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The plan is to give a concise but technical introduction to ‘Physics Beyond the Standard
Model’ and early cosmology as seen from the perspective of string theory. In particular, the two
hierarchy problems (of the cosmological constant and the electroweak scale) will be discussed
in view of ideas like string theory landscape, eternal inflation and multiverse. The presentation
will include critical points of view and alternative ideas and explanations. Basic knowledge of
quantum field theory and general relativity (but not of string theory) will be assumed. Elements
of string theory will be introduced as needed. Useful literature will also be mentioned as we
go along. Two texts in particular stand out because they share the spirit of this course: The
first is the set of lecture notes [1], which starts however at a much higher technical level. The
other is the extensive textbook or even monograph [2]. Both are much more ‘stringy’ than the
present notes, the emphasis being more on concrete string model constructions rather than on
the physics of hierarchy problem and (multiverse) cosmology.
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1 The Standard Model and its Hierarchy Problem(s)

This section assumes at least some familiarity with quantum field theory (QFT), including basics
of regularization and renormalization. There exists a large number of excellent textbooks on this
subject, such as [3–7]. The reader familiar with this topic will most probably also have some
basic understanding of the Standard Model of Particle Physics, although this will not be strictly
necesssary since we will introduce this so-called Standard Model momentarily. It is also treated
at different levels of detail in most QFT texts, most notably in [4,7]. Books devoted specifically
to theoretical particle physics and the Standard Model include [8–11]. We will try to refer to
some more specialized texts or even articles as we go along.

1.1 Standard Model - the basic structure

A possible definition of the Standard Model is as follows: It is the most general renormalizable
field theory with gauge group

GSM = SU(3)× SU(2)× U(1) , (1.1)

three generations of fermions, and a scalar. These fields transform in the representations

(3,2)1/6 + (3̄,1)−2/3 + (3̄,1)1/3 + (1,2)−1/2 + (1,1)1 and (1,2)1/2 (1.2)

respectively. Here the boldface numbers specify the representations of SU(3) and SU(2) via its
dimension (in our case only singlet, fundamental or anti-fundamental occur, the latter denoted
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by an overline) and the index gives the U(1) charge. The overall normalization of the latter is
clearly convention dependent since there is no intrinsic way to normalize a U(1) gauge field.1

If one adds gravity in its simplest and essentially unique theoretical formulation (Einstein’s
general relativity), then this data offers an almost complete fundamental description of the mate-
rial world. This structural simplicity and the resulting small number of fundamental parameters
(to be specified in a moment) is very remarkable. What is even more remarkable is the enormous
underlying unification: So many very different macroscopic and microscopic phenomena which
we observe in everyday life and in many natural sciences follow from such a (relatively) simple
underlying theory.

Clearly, important caveats have already been noted above: The description is almost com-
plete, the theory is relatively simple (not as simple as one would wish) and, maybe most impor-
tantly, it is only fundamental to the extent that we can test it at the moment. Quite possibly,
more fundmental building blocks can be identified in the future. The rest of this course is about
exactly these caveats and whether, based on those, theoretical progress is possible.

But first let us be more precise and explicit and turn the defining equations (1.1) and (1.2)
into a field-theoretic lagrangian. Given the theoretically well-understood and experimentally
tested rules of quantum field theory (QFT), this can be done unambiguously. The structure of
the lagrangian is

LSM = Lgauge + Lmatter + LHiggs + LY ukawa . (1.3)

The gauge part is completely standard:

Lgauge = − 1

4g2
1

F (1)
µν F

(1)µν − 1

2g2
2

trF (2)
µν F

(2)µν − 1

2g2
3

trF (3)
µν F

(3)µν . (1.4)

Of course, one has to remember the conventional normalization tr(TATB) = δAB/2 of the SU(N)
generators in the fundamental representation. The matter or, more precisely, the fermionic mat-
ter contribution reads

Lmatter =
∑
j

ψji /Djψj with (Dj)µ = ∂µ − iRj(Aµ) (1.5)

with j running over left-handed quark doublets, right-handed up- and down-type quarks, lepton-
doublet and right-handed leptons (each coming in three generations or families):

