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We compare different methods for performing analytical continuation of spectral data from the imaginary
time or frequency axis to the real frequency axis for the optical conductivity ����. We compare the maximum
entropy �MaxEnt�, singular value decomposition �SVD�, sampling, and Padé methods for analytical continu-
ation. We also study two direct methods for obtaining ��0�. For the MaxEnt approach we focus on a recent
modification. The data are split up in batches, a separate MaxEnt calculation is done for each batch and the
results are averaged. For the problems studied here, we find that typically the SVD, sampling, and modified
MaxEnt methods give comparable accuracy while the Padé approximation is usually less reliable.
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I. INTRODUCTION

For strongly correlated systems analytical methods usu-
ally involve uncontrolled approximations. Therefore stochas-
tical methods such as quantum Monte Carlo �QMC�,1 quan-
tum cluster methods,2 or continuous time methods3 are often
used. Apart from statistical errors, such methods can produce
quite accurate results but the results are obtained on the
imaginary axis. A major problem is then the analytically con-
tinuing of the results to the real axis, which is an ill-posed
problem. Small changes in the data on the imaginary axis can
lead to large changes on the real axis. Since the imaginary
axis data contain statistical noise, the analytical continuation
is very difficult.

There are different ways of regularizing this ill-posed
problem. One method combines the Bayesian theory with the
maximum entropy �MaxEnt� approach, which has been
found to be an efficient method for analytical continuation.4,5

Other regularizations are used in the singular value decom-
position �SVD� �Ref. 6 and 7� or stochastic regularization8

methods. An alternative is provided by making a Padé ap-
proximation to the data as a function of imaginary frequency
and then analytically continue the Padé expression to real
frequencies.9,10 A rather different approach is to use sampling
methods, where a large number of spectra are added,
weighted by the probability that they correspond to the
imaginary axis data. Such methods have been proposed for
T=0 �Ref. 11� and finite T.12 Finally, there are simple ap-
proximate methods for obtaining the optical conductivity at
zero frequency, ���=0�, directly from imaginary time or
frequency data.

Two-particle correlation functions, such as the dynamical
spin or charge correlation functions or the optical conductiv-
ity, provide important information about a variety of proper-
ties of the system. These two-particle functions are much
more difficult to calculate in QMC-type frameworks than the
one-particle Green’s function,13 and therefore much of the
interest has focused on the electron Green’s function. Here
we therefore instead treat a two-particle function, the optical
conductivity. While we here focus on transformation of
QMC data from imaginary space to real space, we note that
there are also QMC methods giving results directly for real
frequencies.14

In this paper we compare the Padé, SVD, sampling, and
MaxEnt methods for obtaining the optical conductivity from
imaginary axis data. We define a frequency-dependent opti-
cal conductivity, ����, where � is a real frequency. This we
refer to as the “exact” result. This ���� can easily be trans-
formed to the imaginary axis since this is a well-behaved
transformation that can be performed with a high accuracy.
We add statistical noise to the data, which then simulate the
output of a QMC calculation. The data are then transformed
back to the real axis, using the various methods for analytical
continuation. If the methods work well, we should essen-
tially recover the starting ����, the exact result. This way we
can judge the accuracy of the different methods. It is impor-
tant to compare with a known exact result since analytical
continuation methods can give spurious structures due to
noise in the data. If a certain method A gives more structures
than another method B, it is hard to judge whether these
additional structures are real and method A is better or they
are due to noise and method B is better. This problem is
avoided if exact results are known. Here we construct the
exact ���� using results for the two-dimensional �2D� Hub-
bard model as a guide for the general shape.

We find that the SVD, sampling, and MaxEnt methods
tend to give comparable accuracy while the Padé approxima-
tion often gives worse results. In particular, the Padé ap-
proximation often overestimates ��0�. One of the direct
methods for estimating ��0� �based on Eq. �6� in Sec. II�
underestimates ��0�, in particular, for a narrow Drude peak
while the other �extrapolating Eq. �5� in Sec. II to �=0�
typically gives better results.

In Sec. II we present some general results for the optical
conductivity. The different methods for analytical continua-
tion are presented in Sec. III and the results are show in Sec.
IV.

