, we show the Wannier orbitals of the triangular lattice
Si, which is constructed with the projection of the s orbital
centered at the bond center of two neighboring Si atoms. Thus,
the Wannier centers actually form a kagome lattice as shown
in Fig. 8 [23]. The relation between the present three-band
model and the tight-binding model on a kagome lattice with
nearest-neighbor hopping only can be seen by adding distant

t t’’

t  = −2.82 eV
t’ = −1.07 eV (−0.38t)
t’’= 0.94 eV (0.33t)

center of 
the Wannier orbitals

Si

t’

Si

(b)

(a)

FIG. 8. (a) Wannier orbitals of the s + px/py three-orbital model
of triangular lattice Si depicted using VESTA [15]. (b) The center of
the Wannier orbitals forms a kagome lattice.
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FIG. 9. The relation between the kagome lattice with nearest-
neighbor hopping only and the Si s + px/py model is shown by
adding the distant hoppings one by one. The values of the hopping
integrals are shown in Fig. 8.

hoppings one by one as in Fig. 9. When there is only the
nearest-neighbor hopping, there is a perfectly flat band in
addition to the two bands that form Dirac cones, but as the
distant hoppings are added, the flat band gets dispersive [24]
and becomes nearly degenerate with the other two bands at
the K point.

From the above, we have understood that the steep disper-
sion of the band intersecting the Fermi level in PtCoO2 orig-
inates from the underlying kagome-like electronic structure
consisting of Pt s + px/py orbitals. However, this is not the
whole story. If we look closely at the Pt d3z2−r2 + dxy/dx2−y2

portion of the band (Fig. 5), which makes a large contribution
to the Fermi surface, this itself also has a (strongly deformed)
kagome-like electronic structure as seen from the comparison
of the reversed blow-up of d3z2−r2 + dxy/dx2−y2 and s + px/py

bands in Fig. 10. Namely, there is a Dirac-cone-like feature at
the K point and a twofold degeneracy at the � point. This may
be naturally understood because the d3z2−r2 (a1g symmetry)
and the degenerate dxy/dx2−y2 (eg symmetry) orbitals are likely
to play the same role as s and the degenerate px/py orbitals,
respectively.

In fact, a relation between the kagome lattice and the 3d
band manifold in a cobaltate NaxCoO2, where Co atoms form
a triangular lattice, has also been pointed out in Refs. [25–30].
In NaxCoO2 also the a1g and the doubly degenerate e′

g orbitals
are the foundation of the relevant band structure. On the other
hand, in NaxCoO2, the s and p orbitals do not play any role
in the bands near the Fermi level. The difference between
NaxCoO2 and PtCoO2 lies in the fact that in the former, the
bands around the Fermi level mainly originate from the 3d
orbitals of the Co atoms, which are surrounded by oxygen
atoms that strongly push up the energy level of the widely
spread Co 4s and 4p orbitals. By contrast, in PtCoO2, the main
player is Pt, which by itself forms a layer of triangular lattice.

Now, as mentioned in the Introduction, a characteristic
feature of the kagome-like band structure is the Berry phase of
2π arising from the touching of the two bands at the � point.
Let us first see this feature directly in the original kagome
lattice. We show in Fig. 11 how the wave function, plotted on
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FIG. 10. The similarity between the band structure of Pt s +
px/py (right) and that of Pt d3z2−r2 + dxy/dx2−y2 (left) is shown.

a real-space unit cell, varies as we move along a certain energy
contour around the � point. It can be seen that the phase of the
wave function rotates, and it is exactly reversed as we move
to the opposite side of the contour [31]. Here we considered
the kagome lattice with only the isotropic nearest-neighbor
hopping, but this feature remains even with distant hoppings.

We can say that this topological feature of the kagome-like
electronic structure manifests itself as “orbital-momentum
locking” in PtCoO2 in the following sense. As mentioned
above, the Fermi surface of PtCoO2 mainly consists of the
above-mentioned Pt d orbitals with a small amount of Pt p and
s orbital mixture. In Fig. 12, we show how the orbital weight
varies along the Fermi surface. This variance of the orbital
character results in a “rotation” of the total wave function

FIG. 11. Wave function of the original kagome lattice plotted on
a real-space unit cell. The large circle is a certain energy contour
that encircles the � point, and the wave function is plotted along this
contour. The radius of the circle represents the weight on each site,
and the color denotes the sign (red: negative, blue: positive).
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along the Fermi surface as shown in Fig. 1. Namely, a wave
function, which looks somewhat like a well-known d3z2−r2

orbital laid down in the x-y plane, rotates along the Fermi
surface. (More precisely, the wave function has a different
shape at the corners of the Fermi surface.) Therefore, at each
point on the Fermi surface, the orbital character is different.

