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Microscopic origin of spin-orbital separation in Sr2CuO3
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A recently performed resonant inelastic x-ray scattering experiment (RIXS) at the copper L3 edge in the
quasi-one-dimensional Mott insulator Sr2CuO3 has revealed a significant dispersion of a single-orbital excitation
(orbiton). This large and unexpected orbiton dispersion has been explained using the concept of spin-orbital
fractionalization in which the orbiton, which is intrinsically coupled to the spinon in this material, liberates
itself from the spinon due to the strictly one-dimensional nature of its motion. Here, we investigate this
mechanism in detail by (i) deriving the microscopic spin-orbital superexchange model from the charge-transfer
model for the CuO3 chains in Sr2CuO3, (ii) mapping the orbiton motion in the obtained spin-orbital model
into a problem of a single hole moving in an effective half-filled antiferromagnetic chain t-J model, and
(iii) solving the latter model using the exact diagonalization and obtaining the orbiton spectral function. Finally,
the RIXS cross section is calculated based on the obtained orbiton spectral function and compared with the RIXS
experiment.
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I. INTRODUCTION

Long and difficult “search”’for orbitons. A relatively well-
understood problem in strongly correlated electron systems
concerns the propagation of collective magnetic (spin) excita-
tions in Mott insulators such as, e.g., three-dimensional (3D)
LaMnO3, two-dimensional (2D) La2CuO4, ladder SrC2O3, and
one-dimensional (1D) Sr2CuO3.1 The theoretically calculated
dispersion of such magnetic excitations (magnons in 2D or
3D, triplons in the ladder, or spinons in 1D) agrees very well
with the one measured using the inelastic neutron scattering2–4

or the resonant inelastic x-ray scattering (RIXS).5–8 The
origin of this fact is the relative simplicity of the spin-spin
interactions, which are usually modeled using the Heisenberg-
type spin Hamiltonians.1,2 The excitation spectrum of such
Hamiltonians can then be obtained using, e.g., the linear
spin-wave approximation in 2D/3D (Ref. 9) or the Bethe-
ansatz–based approaches in 1D.9,10

This situation is very different when one considers prop-
agation of the collective orbital interactions: the orbitons11

(coined as such in Ref. 12). On the experimental side, this
originates from the lack of experimental probe to measure
orbiton dispersion.13–15 Even if neutrons do couple to the
orbital excitations16 and can in principle detect orbital waves,17

this can not be easily realized experimentally.18 This is due to
the usually low transfers of energy in the neutron scattering
experiments w.r.t. the energies needed to trigger the orbital
excitations (for an exception, see Ref. 19). Inelastic light
scattering in the form of (optical) Raman scattering can not
transfer much momentum to orbital excitations, leading to
controversial interpretations of the observed features.17,20,21

Only recently it has been proposed13,14 and then experimen-
tally and theoretically established22 that RIXS may be used
to probe the orbitons’ motion. Therefore, until last year,

there were just three experimental indications of the existence
of mobile orbitons: (i) indirectly in the form of Davydov
splittings23 in Cr2O3, (ii) more recently and also indirectly
in a pump-probe experiment in the doped manganite,24 and
(iii) in the RIXS spectrum on titanates, where a very small
(w.r.t. the experimental resolution) dispersion was found.25

From the theoretical side, the situation is also complex.
To understand the orbiton dispersion, one has to take into
account the interaction between orbitons and (i) the lattice
(phonons) and (ii) the spin degrees of freedom. Although
the former has been investigated in several studies26–28 and
for long “blamed” for causing a confinement of the orbiton
motion,26–28 it turned out not to be of great importance in
the here discussed case of orbitons in Sr2CuO3.22 Therefore,
while still far from being understood, the interaction with
the lattice will not be discussed in what follows. At the
same time, however, the spin-orbital interaction,29 which
stems from the inherent entanglement of the spin and orbital
degrees of freedom30–33 in the Kugel-Khomskii superexchange
(and/or direct exchange)11,34 models, which describe the
propagation of spin or orbital excitations,11 has a profound
impact on the orbiton motion.13,17,35–39 Moreover, as already
discussed in Refs. 40–48, and in direct relevance to the here
discussed problem in Refs. 22 and 49 (see also below), in
order to correctly describe the collective orbital excitations,
this interaction should not be treated on a mean-field level.
This latter feature of the spin-orbital interaction severely
complicates matter and is one of the main motivations for
the study presented in this paper.

Recent experimental and theoretical findings. This brief
overview of the problems with finding mobile orbitons makes it
clear that the recent experimental finding of the mobile orbiton
in Sr2CuO3 (Ref. 22) and its short theoretical description in
Refs. 22 and 49, signifies a breakthrough in the study of orbital
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excitations. We therefore briefly summarize these findings in
the following.

The RIXS measurements performed at copper L3 edge in
Sr2CuO3 (Ref. 22) revealed two dispersive orbital excitations
(due to large crystal-field splitting also called dd excitations).
First, the dxz orbital excitation, which (in the here used hole
language) corresponds to a transfer of a hole from the ground
state dx2−y2 orbital to the excited dxz excitation, showed
a sinelike dispersion. This dispersion was of the order of
200 meV, had a dominant π period component, and a large
incoherent spectrum which led to peculiar “oval”-like features
in the RIXS spectrum (see Fig. 1 in Ref. 22). Second, also
the dxy orbital excitation had a small dispersion with visible
π period component. Finally, the other two orbital excitations
(the dyz and the d3z2−r2 orbital excitations) did not show any
significant dispersion.

While these experimental results are the first unambiguous
observation of an orbiton (cf. discussion above), they turned
out to constitute a challenge from a theoretical perspective.
It was shown22 that the above-mentioned particular features
of dispersion could only be explained if the concept of
spin-orbital separation was invoked and applied.49 In short, this
concept suggests that (i) the orbiton in Sr2CuO3 is so strongly
coupled to the spin excitations (spinons in this 1D case) that
its coherent motion can only be explained if this coupling
was explicitly taken into account, (ii) during its motion the
orbiton can nevertheless “liberate” from the spinon. This
scenario can explain the reason why this orbiton dispersion
was not observed before: Since (on one hand) the spin-orbital
separation phenomenon is rather unique to 1D and (on the other
hand) the experimental searches were constrained to mostly 2D
or 3D compounds, the orbiton was finally only observed when
the attention was turned into a purely 1D system.

Aim and plan of the paper. In this paper, we show how
to apply the spin-orbital separation concept developed and
discussed in Refs. 22 and 49 to the problem of the orbiton
motion in Sr2CuO3. We start from (Sec. II) the proper
charge-transfer model for Sr2CuO3 supplemented by the terms
which describe the dynamics of the excited orbitals. From
this model, we derive in Sec. III the corresponding “Kugel-

Khomskii” spin-orbital model which describes the spin and
orbital dynamics in Sr2CuO3, and thus defines the Hamiltonian
that is used to calculate the orbiton spectral function. In
Sec. IV, we calculate the orbiton spectral function using the
newly developed concept of spin-orbital separation.49 Next,
in Sec. V, we establish the relation between the RIXS cross
section and the orbiton spectral function calculated in Sec. IV
and compare the obtained RIXS spectra with those obtained in
the experiment.22 Finally, in Sec. VI we discuss the possible
other scenarios which might explain the experimental results
presented in Ref. 22 and end with the concluding remarks.

The paper is supplemented by three Appendices in which
(i) we discuss some details of the calculations performed in
Sec. III A (Appendix A), (ii) we compare the results of Secs. IV
and V to those obtained using the linear orbital wave theory
(Appendix B), and (iii) we compare the results of Sec. V
with those obtained assuming all orbital excitations to be
dispersionless (Appendix C).

II. CHARGE-TRANSFER MODEL

A. Hamiltonian

As noted in Sec. I, the purpose of this study is to describe
the propagation of orbital excitation in the quasi-1D cuprate
Sr2CuO3.50–52 Therefore, as our starting point, we take the
following multiband charge-transfer Hamiltonian (which is an
extended version of the charge-transfer model discussed in
Ref. 53):

H = H0 + H1 + H2 + H3 , (1)

with H0 the tight-binding Hamiltonian written in a basis
consisting of five 3d orbitals per Cu site and three 2p

orbitals per O site. The many-body interactions are included
in H1, H2, and H3 (onsite Coulomb interaction on Cu atoms,
onsite Coulomb interaction on O atoms, and nearest-neighbor
Coulomb interaction between electrons on Cu and O sites). In
second quantized form and using the hopping parameters as
indicated in Fig. 1, we obtain for the tight-binding Hamiltonian
H0

H0 = −tσ
∑
i,σ

(f †
iaσ fixσ − f

†
i+1,aσ fixσ + H.c.) − tσo

∑
i,σ

(f †
iaσ fiyo+σ − f

†
iaσ fiyo−σ + H.c.)

− tπ
∑
i,σ

(f †
icσ fiyσ − f

†
i+1,cσ fiyσ + f

†
ibσ fizσ − f

†
i+1,bσ fizσ + H.c.) − tπo

∑
i,σ

(f †
icσ fixo+σ − f

†
icσ fixo−σ + H.c.)

+ �x

∑
i

(nix − nia) + �y

∑
i

(niy − nic) + �z

∑
i

(niz − nib) + �yo

∑
i

(niyo+ − nia)

+ �xo

∑
i

(niyo− − nia) + �xo

∑
i

(nixo+ − nib) + �xo

∑
i

(nixo− − nib) + εa

∑
i

nia + εb

∑
i

nib + εc

∑
i

nic; (2)

for the onsite Coulomb repulsion on copper sites term

H1 =
∑

i,σ,α<β

(
U − J

αβ

H

)
niασ niβσ̄ +

∑
i,σ,α<β

(
U − 2J

αβ

H

)
niασ niβσ + U

∑
i,α

niα↑niα↓ −
∑

i,σ,α<β

J
αβ

H f
†
iασ fiασ̄ f

†
iβσ̄ fiβσ

+
∑
i,α<β

J
αβ

H f
†
iα↑f

†
iα↓fiβ↓fiβ↑; (3)
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for the onsite Coulomb repulsion on oxygen sites the Hamiltonian

H2 =
∑

i,σ,μ<ν

(
Up − J

μν

H

)
niμσniνσ̄ +

∑
i,σ,μ<ν

(
Up − 2J

μν

H

)
niμσniνσ + Up

∑
i,μ

niμ↑niμ↓

−
∑

i,σ,μ<ν

J
μν

H f
†
iμσ fiμσ̄ f

†
iνσ̄ fiνσ +

∑
i,μ<ν

J
μν

H f
†
iμ↑f

†
iμ↓fiν↓fiν↑; (4)

for the nearest-neighbor Coulomb repulsion

H3 = Vdp

∑
i,μα

niα(niμ + niμ+ + niμ− + ni+1μ). (5)

Here, one needs to consider the following:
(i) the CuO3 chain is oriented along the x axis (Cu-Cu

distance is set to 1) [cf. Fig. 1(a)]; for simplicity hole notation
is used;