II. OPTICAL CONDUCTIVITY AND CURRENT-CURRENT
CORRELATION FUNCTION

The optical conductivity ���� is obtained from the
current-current correlation function
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where N is the number of sites, j is the current operator,
j���=exp�H��j exp�−H��, � is imaginary time and �¯ � is
the thermodynamic average. We then have �setting �=kB
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where we have used that ����=��−�� and �=�i= i�0 is a
multiple of �0=2�T. For large � we have that ����	�−2.
This result can also be rewritten as
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�2 + �2����d� =
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�
� 
��� . �5�

This provides a convolution of the optical conductivity with
a Lorentzian with the width �. In particular, if ���� has little
variation over an energy range on the order of �0, 
��=�0�
provides an estimate of ��0�. This estimate can be improved
by extrapolating 
��� to �=0, as discussed below. Alterna-
tively, we can use12

��0� 

	2

�
��� =

	

2
� , �6�

which is accurate if ���� has little variation over an energy
range on the order of 0.69�2�T�.

Typical results for ���� are shown in Fig. 1 for a 2D
Hubbard model on a square lattice with nearest �t=
−0.4 eV� and second nearest �t�=0.12 eV� hopping. The
Coulomb interaction is U=3.2 eV and 	=15 eV−1. This
gives the occupancy 0.95. To obtain a conductivity, we have
assumed that such 2D sheets are stacked on top of each other
with a distance c=6.6 Å appropriate for La2−xSrxCuO4. The
data were obtained from a calculation in the dynamical clus-
ter approximation �DCA� �Ref. 2� using a cluster with eight
sites.

From Eq. �4� we can see that ����	�−2 for large �. In
Fig. 1 we show �����2, which indeed saturates for large �.
From Eq. �4� we expect this to happen when � is much larger
than a typical energy scale of ����, which in this case has
peaks at �=0 and �
 �U= �3.2 eV. In agreement with
this, Fig. 1 shows saturation for � on the order of 10 eV. For
larger values of �, ���� essentially just gives information
about 
�2����d�. The figure also shows results for �0���,

which is calculated neglecting all vertex corrections. �0 is
then obtained simply as a product �bubble� of two �dressed�
Green’s functions. Even for large �, �, and �0 are different.
This can be understood from Eq. �4�. Although both behave
as �−2, the prefactor is different.

Figure 1 also shows ���0�−����� /� �Eq. �5��, providing
an estimate of ��0�. To improve this estimate we extrapolate
to �=0. For small values of �, ���� depends mainly on ��w�
for small �. We allow for the possibility that ���� has a
Drude like peak at �=0 by using the Ansatz

���� = a + b
�/�

�2 + �2 , �7�

where we have also added a constant a. In Fig. 1 we have
fitted this form to the results for the lowest three nonzero
values of �. This extrapolation greatly improves the estimate,
as can be seen from the examples below.

III. METHODS

A. Padé approximation

In the Padé approximation a function f�z� in the complex
plane, z, is described as the ratio between to polynomials
P�z� and Q�z�, f�z�= P�z� /Q�z�. The function is fitted to the
output of a QMC calculation so that the results for certain
imaginary frequencies �n are reproduced exactly. The ana-
lytical continuation is then performed by evaluating the func-
tion on the real axis. In the context of Green’s functions this
has, in particular, been used by Vidberg and Serene.9 They fit
to N data points, using a construction which for an even N
leads to a polynomial Q which is one order higher than P so
that P /Q behaves as 1 /z for large z. This is appropriate for
Green’s functions, considered by them, but not necessarily
for the response functions considered here, which behave as
1 /z2 for large z. We have therefore constructed a Padé ap-
proximation where Q is two orders higher than P, which is
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FIG. 1. �Color online� The current-current correlation function
���� multiplied by �2 as a function of � as well as the function
�0��� calculated without vertex corrections. Results are shown for a
large number n	=160 time slices as well as for a small n	=60,
illustrating the resulting poor accuracy for large � in the latter case.
The figure also shows 
���= ���0�−����� /� �Eq. �5�� and its ex-
trapolation to �=0 �thin dotted line�, which provides an estimate of
��0�.
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used in the following. This construction requires N to be odd.
For the special case considered by Vidberg and Serene there
are simple formulas for generating the polynomials9 while
this is somewhat more complicated in the general case.10