ψj ∈ { {qaL, (uaR)c, (daR)c, laL, (e
a
R)c}, a = 1, 2, 3 } . (1.6)

The five types of fermions from qL to ecR correspond precisely to the five terms in the direct
sum in (1.2). Furthermore, Rj(Aµ) denotes the representation of Aµ ∈ Lie(GSM) appropriate for
the fermion of type j. To make our conventions unambiguous, we have to specify in detail how
we describe the spinor fields. One convenient choice (the one implicitly used above) is to always
work with left-handed 4-component or Dirac spinors. In other words, we do not use general Dirac
spinors built from Weyl spinors according to

ψD =

(
ψα
χα̇

)
with α, α̇ = 1, 2 . (1.7)

1In our conventions the electric charge is given by Q = T3 + Y .
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Instead, all our 4-spinors are left-handed:

ψ =

(
ψα
0

)
. (1.8)

In particular, this explains why we use the charge-conjugate of right-handed quarks and leptons
as our fundamental fields, cf.

qL =

(
(qL)α

0

)
vs. ucR =

(
(uR)α

0

)
=

(
0

(uR)α̇

)c
. (1.9)

We see that the quantum numbers given in (1.2) can be viewed as referring to either these left-
handed fields or to the corresponding 2-component Weyl spinors. The latter will in any case be
very useful when talking about supersymmetry below.

The scalar or Higgs lagrangian is

LHiggs = −(DµΦ)†(DµΦ)− V (Φ) with V (Φ) = −m2
HΦ†Φ + λ(Φ†Φ)2 , (1.10)

where Φ is an SU(2) doublet with charge 1/2 under U(1) (the hypercharge-U(1) or U(1)Y ).
Finally, there are the Yukawa terms

LY ukawa = −
∑
jk

λjkψjψ
c
k Φ + h.c. , (1.11)

where the sum runs over all combinations of fields for which the relevant product of represen-
tations contains a gauge singlet. We left the group indices and their corresponding contraction
implicit.

Note that, since all our fields are l.h. 4-component spinors, we have to write ψψc rather than
simply ψψ. The latter would be identically zero. Note also that the 4-spinor expression ψψc

corresponds to ψα̇ψ
α̇

in terms of the Weyl spinor ψα contained in the 4-spinor ψ.

Crucially, the Higgs potential has a minimum with S3 topology at |Φ| = v ' 174 GeV,
leading to spontaneous gauge symmetry breaking. One can choose the VEV to be real and
aligned with the lower component of Φ, leading to the parameterization

Φ =

(
0

v + h/
√

2

)
. (1.12)

It is easy to see that the symmetry breaking pattern is SU(2)×U(1)Y → U(1)em (see problems).
Three would-be Goldstone-bosons along the S3 directions are ‘eaten’ by three of the four vector
bosons of SU(2)×U(1)Y . This leads to the W± and Z bosons with masses mW± ' 80 GeV and
mZ ' 90 GeV. The surviving real Higgs scalar h is governed by

L ⊃ −1

2
(∂h)2 − 1

2
m2
hh

2 . (1.13)

One can relate the parameters after symmetry breaking to those of the original lagrangian:

v2 = m2
H/(2λ) , m2

h = 4λv2 . (1.14)
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We have mh ' 125 GeV, mH = mh/
√

2 = 88 GeV, and λ ' 0.13.2

The surviving massless gauge boson is, of course, the familiar photon. Finally, one can check
that the allowed Yukawa terms suffice to give all charged fermions a mass proportional to v.
The three lightest quark masses are not directly visible to experiment since the confinement
dynamics of the SU(3) gauge theory (QCD) hides their effect. The three upper components of
the lepton-doublets – the neutrinos – have Q = 0 and remain massless.

The reader should check explicitly which (three) Yukawa terms a allowed and that no further
renormalizable operators (i.e. operators with mass dimension . 4) consistent with the gauge
symmetry exist.