We note that orbital-momentum locking in itself is not
an extraordinary feature; it can in general be realized in
multiorbital systems. For example, in a two-orbital system
originating from px and py orbitals (or dxy and dx2−y2 orbitals)
on a triangular lattice, the two orbitals give rise to two Fermi
surfaces, and the mixture of the two orbitals results in a
rotation of the p orbital (or d orbital) along each Fermi
surface. Specific features of PtCoO2 are that the Fermi sur-
face essentially consists of only one band despite the strong
multiorbital nature, and also that a very large Fermi velocity
is realized due to the “hidden” mixture of s + px/py orbitals.
The effect of the orbital-momentum locking on the transport
properties will be discussed in the next section.

Finally, let us point out an interesting feature regarding
the kagome-like electronic structure observed above. In the
original kagome lattice, the bands are twofold degenerate at
the K point [Fig. 9(a)], but in all of the kagome-like band
structures hidden in the materials considered here, there is
a (near) threefold degeneracy, as seen in Figs. 10 and 9(d).
One might think that this is related to some kind of symmetry
peculiar to the triangular lattice structure. However, we have
found that this degeneracy can be lifted by employing artificial
lattice structure parameters (e.g., varying the internal coordi-
nate values of the oxygen atoms) without changing the sym-
metry of the triangular lattice structure. Also, this threefold
degeneracy is absent in the kagome-like electronic structure
found in NaxCoO2 [25]. At present, we are not certain about
the origin of this interesting threefold degeneracy.

V. IMPURITY SCATTERING

To understand how the steep dispersion and the orbital-
momentum locking are responsible for the extremely small
resistivity observed in PtCoO2, we evaluate the quasiparticle
lifetime within the second-order Born approximation [32],
which is justified for weak disorder. When the on-site disor-
der potential U0 is uniformly distributed within the interval
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(−U0/2,U0/2), the self-energy �̂ due to disorder is defined
through

(EF − Ĥ0 − �̂)−1 = 〈(EF − Ĥ )−1〉, (1)

where Ĥ0 is the Hamiltonian without disorder (i.e., the tight-
binding Hamiltonian in this study), EF is the Fermi energy,
and Ĥ is the Hamiltonian with the disorder potential, while
〈O〉 denotes the disorder average of an operator O. �̂ is self-
consistently determined as follows:

�̂ = 1

12
U 2

0

∑
k

[EF + i0+ − Ĥ0(k) − �̂]−1. (2)

In the small U0 regime, where the self-energy is small, we can
approximate Eq. (2) as

�̂ � U 2
0

12

∑
k

∑
n

|nk〉〈nk|
EF + i0+ − εn(k) − 〈nk|�̂|nk〉 , (3)

where |nk〉 is the wave function of Ĥ0 at wave vector k and the
nth band. This equation is solved self-consistently to obtain
the self-energy. We then calculate its imaginary part

τ−1
θ = 〈θ | − Im�̂|θ〉, (4)

where |θ〉 is the wave function |nk〉 on the Fermi surface at the
angle θ = tan−1(ky/kx ). This quantity corresponds to the scat-
tering rate by impurities [14]. We average 〈θ | − Im�̂|θ〉 over
the Fermi surface and plot it against the disorder parameter
g = U 2

0 /12 [Fig. 14(a)].
For the calculation of the self energy, we construct a six-

orbital model on a triangular lattice consisting of Pt s, px,
py, d3z2−r2 , and dxy orbitals. This six-orbital model does not
explicitly comprise the O pz orbitals (whose weight lies well
below the Fermi level; see Fig. 5), but it accurately reproduces
the band dispersion of the eight-orbital model near the Fermi
level. It also appropriately considers the orbital components
on the Fermi surface. Hence this model can be considered as
a minimal model to investigate the impurity scattering. Here
we further consider the spin-orbit coupling for the d-orbitals
with a coupling constant of λ = 0.75 eV in order to get rid
of the small pocketlike Fermi surface around the M point,
so as to reproduce the experimental observations [11,33]. To
be more precise, we have found that the Pt dxz, dyz, and
pz orbitals mix significantly with the present orbitals when
the spin-orbit coupling is turned on, and in this sense it is
more accurate to use a nine-orbital model. However, we have
checked that this mixing of the additional three orbitals does
not strongly affect the states near the Fermi level and hence
the present calculation results. Therefore, here we concentrate
on the six-orbital model. The Hamiltonian Ĥ0 in Eq. (1) for
the six-orbital model is described as follows:

Ĥ0 = ĤTB + ĤSO, (5)

ĤSO = σz ⊗

⎛
⎜⎜⎜⎜⎜⎝

0 −iλ 0 0 0
iλ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

, (6)
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FIG. 13. The band structure of the six-orbital model with the
spin-orbit coupling included. The blue line represents the dispersion
of the single-orbital model, which is obtained by extracting the band
intersecting the Fermi level (see the text).

where ĤTB contains the hoppings and the on-site energies of
the six Wannier orbitals (orbital 1, dxy; 2, dx2−y2 ; 3, d3z2−r2 ;
4, px; 5, py; and 6, pz), ĤSO is the spin-orbit coupling term,
and σz is the z-component of the Pauli matrices. Note that
we consider only spin-preserving scattering here. We show
in Fig. 13 the band structure of this six-orbital model with the
spin-orbit coupling included, and in Fig. 14 the imaginary part
of the self-energy calculated by using this model is plotted as
a function of g.