In fitting the P and Q to N data points, we have used data
for one negative frequency, −�0�−2�T, and the N−1 lowest
nonnegative frequencies. This typically gives more stable re-
sults than using only nonnegative frequencies. On the other
hand, using positive and negative frequencies symmetrically
tends to put poles close to the real axis and gives poor spec-
tra on the real axis. One negative frequency therefore often
appears to be a good compromise.

B. Singular value decomposition

A widely used technique for inverse problems is the
SVD.6,7 Here we essentially follow Creffield et al.,7 except
that we work in imaginary frequency space rather than in
imaginary time space, for reasons discussed Sec. IV. In the
SVD method, the real frequency space is spanned by a set of
eigenvectors. The kernel in Eq. �4� is discretized, giving

���i� = �
j=1

N�

Kij��� j�, i = 1,N�. �8�

If the data for different imaginary frequencies �i are uncor-
related, as is the case here, we introduce the eigenfunctions
of the operator KK†,

�
j=1

N�

�
l=1

N�

KijKlj
� vl

k = 
k
2vi

k, i = 1,N�. �9�

We introduce vectors uk

K†vk = 
ku
k, �10�

which satisfy

Kuk = 
kv
k. �11�

The spectral function can then be expanded as

��� j� = �
k=1

N� 1


k
uj

k�
i=1

N�

�vi
k�����i� . �12�

This expansion is very ill behaved since some of the eigen-
values are very small. The expansion is therefore truncated
so that only eigenvalues are considered for which


k/
1 � �0, �13�

where 
1 is the largest eigenvalue and �0 is the accuracy of
the data. In this way we only consider the n� eigenvectors
with the largest eigenvalues. To further improve the method,
the kernel K is multiplied by a “support” function, which is
equal to one in the range where ���� is expected to be large
and vanishes smoothly outside this region. Here we have
used the function 1 / �1+ �� /�0�8�, where �0=5 was used.

C. Maximum entropy

A popular method for analytical continuation is the Max-
Ent method.4 This method is based on Bayes’s theorem15

Pr��,�� = Pr�����Pr��� = Pr�����Pr��� , �14�

where Pr�� ,�� is the joint probability that the spectral func-
tion is ���� and that the QMC calculation gives the correla-
tion function ����. While the MaxEnt method usually is for-
mulated for imaginary time �, we here formulate it for
imaginary frequency �, for reasons discussed in Sec.IV.
Pr�� ��� is the conditional probability that the spectral func-
tion is ���� provided that the correlation function ���� was
obtained from the QMC calculation. From this one obtains16

Pr����� =
Pr�����Pr���

Pr���
. �15�

This rewriting converts the ill-posed problem of determining
���� given ���� into the much easier problem of determin-
ing ���� given ����. Pr��� is a normalization factor, which
is independent of ����, and therefore is no complication.
The remaining issue is then how to choose Pr���, which
represents our prior knowledge about ����. If we put this
probability to a constant and then maximize the likelihood
function Pr�� ��� the result is typically very bad, resulting in
a saw-tooth type of spectra.16 In MaxEnt one therefore de-
fines the prior probability in terms of a maximum entropy
function

S =� d������ − m��� − ����ln
����
m���� , �16�

where m��� is a default model. Other definitions are also
possible.17 In the MaxEnt method the quantity

Pr�����e
S �17�

is maximized, using an appropriate value for 
.4 Here we
have chosen 
 according to the classic MaxEnt method, us-
ing a flat prior for 
.4

We sometimes find that this approach leads to unphysical
oscillations in ����. We have shown that the reason is that
the MaxEnt method sometimes chooses an 
 which attaches
too much significance to the noise in the data. This problem
can be avoided by using a modification18 of the MaxEnt
method. We split the data for ���� in several batches and
perform a MaxEnt calculation for each batch. These results
are then averaged. Typically, but not always, this leads to
better results than averaging the data sets and then perform-
ing just one MaxEnt calculation for the average.18

The choice of default model can influence the outcome
substantially. Here we have chosen a “reasonable” but struc-
tureless model �see Sec. IV�. Using a model more similar to
the actual spectrum improves the result. If the spectrum is
calculated for several T, the result for a higher T can be used
as the default model for a lower T. This can improve the
results without introducing undue bias. Since we only con-
sider one T here, we have not followed that approach.