1.2 Standard Model - parameter count

The most obvious parameters are the three gauge couplings gi. Then there is of course the Higgs
quartic coupling λ and the Higgs mass parameter mH (defining the negative quadratic term
−m2

H |Φ|2). It is not so easy to count the independent Yukawa couplings contained in the three
terms

3∑
a,b=1

(
λuab q

a
LΦ∗ubR + λdab q

a
LΦdbR + λeab l

a

LΦebR

)
+ h.c. (1.15)

The reader should check that these and only these terms are GSM -invariant, given the gen-
eral Yukawa-term structure displayed in (1.11). One frequently sees the notation (suppressing
generation indices)

qLΦ̃uR with Φ̃α = εαβ(Φβ)∗ (1.16)

for the first term above. This is necessary if one wants to read (1.15) in terms of SU(2) matrix
notation. If one simply says that ‘group indices are left implicit’ (as we do), writing Φ∗ is
sufficient. Of course, we could also have avoided the explicit appearance of Φ∗ in (1.15) altogether
by exchanging it with its complex conjugate, implicit in ‘h.c.’ This is a matter of convention and
the form given in (1.15), (1.16) is close what most authors use.

Maybe the easiest way to count the parameters in (1.15) is to think in terms of the low-energy
theory with Φ replaced by its VEV. Then the above expression contains three 3 × 3 complex
mass matrices. Furthermore, these mass matrices relate six independent sets of fermions (since
the first term only contains uL and the second only dL). Thus, the matrices can be diagonalized
using bi-unitary transformations - i.e. a basis change of the fermion fields. We are then left with
3× 3 = 9 mass parameters for three sets of up- and down-type quarks and three leptons.

However, the SU(2) gauge interactions give rise to a term in

3∑
a=1

qaL /Dq
a
L (1.17)

which contains both uL and dL. It originates in the off-diagonal terms of σ1,2 which are contained
in /D. In this uL/dL term, the unitary transformation used above does not cancel and a physical

2We also note that a slightly different convention, v → v′, with Φ2 = (v′ + h)/
√

2 and hence v′ =
√

2v '
246 GeV is also widely used. Ours has the advantage that mt ' v.
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3×3 matrix describing ‘flavor changing charged currents’ (the CKM matrix) is left.3 Let us write
the relevant term symbolically as

3∑
a,b=1

uaLγ
µUabdbL . (1.18)

The matrix U arises as the product of two unitary matrices from the bi-unitary transformations
above. Hence it is unitary.

It will be useful to pause and think more generally about parameterizing a unitary n× n
matrix U . First, UU † is hermitian, so setting this matrix equal to 1 imposes n2 real constraints.
Since U has 2n2 real parameters, n2 parameters are left. Next, recall that orthogonal matrices
have n(n− 1)/2 real parameters or rotation angles. Thus, since unitary matrices are a superset
of orthogonal matrices, we may think of characterizing them by n(n − 1)/2 angles and n2 −
n(n − 1)/2 phases.4 Now, in our concrete case, we are free to transform our unitary matrix (in
an n-generation Standard Model) according to

U → DuUDd , (1.19)

where Du,d are diagonal matrices made purely of phases. This is clear since we may freely rephase
the fields uaL and daL (together with their mass partners uaR and daR – to keep the masses real).
The rephasing freedom of (1.19) can be used to remove 2n − 1 phases from U . The ‘−1’ arises
since one overall common phase of Du and Dd cancels and hence does not affect U . So we are
left with n2 − n(n− 1)/2− (2n− 1) = (n− 1)(n− 2)/2 physically significant phases.

Now we return to U as part of our Standard Model lagrangian with real, diagonal mass
fermion mass matrix. Here n = 3 and, according to the above, the CKM matrix has 3 real
“mixing angles” and one complex phase (characterizing CP violation in the weak sector of the
Standard Model). For more details, see e.g. [8], Chapter 11.3.5

This brings our total parameter count to 3+2+9+4 = 18. However, we are not yet done since
we completely omitted a whole general type of term in gauge theories, the so-called topological
or θ-term

L ⊃ θ trF ∧ F ∼ θ εµνρσF a
µνF

a
ρσ . (1.20)

Most naively, this adds 3 new parameters, one for each factor group. However, these terms are
total derivatives. Thus, they are invisible in perturbation theory and do not contribute to the
Feynman rules. In the non-abelian case, there exist field gauge configurations localized in space
and time (called instantons) for which ∫

trF ∧ F . (1.21)

is non-zero. We will return to them in more detail later. For the U(1), such configurations do
not exist, which severely limits the potential observability of the θ term in U(1) gauge theories.