(ii) the charge-transfer model unit cell [cf. Fig. 1(a)]
includes (a) one copper atom with three 3d orbitals: 3dx2−y2 ≡
a, 3dzx ≡ b, and 3dxy ≡ c, (b) one oxygen atom within
the Cu-O-Cu-O- . . . chain with three 2p orbitals: 2px ≡ x,
2py ≡ y, 2pz ≡ z, (c) two equivalent oxygen atoms outside the
Cu-O-Cu-O- . . . chain with two 2p orbitals: above this chain –
2px ≡ xo+, 2py ≡ yo+ and below this chain – 2px ≡ xo−,
2py ≡ yo−;

(iii) the copper orbital indices are α,β ∈ {a,b,c}, the chain
oxygen orbital indices are μ,ν ∈ {x,y,z}, and the spin index
σ ∈ {↑,↓} (σ̄ = −σ );

(iv) fiκσ annihilates a hole at site i in orbital κ with spin
σ while density operators are niκ = niκ↑ + niκ↓ with niκσ =
f

†
iκσ fiκσ ;

tπtπ

t oπ

t oπσt o

σt o

σt σt

Cu: a b c orbitals O: x y z orbitals

Cu O

O

O

OuCO

O

O

y

x

Cu O

O

O(a)

Cu O

O

O

(c) )d()b(

yy
c

tπtπa xx b

y

x

x

o+

o−

yo+

o−

z z

FIG. 1. The relevant atoms and orbitals that are taken into account
in the model, Eq. (1): (a) orientation of the CuO3 chain with one
Cu site and three O sites in the unit cell (dotted line), (b) nearest-
neighbor O orbitals which hybridize with the Cu a orbital following
Eq. (2), (c) nearest-neighbor O orbitals which hybridize with the Cu b

orbital following Eq. (2) (note that there is no hybridization between
O orbitals that lie above/below the Cu-O-Cu-O- . . . chain), and (d)
nearest-neighbor O orbitals which hybridize with the Cu c orbital
following Eq. (2).

(v) the structure of the dominant hopping elements follows
the Slater-Koster scheme [and was verified by our local
density approximation (LDA) calculations] and is depicted
in Figs. 1(b)–1(d); the rather large hopping between oxygens
tpp′ (cf. Ref. 53) is neglected; although this may give rise
to a significantly smaller hole occupation on copper sites
(and consequently may reduce the intensity of the dispersive
dd excitations), in the approach presented below it will not
contribute to the superexchange processes;

(vi) the charge-transfer energy �μ is measured for the
particular 2p orbital from the relevant 3d orbital (in the here
used hole notation, see also above), i.e., from that 3d orbital
which hybridizes with this particular 2p orbital;
(vii) due to crystal field there are distinct onsite energies εα

for each 3d orbital;
(viii) the structure of the Coulomb interaction follows
Refs. 54 and 55 and up to two-orbital interaction terms exactly
reproduces the correct onsite Coulomb interaction; note that
the Coulomb interaction on oxygens above and below the chain
is not considered because we are interested merely in the Mott
insulating case with one hole per copper site, and in the analysis
that follows this particular Coulomb interaction plays only a
minor role.

We note at this point that the above model does not contain
the dyz ≡ d and d3z2−r2 ≡ e orbitals. This is because there
will not be any sizable dispersion due to the very small
superexchange processes for the dd excitations involving these
orbitals. Note further that (i) the hopping from the dyz orbital
to the neighboring oxygen along the chain direction x is
negligible, and (ii) the hopping from the d3z2−r2 to the px

orbital on the neighboring oxygen is particularly small in
this compound (much smaller than tπ according to our LDA
calculations). We will therefore include these orbitals only
when calculating the RIXS cross section in Sec. V.

B. Parameters

In the model Hamiltonian (1), a large number of parameters
appear, which need to be fixed in order to obtain quantitative
results that can be compared to experiment (cf. left column of
Table I).

In principle, we used the basic set of the parameters that
was proposed in Ref. 53. The only exception is the intersite
Coulomb repulsion Vdp which is set to a somewhat smaller
value of 1 eV than the exceptionally large one suggested in
Ref. 53. Note, however, that the smaller value is still generally
accepted for the cuprates.56 Besides, this value leads to the
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TABLE I. Assumed values of the parameters used in the paper (see text for further details). All parameters except R, Rm
n , and rm

n (which
are dimensionless) are given in eV. Tilde before the value of the parameter denotes the fact that this precise value is not used in the analysis.

Model parameters

Charge-transfer model Spin-orbital model
(Sec. II) (Sec. III) Spectral function/RIXS parameters

tσ 1.5 J1 0.088 Local excitation energies
tπ 0.83 J b

2 0.021 (Secs. IV, V, and Appendix C)
tσo 1.8 J c

2 0.010 Eb 2.15
tπo 1.0 J b

12 0.043 Ec 1.41
�x 3.0 J c

12 0.030 Ed 2.06
�y 2.8 R 1.7 Ee 2.44
�z 2.2 Rb

1 2.5 EAF 0.33
�xo 2.5 Rc

1 2.3 Effective t-J models (Sec. IV)
�yo 3.5 Rb

2 2.0 tb 0.084
U 8.8 Rc

2 1.9 tc 0.051
Up 4.4 rb

1 1.7 J 0.24
J b

H ≡ J ab
H 1.2 rc

1 1.3 Linear orbital wave approximation
J c

H ≡ J ac
H 0.69 rb

2 1.2 (Appendix B)
J

p

H ≡ J
μν

H 0.83 rc
2 1.1 B 2.48

Vdp 1.0 ε̄a 0.0 C 1.74
εa 0.0 ε̄b ∼2.2 Jb −0.019
εb ∼0.5 ε̄c ∼2.0 Jc −0.014
εc ∼0.5

spin superexchange parameter that is equal to 0.24 eV (see
below), which is the experimentally observed value.22 Finally,
we used the following values for parameters not considered in
Ref. 53: (i) The Hund’s exchange J c

H and J b
H are calculated

using Slater integrals from Ref. 57, while J
p

H is taken from
Ref. 56. (ii) εb and εc are estimated to be 0.5 eV from the
LDA calculations. (iii) While following Ref. 53, �x = 3.0 eV
and �y0 = 3.5 eV, the values of the other charge-transfer
parameters are not given in this reference and have to be
obtained in another way. It seems reasonable to assume first
that values of �xo, �y , and �z are roughly of the order of �x .
But, since the charge-transfer parameters are defined as equal
to the difference in energy between the particular hybridizing
c or b orbital and the particular 2p orbital, they have to
be lower than �x . Quantum chemical calculations suggest,
however, that the actual values of �y and �z might still be
different: it occurs that the values of the onsite energies of
the b and c orbitals are not identical and that the b orbital
has a higher energy than the c orbital by ca. 0.7 eV (cf.
Ref. 22). Altogether, this suggests the following values for
these two parameters: �y = 2.8 eV and �z = 2.2 eV. We
will show later that these values give the orbiton dispersion
in reasonably good agreement with the RIXS experiment.22

(iv) tπ and tπo are assumed to be roughly of the order of 55%
of tσ and tσo (respectively).56

Note that Table I contains also a few other parameters which
are later introduced in this paper. While they mostly follow
from the charge-transfer model parameters mentioned above,
we will comment on their origin once they become relevant in
the following sections.

III. DERIVATION OF THE SPIN-ORBITAL MODEL

Since the Coulomb repulsion U and the charge-transfer
energies �μ present in model Eq. (1) are far larger than the
hoppings tn (tn � U and tn � �μ where n = σ,π,σo,πo)
(cf. Table I), the ground state of H is a Mott insulator. This is
because, in the zeroth-order approximation in the perturbation
theory in hopping tn and in the regime of one hole per copper
site, there is one hole localized in the a orbital at each copper
site i. Similarly, when a single orbital excitation is made, then
in the zeroth order the hole will be localized on a single copper
site in a particular b or c orbital (because the charge-transfer
energy �μ is always positive).

In the second- and fourth-order perturbation theory in tn
(the terms obtained from tn and t3

n perturbation vanish),58 the
hole can delocalize which leads to a particular low-energy
Hamiltonian: the spin-orbital Hamiltonian. This Hamiltonian
has the following generic structure:

H̄ = H̄0 + H̄a + H̄b + H̄c. (6)

It consists of two kinds of terms: (i) H̄0, which is a result of the
second-order perturbation theory in tn, and (ii) H̄a + H̄b + H̄c

terms which follow from the fourth-order perturbation theory
in tn and can be called “superexchange” terms. Note that
the latter terms can be classified in two classes: (i) H̄a , the
so-called “standard” or “spin” superexchange terms, which
contribute when all holes are in the a orbitals (i.e., no orbital
excitations are present), and (ii) H̄b + H̄c, the spin-orbital
superexchange (Kugel-Khomskii–type) terms with one orbital
excitation present on one site of the bond (in the b or c orbital)
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CuOCu

Cu

OCu Cu

aa
CuOCu

aa
CuOCu

FIG. 2. (Color online) Schematic view of superexchange interactions when no orbital excitations are present, i.e., between spins (arrows)
of the holes in the a orbitals: the “initial” state [panel (a)] can be brought into the so-called “virtual” state of the superexchange process [circle
with two spins (arrows) on the right side of panel (b)] by the virtual hopping [left side of panel (b)] which can “decay” [right side of panel
(b)] via the virtual hopping into the “final” state of the superexchange [panel (c)]. Panel (b) shows two kinds of “virtual” states with doubly
occupied ions: on the oxygen (copper) on the lower (upper) side of the panel with the energy cost ∝ U (∝Up + 2�), respectively. Panel (c)
shows two possible low-energy final configurations without double occupancies: without spin flip (i.e., identical to the initial state) and with
spin flip. Note that panel (b) shows relevant copper and oxygen orbitals in a schematic way, i.e., depicted by horizontal bars, while panels (a)
and (c) explicitly show the relevant copper orbitals (oxygen orbitals are not shown on these panels).

and no orbital excitation present on the other site of the bond.
In the following sections, we discuss these terms step by step.

A. Renormalization of onsite energies: H̄0

In the second-order perturbation theory in tn, the hole can
delocalize to the four neighboring oxygen sites surrounding
the copper sites forming bonding and antibonding states.
Although there are many important consequences of such
t2
n processes, let us now just explore one of them which

actually turns out to be very important: the renormalization
of the onsite energies of the orbitals. In Appendix A, we
discuss another, perhaps less important, consequence of these
processes: the renormalization of the hopping within the chain
due to hybridization with oxygen orbitals above and below the
chain (these renormalization factors are called λa and λc).