D. Sampling method

The MaxEnt method avoids the saw-tooth problem but the
definition of entropy requires the introduction of a default
model, which can bias the output. Instead we can average16

over Pr�� ���,
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��� =� � Pr�����D� , �18�

where D� indicates a functional integral over all ����.
Pr�� ��� is given by Eq. �15�, where we furthermore put
Pr����const for all non-negative ����. Thus we assume
that this is our only prior knowledge of ����. In Ref. 12 we
worked in imaginary time space. For reasons discussed in
Sec. IV we here work in imaginary frequency space. Then
the likelihood function is given by16

Pr����� =
1

�i=1
n� �2��̃i�

�exp�− �
i=1

n�

����i� − ����i��2/�2�̃i
2�� , �19�

where �̃i is the accuracy of the data ���i�, and ����i� is the
transformation of ���� to imaginary frequencies.

IV. RESULTS

To study methods of analytical continuation, we choose a
model of ���� on the real frequency axis, using calculations
for a 2D Hubbard model as a guide. Using Eq. �4�, the cor-
responding ���� can easily be calculated. This is a well be-
haved and stable transformation. We generate results for the
60 smallest non-negative frequencies. We add random noise
to this calculated ����,

����i� = ���i��1 + r�,i� , �20�

where r�,i has a Gaussian distribution with the width �0. This
simulates the data that may be obtained from a QMC calcu-
lation by solving the Bethe-Salpeter equation. We generate
ten different sets of data using different random numbers for
each set.

In the DCA approach, ���� is Fourier transformed to ob-
tain ����. This may require knowledge of ���� for frequen-
cies where the calculation is not very accurate. Although this
problem can usually be circumvented by using the
asymptotic behavior of ���� for large �, it then seems easier
to work directly in � space. Then if necessary, we can decide
to use fewer values of � than is needed to converge the
Fourier transform and only use values which we believe are
accurate. Specifically for the present calculation, a Fourier
transform to � space would lead to additional complications.
Although by construction the present ����i� has a perfectly
Gaussian noise which is uncorrelated for different values of
�i, the Fourier transformed data would have correlation be-
tween different � points. Methods working in � space and
methods working in � space would then have data of differ-
ent quality. To be able to compare all methods on an equal
footing, we have therefore formulated them in imaginary fre-
quency space, which essentially involves using kernels ap-
propriate for this space.

The ����i� data are then analytically continued back to
the real axis, using methods of interest. Since we know the
exact result, namely the ���� we started from, we can test
the accuracy of the methods.

For the MaxEnt method we analytically continued each
data set and then took the average.18 As discussed above, the
reason is that the MaxEnt method tends to attach too much
significance to the noise. The batching method reduces the
importance of the noise at the cost of using data with a lower
accuracy. For the SVD �with the condition in Eq. �13�� and
sampling methods we have not noticed any tendency to over-
emphasizing the noise. Therefore we averaged the data be-
fore doing the analytical continuation to get data with the
highest possible accuracy. For the Pade method with many
data points on the imaginary axis there is a strong tendency
to overemphasize the noise. However, we have not noticed
any general improvement by “batching” the data, and there-
fore also for the Pade approximation we averaged the data
before doing the analytical continuation.