3These flavor changing currents correspond to vertices with a (charged) W boson and two left-handed fermions
with different flavor (one up and one down, either both from the same or from different generations).

4This is not a prove. One needs to show that such a parameterization in terms of angles and phases exists.
We will not touch the interesting subject of parameterizations of unitary matrices.

5For a broader discussion of C, P, CP and its violation see e.g. [12] and the list of reviews given therein. A
further useful set of lecture notes is [13].
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Furthermore, and maybe most importantly, the θ term is precisely of the type that the
non-invariance of the fermionic path integral measure induces if chiral fermion fields are re-
phased. Thus, in the presence of charged fermions without mass terms (or analogous Yukawa-
type couplings preventing a re-phasing) such θ parameters are unphysical. The upshot of a more
detailed analysis in the Standard Model case (where some but not all conceivable fermionic
mass terms are present) is that the SU(2) and U(1) θ terms are unobservable (see e.g. [14])
but the QCD θ term is physical (for some recent discussion non-trivial questions in this context
see e.g. [15, 16]). If one goes beyond the Standard Model by adding more fields or even just
higher-dimension operators, the electroweak θ terms may become physical.

A non-zero value of θQCD breaks CP. This is directly visible from the ε tensor in its definition
as well as from its equivalence (through re-phasing) to complex fermion mass parameters.6 Now,
if CP were broken at the O(1) level by the theory of strong interactions and if light quark masses
where ∼GeV, one would expect an O(1) (in GeV units) electric dipole moment of the neutron
to be present. However, even beyond the suppression by the light quark masses ∼ 10−3 GeV,
the dipole moment is experimentally known to be extremely small. The detailed analysis of this
bound implies roughly θQCD < 10−10.

In any case, we now arrived at our final result of 19 parameters. However, the status of these
parameters is very different. Most notably, 18 of them correspond to dimension-4 (or marginal)
operators, while one – the Higgs mass term – is dimension-2 and hence relevant. The latter term
refers to ‘relevant in the IR’.

Let us try to make the same point from a more intuitve and physical perspective: Since the
theory is renormalizable, one can imagine studying it at a very high energy scale, E � v ∼ mH .
At this scale the Higgs mass is entirely unimportant and we are dealing with a theory of massless
fields characterized by 18 dimensionless coupling constants. Classically, this structure is scale
invariant since only dimensionless couplings are present. At the quantum level, even without
the Higgs mass term, this scale invariance is badly broken by the non-zero beta-functions, most
notably of the gauge couplings. Indeed the gauge couplings run quite significantly and, for
example, in the absence of the |Φ|2 term QCD would still confine at about E ∼ 1 GeV and break
the approxinate scale invariance completely.

However, this ‘high-scale’ Standard Model described above is very peculiar in the follow-
ing sense: One perfectly acceptable operator, −m2

HΦ2, is missing entirely. More precisely, if we
characterize the theory at a scale µ by dimensionless couplings, e.g. g2

i (µ), λ(µ) etc., then we
should include a parameter m2

H(µ)/µ2. If we start at some very high scale (e.g. the Planck scale
MP ∼ 1018 GeV – more on this point later), then this parameter has to be chosen extremely
small,

m2
H(µ)/µ2 ∼ 10−32 at µ ∼MP , (1.22)

to describe our world. Indeed, running down from that scale it keeps growing as 1/µ2 until, at
about µ ∼ 100 GeV, it starts dominating the theory and completely changes its structure. This
is our first encounter with the hierarchy problem, which we will discuss in much more detail
below.

6Recall that, at the lagrangian level, charge conjugation is related to complex conjugation. In particular, it is
broken by complex lagrangian parameters which can not be removed by field redefinitions.
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1.3 Effective field theories - cutoff perspective

In this course, we assume familiarity with basic QFT. The language of (low-energy) effective
field theory can be viewed as an important part of QFT and hence many readers will be familiar
with it. Nevertheless, since this subject is of such an outstanding importance for what follows,
we devote some space to recalling the most fundamental ideas of effective field theory (EFT).
In addition to chapters in the various QFT books already mentioned, the reader will be able to
find many sets of lecture notes devoted specifically to the subject of EFTs, e.g. [17, 18].