When the hole delocalizes into the bonding and antibonding
states formed by the a, b, or c orbitals with the four surrounding
oxygen sites, the effective onsite energies of the orbital levels
are strongly renormalized with respect to the energy levels of
the pure a, b, or c orbitals. Although the proper calculation of
this phenomenon can be done analytically by diagonalizing a
five-level problem defined separately for each of the copper
α orbitals, we do not perform it here. Instead, we take the
values obtained from the ligand field theory program59 based
on the multiplet ligand field theory using Wannier orbitals on a
CuO4 cluster. It occurs that, for realistic values of parameters
of model (1) (see Table I), the antibonding states are well
separated from the bonding states and we can safely neglect
the latter ones in the low-energy limit that is of interest here.
This leads to the following term in our spin-orbital model:

H̄0 = ε̄a

∑
i

ñia + ε̄b

∑
i

ñib + ε̄c

∑
i

ñic, (7)

where the values of the parameters ε̄α are shown in Table I.
Here, we use the operators niα from Eq. (1), although a
rigorous treatment would require the use of the operators
actually creating the particular bonding states centered around
a copper α orbital at site i. We discuss in Appendix A why such
simplification is to a large extent justified. Besides, the tilde

above the operators denotes the fact that we prohibit double
occupancies in this low-energy Hamiltonian due to the large
onsite Hubbard U and Up.

It is convenient to define at this point the orbital pseudospin
operators σ = 1

2 where

σ z
i = 1

2 (ñib − ñia), σ+
i = f̃

†
bi f̃ai , σ−

i = f̃
†
ai f̃bi , (8)

and τ = 1
2 where

τ z
i = 1

2 (ñic − ñia), τ+
i = f̃

†
ci f̃ai , τ−

i = f̃
†
ai f̃ci . (9)

Here, the tilde above the operators denotes the fact that double
occupancies are forbidden in this low-energy Hamiltonian due
to large onsite Coulomb repulsion U and Up. Setting ε̄a = 0,
we can rewrite Eq. (7) as follows:

H̄0 = ε̄b

∑
i

(
1

2
+ σ z

i

)
+ ε̄c

∑
i

(
1

2
+ τ z

i

)
. (10)

B. Spin superexchange: H̄a

Let us first study the superexchange interactions when only
one type of orbital is occupied along the superexchange bond.
In this case, it is very straightforward to show that the model (1)
can be easily reduced to the low-energy Heisenberg model for
spins S = 1

2 using the perturbation theory to fourth order in tσ
(Ref. 58) (cf. Fig. 2):

H̄a = J1(1 + R)
∑

i

Pi,i+1

(
Si · Si+1 − 1

4

)
, (11)

where Pi,i+1 denotes the fact that there are no orbital
excitations present along the bond 〈i,i + 1〉 and is defined
as

Pi,i+1 =
(

1

2
+ τ z

i

)(
1

2
+ τ z

i+1

)(
1

2
+ σ z

i

)(
1

2
+ σ z

i+1

)
.

(12)
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Note that here the superexchange interactions involve not only
the spin degree of freedom S = 1

2 ,

Sz
i = 1

2 (ñi↑ − ñi↓), S+
i = f̃

†
i↑f̃↓i , S−

i = f̃
†
i↓f̃↑i , (13)

but also the orbital degree of freedom pseudospin operators
defined in the previous section. Again, the tilde above
the operators denotes the fact that double occupancies are
forbidden in this low-energy Hamiltonian due to large onsite
Coulomb repulsion U and Up.

The superexchange constant contains contributions due to
charge excitations on copper sites (∼J1) and on the oxygen
sites located in-between the copper sites (∼J1R), where

J1 =
(

2t̄2
σ

�x + Vdp

)2
1

U
, (14)

with t̄σ = λatσ (see Appendix A for origin of the factor λa)
and

R = 2U

2�x + Up

. (15)

Two remarks are in order here. First, when no orbital
excitations are present, the Hamiltonian (11) is equal to the
well-known spin-only Heisenberg model. This is in agreement
with the “common wisdom” stating that the orbital degrees of
freedom can be easily integrated out in systems with only
one orbital occupied in the ground state. Second, in the
above derivation we neglected intermediate states with 1A1

or 1E symmetry. In principle, superexchange processes which
involve these intermediate states should also be taken into
account. However, due to the crystal-field splitting this would
mean that the final states of the superexchange process would
contain high-energy orbital excitations. Consequently, these
processes are suppressed.

C. Spin-orbital superexchange for b orbital: H̄b

If along a bond there is one hole in the b orbital (due to,
e.g., an orbital excitation created in RIXS) and another one in
the a orbital, then using the perturbation theory to fourth order

in tn we obtain (cf. Figs. 3 and 4)

H̄b =
∑

i

(
Si · Si+1 + 3

4

) [(
Rb

1J
b
12 + rb

1
J1 + J b

2

2

)

×
(

σ z
i σ z

i+1 − 1

4

)
+ Rb

1 + rb
1

2
J b

12(σ+
i σ−

i+1 + σ−
i σ+

i+1)

]

+
∑

i

(
1

4
− Si · Si+1

) [(
Rb

2J
b
12 + rb

2
J1 + J b

2

2

)

×
(

σ z
i σ z

i+1 − 1

4

)
− Rb

2 + rb
2

2
J b

12(σ+
i σ−

i+1 + σ−
i σ+

i+1)

]
,

(16)

where the superexchange constant J1 is the one given by
Eq. (14) while

J b
2 =

(
2t2

π

�z + Vdp

)2
1

U
(17)

and

J b
12 = (2tπ t̄σ )2

(�z + Vdp)(�x + Vdp)

1

U
. (18)

The complex structure of Hamiltonian (16) is a con-
sequence of the fact that the proper derivation of such a
low-energy model has to include the superexchange processes
with four distinct intermediate states:

(i) The high-spin state 3T1 on copper sites (middle bottom
panel of Fig. 3) which involves d2 = b1a1 orbital configuration
and with energy in terms of Racah parameters54 A − 5B ≡
U − 3J b

H . This leads to rb
1 = 1

1−3J b
H /U

.

(ii) The-low spin state 1T1 on copper sites (middle bottom
panel of Fig. 4) which involves d2 = b1a1 orbital configuration
and with energy in terms of Racah parameters54 A + B +
2C ≡ U − J b

H . This leads to rb
2 = 1

1−J b
H /U

.

(iii) The high-spin state 3T1 on oxygen sites (middle top
panel of Fig. 3; note that due to the equivalence between the
t2
2g and p2 configurations,54 we can label the multiplet states on

Cu

(a) tπσt

σt σt

tπ
σttπ

σt

σt
tπ tπ

σt

x
z or or

oror

a
b

a
CuOCu

b

(b)

O CuCu

O CuCu

(c)

a
CuOCu

a
CuOCu

b

b

O CuCu

O Cu

FIG. 3. (Color online) Schematic view of superexchange interactions with one orbital excitation (here: into orbital b) on one site and no
orbital excitations on the other site (hole in orbital a) in the case that both spins (arrows) on the neighboring orbitals are parallel: similarly as
in Fig. 2 the initial state [panel (a)] can be brought into the so-called virtual state of the superexchange process [circle with two spins (arrows)
on the right side of panel (b)] by the virtual hopping [left side of panel (b)] which can decay [right side of panel (b)] via the virtual hopping
into the final state of the superexchange [panel (c)]. Panel (b) shows two kinds of virtual states with doubly occupied ions, on the oxygen and
copper sites (cf. Fig. 2). Panel (c) shows two possible low-energy final configurations without double occupancies: without orbital flip (i.e.,
identical to the initial state) and with orbital flip.
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b

(a)

b
a

z
x tπ

σt

σt

tπ

tπ

σt
σt

σt
tπ

tπ

σtσt

or or

oror
a

CuOCu

b

(b)

O CuCu

O CuCu

O CuCu

O CuCu

(c)

a
CuOCu

b

a
CuOCu

b

a
CuOCu

b

a
CuOCu

FIG. 4. (Color online) Schematic view of superexchange interactions with one orbital excitation (here: into orbital b) on one site and no
orbital excitations on the other site (hole in orbital a) in the case that spins (arrows) on the neighboring orbitals are antiparallel: similarly as
in Fig. 2 the initial state [panel (a)] can be brought into the so-called virtual state of the superexchange process [circle with two spins (arrows)
on the right side of panel (b)] by the virtual hopping [left side of panel (b)] which can decay [right side of panel (b)] via the virtual hopping
into the final state of the superexchange [panel (c)]. Panel (b) shows two kinds of virtual states with doubly occupied ions, on the oxygen and
copper sites (cf. Fig. 2). Panel (c) shows four possible low-energy final configurations without double occupancies: with/without orbital flip
and with/without spin flip.

the p shell by those known from the t2g sector) which involves
p2 = x1z1 orbital configuration and with energy in terms of
Racah parameters54 Ao − 5Bo ≡ Up − 3J

p

H (where o denotes
the fact that the Racah parameters are for oxygen sites). This
leads to Rb

1 = 2U

�x+�z+Up(1−3J
p

H /Up)
.

(iv) The low-spin state 1T2 on oxygen sites (middle top panel
of Fig. 4) which involves p2 = x1z1 orbital configuration and
with energy in terms of Racah parameters54 Ao + Bo + 2Co ≡
Up − J

p

H . This leads to Rb
2 = 2U

�x+�z+Up(1−J
p

H /Up)
.

D. Spin-orbital superexchange for c orbital: H̄c

If along a bond there is one hole in the c orbital (due to, e.g.,
an orbital excitation created in RIXS) and another one in the
a orbital, then using the perturbation theory to fourth order in
tn we obtain (cf. Figs 3 and 4 showing an analogous situation
in the case of the orbital superexchange between the b and a

orbitals)

H̄c =
∑

i

(
Si · Si+1 + 3

4

)[ (
Rc

1J
c
12 + rc

1
J1 + J c

2

2

)

×
(

τ z
i τ z

i+1 − 1

4

)
+ Rc

1 + rc
1

2
J c

12(τ+
i τ−

i+1 + τ−
i τ+

i+1)

]

+
∑

i

(
1

4
− Si · Si+1

)[ (
Rc

2J
c
12 + rc

2
J1 + J c

2

2

)

×
(

τ z
i τ z

i+1 − 1

4

)
− Rc

2 + rc
2

2
J c

12(τ+
i τ−

i+1 + τ−
i τ+

i+1)

]
,

(19)

where the superexchange constants are J1 [cf. Eq. (14)] and

J c
2 =

(
2t̄2

π

�y + Vdp

)2
1

U
, (20)

with t̄π = λctπ (see Appendix A for origin of the factor λc)
and

J c
12 = (2t̄π t̄σ )2

(�y + Vdp)(�x + Vdp)

1

U
. (21)

Similarly to the b orbital case discussed above, the complex
structure of Hamiltonian (19) is a consequence of the fact that
the proper derivation of such a low-energy model has to include
the superexchange processes with four distinct intermediate
states:

(i) The high-spin state 3T1 on copper sites which involves
d2 = c1a1 orbital configuration and with energy in terms of
Racah parameters54 A + 4B ≡ U − 3J c

H . This leads to rc
1 =

1
1−3J c

H /U
.

(ii) The low-spin state 1T1 on copper sites which involves
d2 = c1a1 orbital configuration and with energy in terms of
Racah parameters54 A + 4B + 2C ≡ U − J c

H . This leads to
rc

2 = 1
1−J c

H /U
.