The optical conductivity ���� typically has peaks at �
=0 and at approximately �= �U, where U is the Hubbard
on-site Coulomb interaction. We therefore use the real axis
����,

���� = � W1

1 + ��/�1�2 +
W2

1 + ��� − ��/�2�2

+
W2

1 + ��� + ��/�2�2� 1

1 + ��/�3�6 . �21�

Here �3� ��1 ,�2� cuts off ���� for large �. Otherwise ����
would not decay as �−2, as it should. Here we let � and �i
have the unit eV and � the unit �m� cm�−1. Since the small-
est nonzero frequency �=�0�2�T, we expect structures on
an energy scale much smaller than �0 to be described very
poorly. Here we use T=1 /15, giving �0=0.42. We then
choose two different models with �1=0.30 and 0.6, respec-
tively. For both models we use �2=1.2, �3=4, and �=3. We
use the weights W1=0.3 and W2=0.2.

Figure 2 shows results for �1=0.6 and data with relatively
good accuracy �0=0.01. Figure 2�a� shows results according
to the Padé approximation for different numbers ��max� of
frequencies. For �max=5 the spectrum is rather structureless
and the peak at �=3 is not well described. Since �max=5
corresponds to an imaginary frequency 1.7, smaller than the
energy scale for the structures on the real axis, this is not
surprising. As �max is increased and more information is
added, this peak is formed, although at too small energy. The
peak at �=0 is also not very well described.

Figure 2�b� shows results according to the SVD method.
The eigenvalues 
k in Eq. �9� are in this case 0.50, 0.12,
0.048, 0.020, 0.0067, 0.0020, 0.00055, 0.00015,… The opti-
mal value of n� according to the criterion in Sec. III B and
�0=0.01 is then 5 and the corresponding results are shown
by the thick line. Results are also shown by thin lines for
n�=3, 4, 6, and 7. n�=3 is too small, and misses most of the
structures. The values n�=4 gives similar results as n�=5
while n�=6 gives some unphysical oscillations and n�=7
puts in large spurious structure, giving too much weight to
the noise.

Figure 2�c� shows results from the sampling method. For
small values of �max the structures are poorly described and,
in particular, the Hubbard peak is placed at a too low energy.
As discussed for the Padé approximation, this is not surpris-
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ing since only information for small imaginary frequencies is
used. As �max is increased the description improves. For a
large �max=30, shown by the thick line, the description is
rather good. The inset shows the quantity 
��� in Eq. �5� and
the extrapolation to �=0, giving an estimate of ��0�. The
symbol � in the inset gives the exact result and the � in the
main Fig. 2�c� shows the result estimated from this extrapo-
lation. This estimate is in this case somewhat too large.

Figure 2�d� shows the MaxEnt results. Results are shown
for each of the ten data sets and also the average of the
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FIG. 3. �Color online� The same as Fig. 2 but for �1=0.3
��0=0.01�.
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FIG. 2. �Color online� The optical conductivity for model �Eq.
�21�� using �1=0.60 and �0=0.01 according to �a� the Padé, �b� the
SVD method, �c� the sampling, and �d� the MaxEnt methods com-
pared with the exact results. �a� and �c� show results for different
values of the maximum frequency �max considered and �b� for dif-
ferent values of n�. �d� shows results both for each individual
sample �thin lines� and the average over all ten samples as well as
the model used. The thick line in �b� indicates the optimum value of
n�=5 and the thick line in �c� the largest value of �max=30 consid-
ered here. The x in the main part of �c� shows the estimate of ��0�
by extrapolating ���0�−����� /� to zero. This is illustrated by the
inset in �c�, where the symbol � gives the exact value of ��0�. The
symbol o in �d� is the estimate of ��0� based on ��	 /2� �Eq. �6��.
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results is shown. Each MaxEnt spectrum shows rather large
spurious oscillations due to the method giving too much
weight to the noise. The average of these spectra, however, is
rather good. The symbol o in Fig. 2�d� also shows the esti-
mate in Eq. �6� of ��0�. This estimate is accidentally quite
good, although the spectrum has substantial variations over
the range ����0.692�T, and the requirement for Eq. �6� is
not well satisfied. The reason is that the noise happens to
make this estimate accurate while in Fig. 4 with more accu-
rate data the estimate is less good.