To gain intuitive understanding, we now derive an approx-
imate expression for the self-energy. With the power series
expansion for Eq. (2), the imaginary part of the self-energy
can be described as follows:

Im�̂ ∼ −gπ
∑
k,n

δ(EF − εn(k))|nk〉〈nk|. (7)

Because PtCoO2 exhibits a single-band, strongly two-
dimensional Fermi surface, we can describe Eq. (7) with |θ〉
and the distance from the � point kF (θ ) = (k2

x + k2
y )1/2,

Im�̂ = −gS0

4π

∫ 2π

0
dθ

∫ ∞

0
dk

kδ(k − kF (θ ))
vF (θ )

|θ〉〈θ |, (8)

where S0 is the area of the unit cell within the xy plane and vF

is the Fermi velocity at angle θ . The self-energy for angle θ is
thus given by

Im〈θ |�̂|θ〉 � −gS0

4π

∫ 2π

0
dθ ′ kF (θ ′)

vF (θ ′)
|〈θ |θ ′〉|2. (9)

The overlap factor |〈θ |θ ′〉|2 in Eq. (9) is reduced from unity
when states at θ and θ ′ have different orbital characters.
Hence, Eq. (3) shows that both the large group velocity near
the Fermi level and the orbital-momentum locking reduce
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the imaginary part of the self-energy, and thus lead to large
conductivity.

To highlight how orbital-momentum locking helps increase
the conductivity, we also calculate, using Eq. (3), the self-
energy for a single-orbital model. To exclude the effect of
the Fermi velocity, we consider a single-orbital model that
has exactly the same energy dispersion as that of the band
that intersects the Fermi level in the six-orbital model, i.e.,
the band with the third-lowest energy (blue line in Fig. 13).
As shown in Fig. 14(a), the self-energy of the single-orbital
model is much larger than that of the six-orbital model. This
result can be understood by looking into the inner product
of the wave function on the Fermi surface for this model.
As seen in Fig. 14(b), the scattering on the Fermi surface
is strongly reduced, and about 70% reduction of the self-
energy (the average of |〈θ |θ ′〉|2 is about 0.3) is attained by the
orbital-momentum locking. We may hence conclude that the

orbital-momentum locking on the Fermi surface with six
orbitals involved, in addition to the large Fermi velocity orig-
inating from the kagome lattice of s + px/py orbitals, is the
origin of the extremely small resistivity observed in PtCoO2.

The reduction mechanism for impurity scattering is remi-
niscent of that in graphene. Namely, in graphene the backward
scattering of electrons by impurities is prohibited due to the
pseudospin-momentum locking [34], where the pseudospin
originates from the AB sublattices of the honeycomb lattice.
In the present case, the multiorbital character plays the role of
the pseudospins in graphene. From a topological viewpoint,
in graphene the pseudospin-momentum locking is directly
linked to the Berry phase of π around the K point in graphene,
whereas in the present case the Berry phase of 2π around the
twofold-degenerate band structure at the �-point, a feature
of the kagome lattice, plays a similar role (see Fig. 1). The
difference lies in the fact that in the present case, the back-
ward scattering (θ = π ) is not strongly suppressed, but the
scatterings around θ = π/2, 3π/2 are suppressed, reflecting
the Berry phase of 2π instead of π .

VI. CONCLUSION

To conclude, the electronic structure of PtCoO2 near the
Fermi level is constructed from a mixture of Pt s + px/py

and Pt d3z2−r2 + dxy/dx2−y2 bands, both forming a hidden
kagome-like electronic structure. The steep dispersion itself
can give rise to a large mobility. In addition, these kagome-like
features result in a mixture of six-orbital characters on the
Fermi surface, and the orbital-momentum locking, in addition
to the steep dispersion itself, reduces the rate of the electron
scattering by impurities. In fact, the experimentally observed
Fermi velocity of 0.89 × 106 m/s is comparable to, but not as
large as, those of very good metals such as copper or silver.
Hence, the orbital-momentum locking is likely to be playing
an important role in the realization of the extremely large
conductivity. In total, we have concluded that the combined
hidden kagome-like electronic structures, peculiar to the de-
laffosite compound, are the origin of the peculiar transport
properties observed experimentally.
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