(iii) The high-spin state 3T1 on oxygen sites which involves
p2 = x1y1 orbital configuration and with energy in terms
of Racah parameters54 Ao − 5Bo ≡ Up − 3J

p

H . This leads to
Rc

1 = 2U

�x+�y+Up(1−3J
p

H /Up)
.

(iv) The low-spin state 1T2 on oxygen sites which involves
p2 = x1y1 orbital configuration and with energy in terms of
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Racah parameters54 Ao + Bo + 2Co ≡ Up − J
p

H . This leads to
Rc

2 = 2U

�x+�y+Up(1−J
p

H /Up)
.

E. Remarks on the derivation and parameters

First, we would like to remark that the physics of superex-
change interactions is very similar in both “orbital exchange”
cases discussed above [cf. Eqs. (16) and (19)]. Thus, the main
(quantitative) difference between these two cases originates in
slightly renormalized model parameters. Second, we should
comment on the superexchange paths which, due to their
small relative contribution to the low-energy Hamiltonian,
are neglected in the above derivation: (i) There is a finite
probability that, e.g., the c1a1 (i.e., t1

2ge
1
g) configuration in the

intermediate state 3T1 decays into a t2
2g configuration. However,

such process can be neglected since this means that in the
final state of the superexchange process we would then be
left with a transition to a higher-energy sector: starting from
the initial state with one hole in a t2g configuration we would
end with two holes in the t2g configuration in the final state
of the superexchange process and this would cost the energy
∼ ε̄b or ∼ ε̄c; the latter energies are typically much larger
than the scales of the superexchange interactions. (ii) We also
neglect intermediate states of the kind 1A1 or 1E or 3A2 since
they all require transitions to the higher-energy sector ∼ ε̄b or
∼ε̄c. (iii) Finally, from the above structure one can see that
it is impossible to have a “mixing” between the t2g orbital
excitations, i.e., to have transitions between the states with,
e.g., a1

i c
1
i+1 configuration and, e.g., b1

i a
1
i+1 configuration; this

is due to (a) the flavor-conserving hoppings between the t2g

orbitals, and (b) no onsite hopping [cf. Eq. (1)] allowing for
a transition from the c1a1 to b1a1 state (cf. Table A26 from
Ref. 54).

Finally, let us note that all of the parameters of the spin-
orbital model directly follow from the charge-transfer model
parameters. Their values are shown in Table I.

IV. ORBITON SPECTRAL FUNCTIONS

Our main purpose is to calculate the orbiton dispersion,
which follows from the two orbiton spectral functions

Ab(k,ω) ≡ 1

π
lim
η→0

Im〈0|
∑
jσ

eikj f
†
jaσ fjbσ

× 1

ω + E0 − H − iη

∑
jσ

eikjf
†
jbσ fjaσ |0〉 (22)

and

Ac(k,ω) ≡ 1

π
lim
η→0

Im〈0|
∑
jσ

eikjf
†
jaσ fjcσ

× 1

ω + E0 − H − iη

∑
jσ

eikjf
†
jcσ fjaσ |0〉, (23)

where |0〉 is the ground state of the charge-transfer Hamiltonian
H [Eq. (1)] with energy E0.

In what follows, we will concentrate on the low-energy ver-
sion of the charge-transfer Hamiltonian, i.e., the spin-orbital

Hamiltonian (6). Thus, we express the above formulas for
orbiton spectral functions in terms of the orbital psuedospinon
operators acting in the restricted Hilbert space of the spin-
orbital Hamiltonian without double occupancies60:

Ab(k,ω) = 1

π
lim
η→0

Im〈0̄|σk

1

ω + E0̄ − H̄ − iη
σ
†
k |0̄〉, (24)

Ac(k,ω) = 1

π
lim
η→0

Im〈0̄|τk

1

ω + E0̄ − H̄ − iη
τ
†
k |0̄〉, (25)

where |0̄〉 is the ground state of the spin-orbital Hamiltonian
H̄ with energy E0̄. It is now easy to verify that, for the realistic
regime of parameters defined in Table I, the ground state is
insulating, ferro-orbital (FO), i.e., only orbital a is occupied,
and antiferromagnetic (AF) (due to its 1D nature and lack of
long-range order called “quantum” AF in what follows). This
is because the energy cost of populating b or c orbital states ε̄b

and ε̄c is much larger than hopping tn (cf. Table I). Thus, it is
only the spin Heisenberg Hamiltonian H̄a which dictates what
is the spin ground state (which is always AF for any positive
J1 and R, cf. Table I).

In the following sections, we calculate the orbiton spectral
functions (24) and (25): first by mapping them onto the spectral
functions of the effective t-J model problems and then by
solving these simplified problems numerically. While this
method is not entirely exact, it gives a far better approximation
of the actual spectral function than the commonly used
linear orbital wave approximation (cf. Appendix B 1 and
Appendix B 3).

A. Mapping onto the effective t- J models

Mapping for the b orbiton case. To address the issues
mentioned above, we rewrite Eq. (24) in the following way:

Ab(k,ω) = 1

π
lim
η→0

Im〈0̄|
∑

j

eikj σj

(
1

2
− Sz

j

)

× 1

ω + E0̄ − H̄ − iη

∑
j

eikj σ
†
j

(
1

2
− Sz

j

)
|0̄〉

+ 1

π
lim
η→0

Im〈0̄|
∑

j

eikj σj

(
1

2
+ Sz

j

)

× 1

ω + E0̄ − H̄ − iη

∑
j

eikj σ
†
j

(
1

2
+ Sz

j

)
|0̄〉.

(26)

Here, we used an approximation that the spectral function
for an orbiton is only nonzero when the spin of the hole in
the excited orbital is conserved [i.e., we assumed that the
spectral functions for orbiton, which contains the “cross terms”
of the kind ∝( 1

2 + Sz
j )( 1

2 − Sz
j ), can be neglected]. In fact,

this approximation amounts to neglecting the process which
describes orbiton propagation with an additional spin flip (see
Appendix B 3 for justification that such process has relatively
small amplitude and can be neglected). Furthermore, due to the
SU(2) spin invariance of both the ground state |0̄〉 and of the
Hamiltonian H̄, the two contributions to the spectral function
[as written on the right-hand side of Eq. (26)] are equal, i.e.,
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we can write

Ab(k,ω) = 2

π
lim
η→0

Im〈0̄|
∑

j

eikj σj

(
1

2
− Sz

j

)

× 1

ω + E0̄ − H̄ − iη

∑
j

eikj σ
†
j

(
1

2
− Sz

j

)
|0̄〉.

(27)

Next, we introduce fermions (to be called spinons) α

through the Jordan-Wigner (JW) transformation for spins and
fermions β (to be called pseudospinons) through the JW
transformation for pseudospins (cf. Ref. 49). We define

S+
j = exp

⎛
⎝−iπ

∑
n=1,...,j−1

Qn

⎞
⎠ α

†
j ,

S−
j = αj exp

⎛
⎝iπ

∑
n=1,...,j−1

Qn

⎞
⎠ , (28)

Sz
j = njα − 1

2
,

where Qn = α
†
nαn and αn are fermions. Besides, we define the

orbital fermionic operators β as

σ+
j = exp

⎛
⎝−iπ

∑
n=1,...,j−1

Q̄n

⎞
⎠ β

†
j ,

σ−
j = βj exp

⎛
⎝iπ

∑
n=1,...,j−1

Q̄n

⎞
⎠ , (29)

σ z
j = njβ − 1

2
,

where Q̄n = β
†
nβn and βn are fermions.

It turns out that when calculating the orbiton spectral
function (27) with spins and pseudospins expressed in terms
of the JW fermions following the above transformation, a
pseudospinon and spinon are not present on the same site
(cf. Ref. 49). In other words, we have a constraint

∀i (β†
i βi + α

†
i αi) � 1, (30)

since otherwise the right-hand side of the spectral function
in Eq. (27) is zero because σ

†
j ( 1

2 − Sz
j ) = β

†
j (1 − njα). The

physical understanding of this phenomenon is as follows:
suppose one promotes a hole with spin down to the b orbital at
site i, which means that we have no pseudospinon and spinon
at this site. Now, this pseudospinon can move only via such
processes which do not flip the spin of the hole in the b orbital,
i.e., we prohibit creating spinon and pseudospinon at the same
site (cf. Appendix B 3).

Altogether, this means that while rewriting the low-energy
Hamiltonians (10), (11), and (16) in terms of fermions α and β,
we can skip all the terms which contain the pseudospinon and
spinon at the same site. We arrive at the following Hamiltonian:

Hab
JW ≡ H 0

JW + Ha
JW + Hb

JW (31)

with

H 0
JW = ε̄b

∑
i

β
†
i βi, (32)

Ha
JW = J1(1 + R)

∑
i

(1 − niβ)

[
1

2
(α†

i αi+1 + H.c.)

− 1

2
niα − 1

2
ni+1α + niαni+1α

]
(1 − ni+1β ) (33)

(with the pseudospinon operators originating in the projection
operators Pi,i+1) and

Hb
JW = −1

4

(
Rb

1 + rb
1 + Rb

2 + rb
2

)
J b

12

∑
i

(α†
i βiβ

†
i+1αi+1 + H.c.)

− 1

2

(
Rb

1 + rb
1

)
J b

12

∑
i

(βiβ
†
i+1 + H.c.)

−
(

Rb
1J

b
12 + rb

1
J1 + J b

2

2

)∑
i

β
†
i βi, (34)

where in addition we assumed that only one pseudospinon
in the bulk is present (which corresponds to the FO ground
state with one orbital excitation) and we skipped the terms
niαni+1β + ni+1αniβ , as for realistic values of J b

H and J
p

H (cf.
Table I) they are of the order of 10%–20% of the value of the
hopping tb [see Eq. (37) and Table I].

Next, we perform a transformation that connects the above-
derived Hamiltonian with the effective t-J model. Thus,
we introduce the auxiliary fermions p̃iσ acting in a Hilbert
space without double occupancies [we have checked that the
operators p̃iσ fulfill the appropriate commutation rules (cf.
Ref. 61)]:

p̃j↑ = β
†
j , p̃j↓ = β

†
j αj exp

⎛
⎝iπ

∑
n=1,...,j−1

Qn

⎞
⎠ , (35)

where again Qn = α
†
nαn. Besides, we introduce back spin

operators S following Eq. (28). Thus, we obtain

Hab
t-J ≡ H 0

t-J + Ha
t-J + Hb

t-J

= = −tb
∑
j,σ

(p̃†
jσ p̃j+1σ + H.c.)