To begin, let us assume that our QFT is defined with some UV cutoff ΛUV (and, if one
wants, in finite spatial volume ∼ 1/ΛIR), such there can be no doubt that we are dealing with
a conventional quantum mechanical system. Of course, the larger the ratio ΛUV /ΛIR, the more
degrees of freedom this system has. The possible IR cutoff will not be relevant for us and we will
not discuss it further. The best example for UV cutoff (though not very practical in perturbative
calculations) is presumably the lattice cutoff. It is e.g. well established that this leads to a good
description of gauge theories, including all perturbative as well as non-perturbative effects. Next,
it is also well-known and tested in many cases that the lattice regularization can be set up in
such a way that Poincare-symmetry is recovered in the IR. Of course, we could use Poincare-
invariant cutoffs (e.g. dimensional regularization, Pauli-Villars or even string theory) from the
beginning, but the lattice is conceptually simpler and more intuitive. Thus, we will be slightly
cavalier concerning this point and assume that we can disregard Poincare-breaking effects in the
IR of our system.

As a result (and here we clearly assume a large amount of non-trivial QFT intuition to be
developed by reading standard texts) our low-energy physics can be characterized by an action
of the symbolic structure (focussing on the gauge theory case)

S =

∫
d4 x

(
1

2g2
trF 2 +

θ

8π2
trF ∧ F +

c1

Λ4
trF 4 +

c2

Λ4
(trF 2)2 + · · ·

)
, (1.23)

where Λ ≡ ΛUV is our cutoff scale. In other words, we expect that generically all terms allowed by
the symmetries are present and that, on dimensional grounds, whenever a dimensionful parameter
is needed, it is supplied by the the cutoff scale Λ. At low energies, only terms not suppressed
by powers of Λ will be important, hence we will always encounter renormalizable theories in the
IR. The relevance of terms in IR decreases as their mass dimension grows. This is obvious if one
thinks, e.g., in terms of the contribution a given operator makes to a 4-gluon-amplitude: The
first term in (1.23) will contribute ∼ g2; the third will contribute ∼ g4k4/Λ4. Clearly, at small
typical momentum k, only the first term is important. To see this explicitly one needs to split off
the propagator from the first term and to rescale Aµ → gAµ. The lagrangian will then contain
terms of the type

A∂2A + g A2 ∂ A + g2A2 + g4 (c1/Λ
4) (∂A)4 + · · · (1.24)

The numerical coefficients in (1.23) depend on the details of the regularization (e.g. the
lattice model) or, if one wants to think of this more physically, of the UV completion at the
scale Λ. Specifically, while we assume that this change from the QFT to some finite UV theory
occurs at the scale Λ, this transition can depend on many discrete and continuous choices. This
will be reflected in the values of g, θ and the ci. Some of these terms can hence be unusually
large or small and this can to a certain extent overthrow the ordering by dimension advertised
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above. However, in the mathematical limit k/Λ → 0, the power of k/Λ is expected to win over
numerical prefactors. An exception arises if one coefficient is exactly zero. This possibility will
be very important and we will return to this point.

Let us add to our gauge theory example given above the apparently much simpler example
of a real scalar field (symmetric under φ→ −φ):

S =

∫
d4 x

(
c0Λ2φ2 +

1

2
(∂φ)2 − λφ4 +

c1

Λ2
φ6 + · · ·

)
. (1.25)

The key novelty is that we have a term proportional to a positive power of Λ (a relevant operator).
In the gauge theory case, the most important operators were merely marginal. Morover, this term
is a mass term and for c0 = O(1) the EFT below the scale Λ is simply empty. Thus, we must
assume that a very particular UV completion exists which allows for either c0 = 0 (for some
qualitative reason) or at least for the possibility to tune this coefficient to a very small value,
c0 � 1. We now see that this has some similarity to the Standard Model, where (assuming that
the Standard Model continues to be the right theory above the TeV-scale), a similar tuning
might be needed to keep m2

H small.