Figure 3 shows results for �1=0.3, i.e., a narrower peak at
�=0. The SVD, sampling, and MaxEnt methods give com-
parable accuracy as in Fig. 2. The accuracy of the estimates
of ��0� from Eq. �6� �� in Fig. 3�d�� is worse than in Fig. 2
since the peak at �=0 is narrower and assumption behind
Eq. �6� is less well satisfied. The estimate from Eqs. �5� and
�7� �� in Fig. 3�c�� is of comparable accuracy as in Fig. 2.

Figure 4 shows results for �1=0.60, i.e., a broader peak as
in Fig. 2 but for very accurate data, �0=0.001. The accuracy
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FIG. 4. �Color online� The same as Fig. 2 ��1=0.6� but for
�0=0.001.
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of the Padé approximations is now improved, as expected.
Because of the higher accuracy of the data, the optimum n�

has increased from 5 to 7 for the SVD method. This leads to
an improvement compared with Fig. 2�b�, although there is a
small unphysical oscillation at �	1. There is a reduced
spread of the thin curves in Fig. 4�d�, representing the Max-
Ent result for each individual data set. The average is only

marginally improved. Figure 5 shows high accuracy data for
a narrow peak, �1=0.3.

In Fig. 6 we compare the different methods for the two
different spectra ��=0.3 and 0.6� and for the two accuracies
��0=0.01 and 0.001� considered here. Since the value
of ��0� is of particular interest, we show results for small
� ��0.25� in the insets. Typically the SVD, sampling, and
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FIG. 6. �Color online� Comparison of the different methods for
�1=0.6 and 0.3 and for �=0.01 and 0.001. The insets show a
magnified view in the range 0���0.25.
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MaxEnt methods are of comparable accuracy, while the Pade
approximation tends to overestimate ��0�. The differences
between the results of these methods and the exact result are
shown in Fig. 7.

V. CORRELATION IN IMAGINARY TIME

We have so far generated data for imaginary frequencies
and then added Gaussian noise. The noise for different fre-
quencies is uncorrelated and the covariant matrix

Cik =
1

M�M − 1��j=1

M

��̄��i� − ��j���i����̄��k� − ��j���k��

�22�

is approximately diagonal. Here �̄��i� is the average over the
M samples ��j���i�. If the data are obtained from a QMC
calculation, C is in general not diagonal. There is then a need
to make a transformation to a diagonal covariant matrix.
Here we follow Jarrell and Gubernatis.4 A matrix U is found
such that

C� = U−1CU �23�

is diagonal. The data and kernel are then transformed to the
new representation

K� = U−1K �� = U−1� �24�

and the diagonal elements of C� are used to define a new
likelihood function. The result is that some of the diagonal
elements of the covariant matrix are now larger, implying
less accurate data than one might have thought. This does
not, however, change the general conclusions above.

VI. CONCLUSIONS

We have compared different methods for analytically con-
tinuation of imaginary axis data to real frequencies for the

optical conductivity. We transform spectra from the real fre-
quency axis to the imaginary axis and add statistical noise.
These data are then transformed back to the real axis using
the different analytical continuation methods. By comparing
with the original spectrum, we can compare the accuracy of
these methods. Typically, these methods have problems if the
spectra have features on a much smaller energy range than
2�T. Due to the thermal broadening of physical spectra, this
may not be a serious problem in many cases. Here we have
focused on two cases where the relevant energy scale, �1 is
0.3 or 0.6 compared with 2�T=0.42.

We also considered two methods for obtaining ��0� di-
rectly, Eq. �6� and extrapolation of 
��� in Eq. �5� to �=0.
The method based on Eq. �6� tends to underestimate ��0�, in
particular, if ���� has a narrow Drude peak while the ex-
trapolation of Eq. �5� is typically more accurate.

Calculations for the cases considered in this paper as well
as for results from DCA typically gives larger values for
��0� in the Padé approximation than from the SVD, sam-
pling, and MaxEnt approaches. The Padé approximation gen-
erally tends to give somewhat less accurate results than the
other three methods. Sometimes unphysical results are ob-
tained due to poles close to the real axis. The other three
methods tend to give results of comparable accuracy. We
nevertheless find it very useful to use all three methods. This
provides cross checks and gives a somewhat better idea
about what the true spectrum may look like.
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