+ J
∑

j

(
Sj Sj+1 − 1

4
ñj ñj+1

)
− Eh

b

∑
j

ñj , (36)

where the parameters are defined as

tb ≡ 1

8

(
3Rb

1 + Rb
2 + 3rb

1 + rb
2

)
J b

12, (37)

J ≡ J1(1 + R), (38)

Eh
b ≡ ε̄b −

(
Rb

1J
b
12 + rb

1
J1 + J b

2

2

)
, (39)

and we furthermore neglected the difference between tb↓ ≡
1
4 (Rb

1 + Rb
2 + rb

1 + rb
2 )J b

12 and tb↑ ≡ 1
2 (Rb

1 + rb
1 )J b

12 hopping
element. Note, however, that (i) this difference is of ca. 10% for
realistic parameters from Table I and therefore can be neglected
to simplify the calculations, (ii) keeping this difference while at
the same time neglecting the possibility of orbiton propagation
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with an additional spin flip (the so-called B1 process in
Appendix B 3) violates the SU(2) spin symmetry of the original
Hamiltonian, and finally (iii) we have verified that including
this difference not only does not lead to qualitatively different
RIXS cross section but also the quantitative changes are
negligible.

As the last step, we express also the b orbiton spectral
function (27) in the t-J model language. Using the same
transformations as for the Hamiltonian above, we obtain

Ab(k,ω) = 2

π
lim
η→0

Im〈�|p̃†
k↑

1

ω + E� − Hab
t-J − iη

p̃k↑|�〉,
(40)

here |�〉 is the ground state of Hab
t-J at half-filling with energy

E� (i.e., is a 1D quantum AF). Let us note that the t-J model
spectral function does not depend on the spin σ of the fermion
p̃kσ which is consistent with the fact that the choice of spin σ

in Eq. (35) was arbitrary.
Mapping for the c orbiton case. Following the same steps

as for the b orbiton spectral function we obtain the effective
t-J Hamiltonian

Hac
t-J ≡ H 0

t-J + Ha
t-J + Hc

t-J

= −tc
∑
j,σ

(p̃†
jσ p̃j+1σ + H.c.)

+ J
∑

j

(
Sj Sj+1 − 1

4
ñj ñj+1

)
− Eh

c

∑
j

ñj , (41)

where the parameters are defined as

tc ≡ 1

8

(
3Rc

1 + Rc
2 + 3rc

1 + rc
2

)
J c

12, (42)

J ≡ J1(1 + R), (43)

Eh
c ≡ ε̄c −

(
Rc

1J
b
12 + rc

1
J1 + J c

2

2

)
. (44)

The spectral function is then defined as

Ac(k,ω) = 2

π
lim
η→0

Im〈�|p̃†
k↑

1

ω + E� − Hac
t-J − iη

p̃k↑|�〉.
(45)

Parameters after the mapping. As shown above, the
parameters tb, tc, and J in the effective t-J model are expressed
in terms of the spin-orbital model parameters from the middle
column of Table I. Thus, they can be easily calculated and their
precise values are given in the right column of Table I. On the
other hand, while the energies of the onsite orbital excitations
Eh

b and Eh
c also follow from these parameters, in order to

stay in line with Ref. 22, we directly estimate them following
the ab initio quantum chemistry calculations on three CuO3

plaquettes in Sr2CuO3 (cf. Ref. 22). Note that these ab initio
calculations are performed for ferromagnetic chain and hence
they are well suited to our needs since we have Eh

b � Eb

(Eh
c � Ec) where Eb (Ec) is defined as the onsite cost of a

b (c) orbital excitation in a ferromagnetic environment. Let
us note that both methods lead to rather similar results, i.e.,
estimating Eh

b and Eh
c directly from the spin-orbital model

parameters given in Table I would lead to similar values as the
reported here ab initio values.

O
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FIG. 5. (Color online) Schematic view of the propagation of the
orbiton in the spin-orbital separation scenario: the orbiton hops to
the neighboring site (top panel) and initially excites a single spinon
(middle panel) but then separates from the spinon and can freely
travel in the 1D AF (bottom panel).

B. Spin-orbital separation and numerical results

Altogether, we see that we managed to map the spin-orbital
problem with an FO and AF ground state and one excitation
in the b or c orbital onto an effective t-J model with an
AF ground state and one empty site (“hole”) without a spin
(cf. Ref. 49 and also Ref. 62 which also shows a mapping
of a spinlike problem onto an effective t-J model). As the
latter problem is well known,63 even before calculating the
spectral function, we can draw an interesting conclusion: The
t-J model spectral function at half-filling, when calculated in
1D, describes a phenomenon called spin-charge separation.
This means that the “hole” in the 1D AF separates into an
independent holon, which carries charge quantum number,
and spinon which carries spin quantum number. Thus, also the
here discussed spin-orbital problem shows such a separation
phenomenon, to be called spin-orbital separation. In fact, this
can also be understood by looking at the cartoon picture in
Fig. 5: (i) the orbiton moves in such a way that the spin of
the hole in this excited orbital is conserved, (ii) this motion
introduces a single defect in the AF ground state (spinon), and
(iii) the created spinon and the “pure” orbiton (holon in the
t-J model language) can move independently and completely
separate.49

Nevertheless, i.e., despite the fact that the t-J model
spectral function is well known, we calculate the spectral
functions (40) and (45) using the Lanczos exact diagonal-
ization on a 28-site chain separately for each orbiton case.
The spectral function for the b orbiton [Ab(k,ω)] and c

orbiton case [Ac(k,ω)] is shown in Fig. 6. The spectrum
for each orbiton case consists of a lower-lying orbiton
branch with dispersion ∝tb (or ∝tc), period π , and mixed
spinon-orbiton excitation bounded from above by the edge
∝√

J 2 + 4t2 + 4tJ cos k with t ≡ tb or t ≡ tc depending on
the orbiton under consideration (cf. Ref. 49). Note that this
spectrum is quantitatively (but not qualitatively) different than
the “usual” spin-charge separation. The latter is “normally”
calculated for the case J < t (whereas in “our” spin-orbital
case J > t in the effective t-J model).49
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FIG. 6. (Color online) Spectral function Ab(k,ω) + Ac(k,ω) as a
function of momentum k and energy transfer ω in the spin-orbital
scenario and calculated using Lanczos exact diagonalization on a 28-
site chain. Results for broadening η = 0.05 eV which gives FWHM =
0.1 eV, i.e., the experimental resolution of RIXS in Sr2CuO3 (Ref. 22).

V. RIXS CROSS SECTION

In this section, we calculate the RIXS spectra of the
orbital excitations in Sr2CuO3. As it is well established13,14,20

that RIXS is an excellent probe of orbital excitations, the
calculations are rather straightforward provided the orbiton
spectral function is known.

Following Refs. 6 and 15, using the dipole approximation
and the so-called fast collision approximation,64,65 the RIXS
cross section for orbital excitations at the Cu2+ L edge in the
1D copper oxygen chain reads as

I (k,ω; e) = 1

π
lim
η→0

Im〈0|T †
S (k,e)

× 1

ω + E0 − H − iη
TS(k,e)|0〉, (46)

where ω ≡ ωout − ωin is the photon energy loss, k ≡ kin − kout

is the photon momentum loss [with k ≡ kx = k · x̂ being the
momentum loss along the x direction of the copper oxygen
chain in the studied case of Sr2CuO3 (cf. Fig. 1)], and |0〉
is the ground state of Hamiltonian H with energy E0 [see
Eq. (1) and cf. Eqs. (22) and (23)]. Finally, TS(k,e) is the
RIXS scattering operator, which depends on the incoming
and outgoing photon polarization e = eine†out in the RIXS
experiment. It reads as6,15,65

TS = Tb + Tc + Td + Te

=
∑
j,σ,σ ′

eikj [Bσ,σ ′(e)f †
jbσ fjaσ ′ + Cσ,σ ′(e)f †

jcσ fjaσ ′

+Dσ,σ ′(e)f †
jdσ fjaσ ′ + Eσ,σ ′ (e)f †

jeσ fjaσ ′]. (47)

θ

x

y

k

e
k out

eout

Ψ=130
0

k

k

x

in

in

FIG. 7. (Color online) Geometry of the RIXS experiment per-
formed on Sr2CuO3 and presented in Ref. 22 shown here for the
� = 130◦ scattering angle. The momentum transfer kx is denoted as
k in the main text.

Here, (i) orbital d = 3dyz, orbital e = 3d3z2−r2 , and the other
orbitals are defined as in Eq. (1), (ii) operators f

†
jασ and fjασ

are defined as in Eq. (1) with α ∈ {a,b,c,d,e}, (iii) Bσ,σ ′ , Cσ,σ ′ ,
Dσ,σ ′ , and Eσ,σ ′ are complex numbers which define the so-
called RIXS matrix elements. The latter ones can be easily
calculated in the fast collision approximation (see immediately
following).

A. RIXS matrix elements

To calculate the above-defined RIXS matrix elements in
the fast collision approximation, and to be able to compare
the obtained results with the experimental ones reported in
Ref. 22, we assume that (i) the incoming energy of the photon
is tuned to the copper L3 edge, i.e., ωin � 930 eV, and thus
the wave vector of the incoming photon is kin � 0.471/Å,
(ii) the wave vector at the edge of the Brillouin zone along the
x direction in Sr2CuO3 is 0.8051/Å as the lattice constant is52

3.91 Å, (iii) in the ionic picture the ground-state configuration
at the copper site is 3d9, (iv) the relatively small spin-orbit
coupling in the 3d shell can be neglected, (v) the incoming
polarization vector ein is parallel to the scattering plane and
the outgoing polarization vector is not measured (cf. Fig. 7),
(vi) the scattering plane is the xy plane, i.e., the one in which
the copper oxygen chain lies (which runs along the x direction,
see Fig. 1) (cf. Fig. 7), and (vii) the angle between the outgoing
and the incoming photon momentum is either ψ = 90◦ or 130◦
(cf. Fig. 7). The latter defines the two scattering geometries
used in the RIXS experiment reported in Ref. 22.

Next, we calculate the RIXS matrix elements in three
steps: First, following inter alia Ref. 15, we express the
matrix elements in terms of the different components of
the incoming and outgoing polarization vectors and the spin
operator. These expressions can be easily obtained from Fig. 1
of Ref. 15 and hence we do not write them here. Second,
we express the incoming and outgoing polarization vectors
in terms of the angle θ measured between the momentum of
the incoming photon and the x chain direction (cf. Fig. 7)
(note the convention that if k < 0, then θ → 0): (i) the
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vector of the incoming polarization of the photon in terms
of the angle θ is ein = [sin θ, cos θ,0], (ii) the vector of the
outgoing polarization of the photon in terms of the angle θ is
eout = [− cos θ, sin θ,0] for π polarization and eout = [0,0,1]
for σ polarization in the ψ = 90◦ geometry, and (iii) the
vector of the outgoing polarization of the photon in terms
of the angle θ is eout = [− cos(θ − 40◦), sin(θ − 40◦),0] for
π polarization and eout = [0,0,1] for σ polarization in the
ψ = 130◦ geometry. Third, we express the angle θ in terms
of the transferred momentum k along the x direction: (i) for
ψ = 90◦ geometry the transferred momentum as a function
of angle θ ∈ (0◦,90◦) is k � 0.58

√
2π sin(θ − 45◦) where the

distance between the copper sites along the chain is assumed
to be equal to unity, and (ii) for ψ = 130◦ the angle changes
as θ ∈ (0◦,130◦) and k � 1.07π sin(θ − 65◦).

Altogether, this shows how to calculate the RIXS matrix
elements for orbital excitations and that the latter effectively
becomes a function of transferred momentum k and energy
ω. Therefore, in what follows, we simplify notation and write
I (k,ω; e) → I (k,ω).

B. Numerical results

We first express the RIXS cross section for the b and c

orbital excitations in terms of the previously calculated (see
Sec. IV) b and c orbiton spectral functions. In order to do so,
we use the fact that according to the analysis in Sec. IV A, the
spin of the hole in the excited orbital does not change during
the orbiton propagation process. Thus, e.g., for only the b part
of the RIXS cross section we can write

Ib(k,ω) = 1

π
lim
η→0

Im〈0|
∑
σ1,j

B∗
σ1,↑eikjf

†
jaσ1

fjc↑

× 1

ω + E0 − H − iη

∑
σ2,j

B↑,σ2e
ikjf

†
jc↑fjaσ2 |0〉

+ 1

π
lim
η→0

Im〈0|
∑
σ1,j

B∗
σ1,↓eikjf

†
jaσ1

fjc↓

× 1

ω + E0 − H − iη

∑
σ2,j

B↓,σ2e
ikjf

†
jc↓fjaσ2 |0〉.

(48)

Next, we can employ the transformations used in Secs. III
and IV A to map the above problem first onto a spin-orbital
model and then onto an effective t-J model problem. We obtain
then

Ib(k,ω) = 1

π
lim
η→0

Im〈�|(B∗
↑,↑p̃

†
k↑ + B∗

↑,↓p̃
†
k↓)

× 1

ω + E� − Hab
t-J − iη

(B↑,↑p̃k↑ + B↑,↓p̃k↓)|�〉

+ 1

π
lim
η→0

Im〈�|(B∗
↓,↓p̃

†
k↑ + B∗

↓,↑p̃
†
k↓)

× 1

ω + E� − Hab
t-J − iη

(B↓,↓p̃k↑ + B↓,↑p̃k↓)|�〉.
(49)

Finally, the “interference” terms in the above equation cancel
due to the identity relations between the RIXS matrix elements

B↑,↑B∗
↓,↑ = −B∗

↓,↓B↑,↓, (50)

which leads to

Ib(k,ω) = (|B↑,↑|2 + |B↓,↑|2)Ab(k,ω), (51)

where we used that (see Sec. IV A)

Ab(k,ω) = 1

π
lim
η→0

Im〈�|p̃†
k↑

1

ω + E� − Hab
t-J − iη

p̃k↑|�〉

= 1

π
lim
η→0

Im〈�|p̃†
k↓

1

ω + E� − Hab
t-J − iη

p̃k↓|�〉

(52)

and Ab(k,ω) was calculated in Sec. IV. Employing the
same transformation for the c orbiton, we obtain Ic(k,ω) =
(|C↑,↑|2 + |C↓,↑|2)Ab(k,ω) with Ac(k,ω) also calculated in
Sec. IV.

Second, to complete the RIXS calculations we also have to
add the spectra for the dispersionless excitations to the d and
e orbitals. As this task is straightforward (cf. Appendix C), we
obtain for the total RIXS cross section

I (k,ω) = (|B↑,↑|2 + |B↓,↑|2)Ab(k,ω)

+ (|C↑,↑|2 + |C↓,↑|2)Ac(k,ω)

+ (|D↑,↑|2 + |D↑,↓|2)δ(ω − Ed − EAF)

+ (|E↑,↑|2 + |E↑,↓|2)δ(ω − Ee − EAF). (53)

Note that the values of the onsite orbital energies of the
dispersionless orbital excitations Ed and Ee are obtained
from the quantum chemistry ab initio calculations for a
ferromagnetic chain consisting of three CuO3 plaquettes (cf.
Table I). Since these values are given for a ferromagnetic chain,
we have to add the energy cost of a single spin flip (EAF), which
is also calculated using the same ab initio method (cf. Table I
for its precise value).

Comparison with the experiment. The RIXS cross section
calculated according to Eq. (53) is shown in Fig. 8. Comparing
this theoretical spectrum against the experimental one shown
in Fig. 4(a) in Ref. 22 (for the case of the scattering angle
� = 130◦; a similar agreement is obtained for the unpublished
RIXS experimental results66 for the scattering angle � = 90◦),
we note the following similarities between the two:

(i) The c orbiton spectrum: both the dispersion and the
intensities agree qualitatively and quantitatively; in particular,
the theoretical spectrum has the largest intensity at k = 0 mo-
mentum which is solely a result of the dispersion originating
in the spin-orbital separation scenario (the RIXS local matrix
elements for the c orbiton are momentum independent in the
RIXS geometry of Fig. 7).

(ii) The b orbiton dispersion: the dispersion has the same
particular cosinelike shape with a period π and minima at
±π/2; the spectral weights agree qualitatively and quantita-
tively.

(iii) “Shadow” (“oval”-like) bands above the b orbiton: the
width and shape of the shadow band are very similar both in
the experiment and in theory; spectral weights agree relatively
well (e.g., larger spectral weights for the negative than for the
positive momentum transfer).
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FIG. 8. (Color online) RIXS cross section for ψ = 90◦ (ψ = 130◦) scattering geometry as calculated in the spin-orbital separation scenario
and convoluted with the results from the local model (Fig. 13) on the top (bottom) panel. Left (right) panels show line (color map) spectra.
Results for broadening η = 0.05 eV (cf. caption of Fig. 6).

The characteristic spin-orbital separation spectrum is much
better visible for the b orbiton than for the c orbiton. The
reason for this is twofold. First, the overall sensitivity of RIXS
to the b orbiton excitations is much larger than to the c orbiton
due to the chosen geometry of the RIXS experiment. Thus,
all features related to the b orbiton are better visible than
those related to the c orbiton. Second, even despite this, the
spin-orbital separation can be better observed for the b orbiton
case than for the c orbiton (cf. Fig. 6). This is because the
effective hopping element tb for the b orbiton is larger than
the hopping tc for the c orbiton (cf. Table I), which is due to
(i) the renormalization ∝λc of the copper oxygen hopping tπ
for the hopping from c orbiton due to the formation of the
bonding and antibonding states with the neighboring oxygens
(see Appendix A), and (ii) the larger effective charge-transfer
gap for the c orbital than for the b orbital (see Table I; note that
this effective charge-transfer gap is defined as the difference
in energy between a particular 3d orbital and the hybridizing
2p orbital and thus is larger for lower-lying 3d orbitals).

The main discrepancy between the experiment and theory
is related to the somewhat smaller dispersion in the theoretical
calculations than in the experiment. While there might be
several reasons explaining this fact, let us point to two plausible
ones. First, the neglected spin-orbit coupling in the 3d orbitals
would mix the b and d (i.e., xz and yz) orbital excitations
and would lead to a finite dispersion in the d orbital channel.
This would mean that the present dispersionless d orbital
excitation would no longer “cover” parts of the dispersive b

orbiton. Thus, effectively this would lead to a large dispersive
feature around the b and d excitation energies. Second, the
relatively high covalency of the Sr2CuO3 compound, which is
not taken into account in the present derivation, might lead to

the more itinerant character of the system and larger dispersion
relation for the orbiton.

Comparison with other theoretical calculations. There are
actually two other simple approximations which might naively
be employed to calculate the RIXS spectra and which could
be compared against the experiment: (i) the “local model”
approximation which assumes that all orbital excitations are
local, i.e., also both the b and the c orbiton spectral functions
do not have any momentum dependence (cf. Appendix C),
and (ii) the one which assumes that the spectral functions
of the b and c orbitons are calculated using the linear
orbital wave approximation (cf. Appendix B 2). However, as
shown in detail in the above-mentioned Appendices, the RIXS
spectra calculated using these approximations do not fit the
experimental ones.

VI. DISCUSSION AND CONCLUSIONS

We first list a few alternative scenarios that might lead to
the dispersive orbital excitations in Sr2CuO3 and argue why
they do not lead to a plausible explanation of the experimental
results reported in Ref. 22. At the end of the section, we present
our conclusions.

A. Alternative scenarios leading to dispersive features in the
RIXS spectrum of Sr2CuO3

Spin-charge separation observed directly. The spin-charge
separation where a hole created in a 1D AF decays into a
holon and a spinon can be observed with ARPES: e.g., in
SrCuO2 (Ref. 63) or in Sr2CuO3 (Ref. 67). However, not
only that holon dispersion is much larger than the dispersion
under consideration in this paper [it is of the order of 1.1 eV
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(Ref. 67)], but also, what is more important, one can not
directly probe the spin-charge separation in RIXS since in
RIXS the total charge is conserved.68

Holon, antiholon, and two spinons, i.e., spin-charge separa-
tion indirectly. Nevertheless, it occurs that there is a possibility
to observe spin-charge separation with RIXS or electron
energy loss spectroscopy (EELS) in an indirect way. If one
transfers a hole from the copper site i either to the neighboring
copper site i + 1 to form a doubly occupied site or to the
neighboring oxygen plaquette surrounding the central copper
site i + 1 to form a Zhang-Rice singlet, then one ends up with
one hole in the spin background on site i and another hole in
the spin background on site i + 1. Next, both of these objects
can become mobile and experience the spin-charge separation:
the first one can move by decaying to a holon and a spinon,
while the second one can move by decaying to an antiholon
and a spinon. This rather complicated scenario was invoked to
explain the K-edge RIXS spectra in various quasi-1D cuprates
(cf. Refs. 68 and 69) and the EELS spectrum in Sr2CuO3.70

However, the common feature of all these experiments is
that there is a large dispersion (of the order of 1 eV) which
has a periodicity of 2π and a minimum at k = 0. Thus, clearly
it is not the spectrum that is observed in the L-edge RIXS
experiment in Ref. 22. The reason for this is that RIXS at L

edge is much more sensitive to the onsite excitations on the
copper site than to the intersite charge-transfer excitations on
the neighboring oxygen or copper sites.71

Orbital excitations propagating via the O(2p) orbitals. In
that case, the propagation would entirely happen via the O(2p)
orbitals on a kind of a zigzag chain along the CuO4 plaquettes.
This, however, can not lead to a momentum dependence in the
observed spectrum.

Similar experiments. One should also compare the here
reported theoretical results to the experimental ones which
were discussed in Ref. 72. There, a somewhat similar disper-
sive feature, as the one discussed here, was discovered in the
RIXS spectra at the 1s → 3d edge. Although this dispersion
was attributed to an orbital excitation, it remained unclear
to the authors of that paper how to correctly interpret this
phenomenon. An obvious suggestion is that the spectrum
observed in Ref. 72 might be of similar origin as the one
discussed here: the dispersion also has a π periodicity and
is of the order of 0.2 eV. However, there are two problems
with this scenario: (i) there is just one dispersive peak but no
other dispersive modes and there is no shoulder peak, (ii) the
dispersion is shifted by π/2 in the momentum space. This
first problem can perhaps be “solved”: RIXS at the 1s → 3d

edge involves quadrupolar transitions, the RIXS signal is rather
weak, and thus it is possible that one can not observe all details
of the spectra. However, the second one remains a challenge for
theory. One suggestion might be that the effective “dispersion”
that one sees in the spectrum in Ref. 72 is the top part of the
“shadow” bands that we reported here for the b orbiton; this
would require that the “true” (lower) b orbiton band is covered
by some other excitations in that experiment.

B. Conclusions

We have considered in detail the origin of the dispersive
features observed in the RIXS spectra of the quasi-1D CuO3

chain in Sr2CuO3.22 We explained that these dispersive
features can indeed be attributed to the dispersive orbital
excitations (orbitons). The unexpectedly strong dispersion of
these excitations is not only a result of the relatively strong
superexchange interactions in the system, but is also due to
the fractionalization of the spin and orbital degrees of freedom
which, as shown in this paper and in Refs. 22 and 49, is possible
in this quasi-1D strongly correlated system.

Finally, one may wonder whether the spin-orbital separation
phenomenon can also be observed in other transition-metal
oxides. While we suggest that this should be possible in most
other quasi-1D systems which are again mostly cuprates, it
is impossible to observe this phenomenon in 2D and 3D
systems, such as La2CuO4, LaMnO3, or LaVO3, with long-
range magnetic order (cf. Ref. 73). However, many theoretical
studies have discussed the nature of the orbital excitations in
these systems, which leaves a large field to be still explored
experimentally (cf. Refs. 11, 13, 17, 35, 37–42, and 45).
Furthermore, the mapping of the spin-orbital model into the
effective simpler t-J model presented here is actually valid
also in higher dimensions.49 However, the lack of experimental
results, which can verify various theories concerning these
orbital excitations, means that it remains a challenge both for
theory and for experiment to explore the nature of the orbital
excitations in higher dimensions.
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APPENDIX A: REDUCTION OF THE EFFECTIVE
HOPPING IN THE LINEAR CHAIN DUE TO ∝t2

n

PERTURBATIVE PROCESSES

Let us first state that, due to the t2
n processes, the number of

holes residing in the orbitals within the Cu-O-Cu-O- . . . chain
for a particular CuO4 cluster depends on the particular α orbital
forming the bonding state (cf. Fig. 1). More precisely, for the
bonding states formed around the b orbital and occupied by one
hole, the whole charge is concentrated in the orbitals within
the Cu-O-Cu-O- . . . chain, while for the bonding states formed
by the a or c orbitals, it is not the case. This is because in
the latter case the bonding state is formed by orbitals situated
above and below the Cu-O-Cu-O- . . . chain.
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Looking in detail at this problem, we concentrate first
at the case with the hole being initially doped into the a

orbital. The part of the charge-transfer Hamiltonian (1) which
is responsible for the effect mentioned above is

−tσo

∑
i,σ

(f †
iaσ fiyo+σ − f

†
iaσ fiyo−σ + H.c.)

+�yo

∑
i

(niyo+ + niyo−), (A1)

with tσo being the main “actor” here, i.e., it is this hopping
element which makes the hole escape from the Cu-O-Cu-O-
. . . chain (see Fig. 1). We can now easily diagonalize this
three-level problem and calculate the number of holes left in
the a orbital by evaluating the following quantum mechanical
amplitude:

λa ≡ 〈a|ψa〉 = �yo − ea√
2t2

σo + (�yo − ea)2
, (A2)

where ea = (�yo −
√

�2
yo + 8tσo)/2, while |ψa〉 is the bond-

ing state coming from the above diagonalization procedure and
which is well separated from the antibonding and nonbonding
states (so that we can skip the latter two when studying the
low-energy regime).

A similar analysis as above but for the c orbital leads to

λc ≡ 〈c|ψc〉 = �xo − ec√
2t2

πo + (�xo − ec)2
, (A3)

where ec = (�xo − √
�2

xo + 8tπo)/2. Here again |ψc〉 is the
bonding state but this time centered around the c orbital.

Finally, since the b orbital does not hybridize with the
oxygens lying above or below the Cu-O-Cu-O- . . . chain, the
corresponding λb would be equal to unity and could be skipped
in what follows.

These renormalized values of the number of holes within
the chain directly lead to renormalized values of the hopping
elements from the ψa and ψc orbitals with respect to the
hopping elements from the pure a and c orbitals. A rigorous
calculation would now require that together with using the
parameters λa and λc as renormalizing the hopping, we
should also use the basis spanned by the ψa and ψc orbitals.
However, we avoid this in our calculations. We justify this
“approximation” as follows.

In general, to properly account for all the effects arising
from the ∝t2

n perturbative processes, the rigorous treatment
would require using the so-called cell perturbation theory:74

that is, to rewrite the full charge-transfer Hamiltonian using
the bonding/antibonding states and then to calculate the su-
perexchange interactions in this basis. This, however, requires
very tedious calculations as even for the much simpler case of
Ref. 74 the problem is nontrivial and complex.

Therefore, we follow the more standard route, i.e., we
calculate the superexchange interactions in Secs. III B–III E
using the orbital basis that was already used to write the
charge-transfer model (1). The only two remnants of the
cell perturbation theory, or in other words of the fact that
the superexchange should be modified due to the formation
of bonding and antibonding states, are (i) the use of the
renormalized parameters ε̄α instead of εα as discussed in

Sec. III A, and (ii) the use of the factors λa and λc which
renormalize the number of holes present within the chain
when a hole is doped into the a or c orbital, respectively
(see above). We have verified that the renormalization of other
parameters has a much smaller effect. In particular, (i) the
charge-transfer energies in the bonding states should change
similarly for all orbitals with respect to their values in the
charge-transfer model defined in the 2p and 3d orbital bases,
(ii) the matrix elements of the Coulomb interaction in the
bonding/antibonding basis are similar to the ones calculated
in the 2p and 3d orbital bases.

APPENDIX B: LINEAR ORBITAL WAVE APPROXIMATION

The “standard” way to obtain the orbiton dispersion in the
spin-orbital model is to use the linear orbital wave (LOW)
approximation (cf. Ref. 43) for the orbital pseudospin degrees
of freedom and to integrate out the spin degrees of freedom
in a mean-field way.49 This in general may be justified here
due to the presence of the long-range orbital order. In order to
test this scenario, in this section of the Appendix, we perform
the LOW approximation and calculate the orbiton spectral
function (Sec. B 1) together with the RIXS cross section (see
Sec. B 2). We also discuss why the LOW approximation fails
in properly describing the experimental results reported in
Ref. 22 (cf. Sec. B 3).

1. Spectral function in linear orbital wave approximation

LOW for b orbiton. Following, e.g., Refs. 43 and 49 we
first introduce the following bosonic creation (annihilation)
operators β

†
j (βj ) for the orbital pseudospin operator:

σ z
j = β

†
j βj − 1

2 , σ+
j = β

†
j , σ−

j = βj , (B1)

where we already skipped the three-orbiton terms in the above
expressions since we will keep only quadratic terms in the
bosonic degrees of freedom in the effective Hamiltonian below.
Besides, we decouple the orbital operators from the spins and
assume for the spins their appropriate mean-field values. The
latter is a standard procedure when calculating the spin-wave
dispersion in the spin and orbitally ordered systems.55,75

Applying these transformations to the Hamiltonian H̄, we
obtain the following LOW Hamiltonian:

Hab
LOW ≡ H 0

LOW + Ha
LOW + Hb

LOW

=
∑

k

(B + 2Jb cos k)β†
kβk

+ J1(1 + R)
∑

i

(
Si · Si+1 − 1

4

)
, (B2)

with the constants B and Jb defined as

B ≡ ε̄b − A
(

Rb
1J

b
12 + rb

1
J1 + J b

2

2

)

−B
(

Rb
2J

b
12 + rb

2
J1 + J b

2

2

)
+ 2J1(1 + R)B (B3)

and

Jb ≡ 1
2J c

12

[
A

(
Rb

1 + rb
1

) − B
(
Rb

2 + rb
2

)]
, (B4)
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with

A ≡ 〈�|Si · Si+1 + 3
4 |�〉 (B5)

and

B ≡ 〈�| 1
4 − Si · Si+1|�〉. (B6)

Here, |�〉 is the AF and FO ground state (cf. Sec. IV) of Hb
LOW

with energy E�. The values of the spin-spin correlations have
to be calculated for the spin ground state of the Hamiltonian
Hb

LOW, which is a quantum AF (see Sec. IV). This can easily
be obtained from the well-known exact Bethe-ansatz-based
solution for a 1D quantum AF: A = 0.31 and B = 0.69. (Let
us note that these numbers are significantly different from those
that are known for the not-realized-here “classical” case, i.e.,
for the ordered Néel AF; in that case, A = 0.5, B = 0.5, and
Jb � 0.011 eV.) Using the spin-orbital model parameters from
Table I, we finally obtain Jb � −0.019 eV as also reported in
Table I.

Although one could directly use Eq. (B3) to calculate the
onsite cost of an orbital excitation B, this value can also be
calculated by using the ab initio quantum chemistry calculation
for a ferromagnetic chain with four CuO3 plaquettes. The
latter gives the value of a single orbital excitation in the
ferromagnetic chain Eb = 2.15 eV (cf. discussion in Sec. IV
and Table I) and leads to

B � Eb + EAF (B7)

and, since EAF = 0.33 eV, B � 2.48 eV (cf. Table I). To be
in line with Ref. 22, we use the latter value as the cost of the
local b orbital excitations in the AF chain.

Having defined the Hamiltonian and its parameters, we are
now ready to compute the orbiton spectral function Ab(k,ω)
[Eq. (24)], which, when expressed in the new bosonic operators
[Eq. (B1)], reads as

Ab(k,ω) = 1

π
lim
η→0

Im〈�|βk

1

ω + E� − Hab
LOW − iη

β
†
k |�〉.

(B8)
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FIG. 9. (Color online) Schematic view of the propagation of the
orbiton in the LOW approximation: note that the orbiton moves in
such a way that it does not disturb the AF correlations which are due
to the mean-field decoupling of spin and orbital degrees of freedom.

Since |�〉 is a vacuum for boson operators β|�〉 = 0, we easily
obtain

Ab(k,ω) = 1

π
lim
η→0

Im
1

ω − B − 2Jb cos k − iη
. (B9)

The orbiton spectral function consists of a single quasiparticle
peak with a sinelike dispersion, with period 2π and bandwidth
4|Jb| � 0.08 eV (cf. Fig. 10). This result can be intuitively
understood by looking at the cartoon picture of the orbiton
propagation in the LOW approximation (cf. Fig. 9).

LOW for c orbiton. Following the same steps as above, we
obtain

Hac
LOW ≡ H 0

LOW + Ha
LOW + Hc

LOW

=
∑

k

(C + 2Jc cos k)β†
kβk

+ J1(1 + R)
∑

i

(
Si · Si+1 − 1

4

)
(B10)

with the constants C and Jc defined as

C ≡ ε̄c − A
(

Rc
1J

c
12 + rc

1
J1 + J c

2

2

)

−B
(

Rc
2J

c
12 + rc

2
J1 + J c

2

2

)
+ 2J1(1 + R)B (B11)

and

Jc ≡ 1
2J c

12

[
A

(
Rc

1 + rc
1

) − B
(
Rc

2 + rc
2

)]
, (B12)

which gives Jc � −0.014 eV (cf. Table I). Again, C � 1.74 eV
can be estimated using the ab initio calculated value (cf.
discussion above for the b orbiton) of Ec � 1.41 eV for a

FIG. 10. (Color online) Spectral function Ab(k,ω) + Ac(k,ω) as
a function of momentum k and energy transfer ω in the LOW
approximation and quantum AF case. Results for broadening η =
0.05 eV (cf. caption of Fig. 6).
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local c orbital excitation in the ferromagnetic chain and the
relation (see above)

C � Ec + EAF. (B13)

Finally, we obtain the following spectral function Ac(k,ω) :

Ac(k,ω) = 1

π
lim
η→0

Im
1

ω − C − 2Jc cos k − iη
, (B14)

which is also shown in Fig. 10 and which qualitatively
resembles the above-calculated b-orbiton dispersion.

Spin-orbital waves. As a side remark, let us note that the
joint spin-orbital wave defined as in Ref. 39 can not be present
in the considered spin-orbital model. The reason is that this
would require such terms as, e.g., (S+

i S−
j + S−

i S+
j )(τ+

i τ+
j +

τ−
i τ−

j ) to be present in the spin-orbital Hamiltonian (6), which
is not the case here.

2. RIXS in linear orbital wave scenario

In order to calculate the RIXS cross section in the LOW
approximation, we first express the RIXS operator (47) in
terms of the orbital pseudospins. For the b orbiton case (i.e.,
Tb operator), following Eqs. (8) and (13), we obtain

Tb = 1√
N

∑
j

eikj

[
(B↑,↑ + B↓,↓)

1

2
σ+

j + (B↑,↑ − B↓,↓)Sz
jσ

+
j

+B↑,↓S+
j σ+

j + B↓,↑S−
j σ+

j

]
. (B15)

Next, following Eq. (B1), we express the first term of
the above-written RIXS operator in terms of the Holstein-
Primakoff bosons β+

k :

T
(1)
b = 1

2 (B↑,↑ + B↓,↓)β+
k . (B16)

Note that in the above expression the spin-dependent part [the
three last terms of the right-hand side of Eq. (B15)] in Eq. (B16)
is skipped. This is because it does not lead to any dispersive
excitations since there are no terms in the LOW Hamiltonian
which could move a spin excitation together with an orbital
excitation (in the LOW approximation). (This is somewhat
similar to the problem of a hole doped into the orbitally ordered
state in a 1D chain which can “visit” the neighboring sites but
the spectrum of which is k independent.76) However, these
three neglected terms will contribute to the total RIXS cross
section as dispersionless excitations.

When, apart from the above-discussed b orbiton case, we
also include the contribution from the c orbiton (which is
analogous to the b orbiton case) and from the dispersionless d

and e orbitons, we obtain

I (k,ω) = 1
4 |B↑,↑ + B↓,↓|2Ab(k,ω)

+ (
1
4 |B↑,↑ − B↓,↓|2 + |B↓,↑|2)δ(ω − Eb − EAF)

+ 1
4 |C↑,↑ + C↓,↓|2Ac(k,ω)

+ (
1
4 |C↑,↑ − C↓,↓|2 + |C↓,↑|2)δ(ω − Ec − EAF)

+ [|D↑,↑(k)|2 + |D↑,↓(k)|2]δ(ω − Ed − EAF)

+ [|E↑,↑(k)|2 + |E↑,↓(k)|2]δ(ω − Ee − EAF).

(B17)

Here, the spectral functions Ab(k,ω) and Ac(k,ω) are calcu-
lated in Sec. B 1 and the RIXS matrix elements follow from
Sec. V A.

Comparison with the experiment. The RIXS cross section
calculated using Eq. (B17) is shown in Fig. 11. A small
dispersion of the orbiton excitations, known already from
the spectral functions in Sec. B 1, is relatively well visible
in the RIXS cross section. However, there is a qualitative

FIG. 11. (Color online) RIXS cross section for 90◦ (130◦) scattering geometry as calculated in the LOW approximation and convoluted with
the results from the local model (Fig. 13) on the top (bottom) panel. Left (right) panels show line (color map) spectra. Results for broadening
η = 0.05 eV (cf. caption of Fig. 6).
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FIG. 12. (Color online) Schematic view of the three possible
superexchange processes which lead to the orbiton propagation (here
shown for the b orbiton, but the c orbiton case is analogous). In the
LOW approximation, all of these processes, the amplitudes of which
have different signs, are summed up. When treated separately, as in
the spin-orbital separation approach, it occurs that for the orbiton
propagation in a quantum AF only processes A and B2 matter.

disagreement between these theoretical calculations and the
experimental results [cf. Fig. 4(a) in Ref. 22 for the case of the
RIXS with scattering angle � = 130◦]; a similar disagreement
is obtained for the unpublished RIXS experimental results66

for the scattering angle � = 90◦. The main differences are
as follows: (i) the theoretical dispersion has its minimum at
k = 0 according to the calculations, while this is not the case
in the experiment, (ii) the theoretical results do not predict the
onset of a continuum above the b excitation, (iii) the obtained
dispersion of the quasiparticle peaks is much smaller than in
the experiment, and (iv) there is a disagreement between the
calculated and measured RIXS intensities.

3. Why linear orbital wave approximation fails

General considerations. Let us show why the LOW theory,
employed above in calculating the orbiton spectral function,
can not correctly reproduce the orbiton propagation in the here
discussed spin-orbital model.

In order to do that, we take a closer look at all possible
channels of the orbiton propagation (see Fig. 12) and calculate
their relative contribution to the orbiton propagation in the
LOW approximation. (In what follows, we concentrate on the b

orbiton case, but similar arguments apply to the c orbiton case.)
Thus, we split the effective orbiton superexchange process
∝Jb, as calculated in the previous section [Eq. (B12)] into
three different contributions:

Jb = tA + tB1 + tB2, (B18)

where

tA = 1
2J b

12

(
Rb

1 + rb
1 + Rb

2 + rb
2

)〈�| 1
2 (S+

i S−
i+1 + H.c.)|�〉

(B19)

and

tB = tB1 + tB2 = 1
2J c

12

[(
Rb

1 + rb
1

)〈�|Sz
i S

z
i+1 + 3

4 |�〉
− (

Rb
2 + rb

2

)〈�| 1
4 − Sz

i S
z
i+1|�〉], (B20)

with

tB1 = 1
2J b

12μ
[(

Rb
1 + rb

1

)〈↑↓|Sz
i S

z
i+1 + 3

4 |↑↓〉
− (

Rb
2 + rb

2

)〈↑↓| 1
4 − Sz

i S
z
i+1|↑↓〉], (B21)

and

tB2 = 1
2J b

12

(
Rb

1 + rb
1

)
ν〈↓↓|Sz

i S
z
i+1 + 3

4 |↓↓〉, (B22)

where |↓↓〉 denotes a ferromagnetic state, |↓↑〉 denotes a Néel
AF state, and μ = |〈�|↓↑〉|2 ∼ 0.8 and ν = |〈�|↓↓〉|2 ∼ 0.2.
Substituting parameters from Table I and spin correlations for
the quantum AF, Néel AF, and ferromagnetic state we obtain
that tA ∼ −0.046 eV, tB1 ∼ 0.009 eV, and tB2 ∼ 0.018 eV (one
can check that altogether they indeed give Jb ∼ −0.019 eV as
calculated in the previous section, cf. Table I). Thus, we see
that (i) the A process has a surprisingly large contribution and
an opposite sign to the other processes, so, unlike in the LOW
result presented above, we should treat it separately as we make
a huge error when we add all of these processes together; (ii)
the B1 process is not only much smaller than the A process,
but also it is twice smaller than the B2 process.77

This means that it is reasonable to try to define such an
approximation, when calculating the orbiton propagation in the
spin-orbital model (6), that, unlike the LOW approximation,
will not average over these three processes. At the same time,
such approximation could neglect the B1 process due to its
relatively small amplitude. In order to verify what kind of
approximation can be used, let us try to intuitively understand
the difference between these three processes (cf. Fig. 12).
While process A denotes an orbiton hopping accompanied by
a spin flip, the B processes describe orbiton hoppings without
any change in the spin background: the B1 for the case when
the spins on the bond are antiparallel, while the B2 when the
spins are parallel. However, one can also look at this problem in
a different way: for the A and B2 process the spin of the hole in
orbital b is conserved during the spin-orbital exchange. Hence,
when process B1 is neglected, one can safely assume that the
spin of the hole in the excited orbital does not change during
orbiton propagation, and this is the essence of the mapping to
the t-J model discussed in the main text of the paper.

APPENDIX C: RIXS FOR DISPERSIONLESS ORBITAL
EXCITATIONS

In order to verify that the RIXS cross section in the so-called
local model, i.e. with all orbital excitations dispersionless,
indeed does not follow the experimental RIXS cross section,22

we study the RIXS response for the following local Hamilto-
nian:

H = (Eb + EAF)
∑

i

(nib − nia) + (Ec + EAF)
∑

i

(nic − nia)

+ (Ed + EAF)
∑

i

(nid − nia)

+ (Ee + EAF)
∑

i

(nie − nia). (C1)
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FIG. 13. (Color online) RIXS cross section for 90◦ (130◦) scattering geometry as calculated in the local model on the top (bottom) panel.
Left (right) panels show line (color map) spectra. Results for broadening η = 0.05 eV (cf. caption of Fig. 6).

Here Eb, Ec, Ed , and Ee are the costs of the local orbital excitations as calculated using the ab initio quantum chemistry cluster
calculations for the ferromagnetic CuO3 chain in Sr2CuO3 (see Table I), while EAF = 0.24 eV is the estimated correction to these
values due to the quantum AF ground state (see Table I). Substituting Eq. (C1) into (46) and using Eq. (47), we easily obtain

I (k,ω) = [|B↑,↑(k)|2 + |B↑,↓(k)|2]δ(ω − Eb − EAF) + [|C↑,↑(k)|2 + |C↑,↓(k)|2]δ(ω − Ec − EAF)

+ [|D↑,↑(k)|2 + |D↑,↓(k)|2]δ(ω − Ed − EAF) + [|E↑,↑(k)|2 + |E↑,↓(k)|2]δ(ω − Ee − EAF), (C2)

which is shown in Fig. 13 for the two discussed scattering geometries. It can be easily verified that the cross section calculated in
this way does not agree with the RIXS experimental cross section, as shown in Fig. 4(a) in Ref. 22 (for the case of the scattering
angle � = 130◦; a similar disagreement is obtained for the unpublished RIXS experimental results66 for the scattering angle
� = 90◦).
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