Arguing that there is a ‘tuning’ or ‘fine-tuning problem’ based only on the above is not very
convincing. One of the reasons is that we were vague about the UV completion at the scale Λ.
It appears possible that the right UV completion will effortlessly allow for c0 � 1 or maybe
naturally predict such a small value. Indeed, we have to admit right away that we will not be
able to rule this out during this whole course. But we will try to explain why many researchers
have remained pessimistic concerning this option.

1.4 Effective field theories - QFTUV vs. QFTIR

To do so, we will now modify the use of the word effective field theory: In the above, we assumed
some finite (non-QFT) UV completion and called EFT what remains of it in the IR. Now, we
want to start with some QFT in the UV (to be itself regularized or UV-completed at even higher
scales) and consider how it transits to another QFT (which we will call EFT) in the IR. The
simplest way in which this can happen is as follows: Let our QFTUV contain a particle with mass
M and focus on the physics at k � M . In other words, we ‘integrate out’ the heavy (from the
IR perspective) particle and arrive at a theory we might want to call QFTIR – our low-energy
EFT.

Let us start with a particularly simple example (borrowed from [17], where a much more
detailed discussion of the EFT language can be found):

L = ψi/∂ψ −mψψ − 1

2
(∂φ)2 − 1

2
M2φ2 + yφψψ − λ

4!
φ4 . (1.26)

We assume m � M � Λ and we have already ignored all terms suppressed by Λ. The above
lagrangian is renormalizable, such that we are indeed allowed to take the limit Λ → ∞ and
consider (1.26) (with parameters fixed at some scale µ1 � M) as the definition of our theory.
We are interested in the EFT at µ2 with m� µ2 �M .
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The correct procedure (‘running and matching’) would be as follows: One writes down the
most general lagrangian LEFT for ψ at the scale µ2 and calculates (at some desired loop order) a
sufficiently large set of observables (e.g. mass, 4-point-amplitude etc.). Then one calculated the
same observables using the full theory defined by (1.26). This includes tree level diagrams and
loops involving φ as well as the renormalization group (RG) evolution. Finally, one determines
the parameters of LEFT such that the two results agree.

Our course is not primarily about EFTs and we will take a shortcut. First, we set λ = 0
since it will not be essential in what we have to say. Second, we integrate out φ classically: We
ignore the (∂φ)2 term since we are at low energies and we extremize the relevant part of L with
respect to φ:

δ

δφ

(
−1

2
M2φ2 + yφψψ

)
= 0 ⇒ φ =

y

M2
ψψ . (1.27)

Inserting this back into our lagrangian we obtain

LEFT = ψi/∂ψ −mψψ +
y2

2M2
(ψψ)2 + · · · . (1.28)

Finally, we calculate loop corrections involving the heavy field φ to all operators that potentially
appear in LEFT . In this last step, the correction which is most critical for us is the mass (or
more generally the self energy correction) for ψ, cf. Fig. 1.

Figure 1: One-loop fermion self energy in the Yukawa theory.

Dropping all numerical prefactors, this gives (for details see e.g. [6])

Σ(/p) ∼ y2

∫
d4 k

−/k +m

(k2 +m2)[(k + p)2 +M2]
. (1.29)

After summing, in the standard way, all such self-energy corrections to the propagator, one
obtains

i

/p−m− Σ(/p)
. (1.30)

This resummed propagator can be viewed as a function of the matrix-valued argument /p. Its
pole then determined the corrected mass mc = m + δm. This can be made explicit by Taylor
expanding Σ(/p) around /p = mc:

Σ(/p) = Σ(mc) + Σ′(mc)(/p−mc) +
1

2
Σ′′(m)(/p−mc)

2 + · · · . (1.31)

Now the propagator takes the form

i

(/p−mc)− Σ′(mc)(/p−mc) + · · ·
with mc = m+ Σ(mc) . (1.32)
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As usual in perturbation theory we estimate

δm = Σ(m) . (1.33)

Thus, we need to evaluate (1.29) for /p = m. Introducing a cutoff Λ, we have in total three
scales: m, M and Λ. We see right away that the (naively possible) linear divergence arising from
the term ∼ /k will vanish on symmetry grounds as long as our cutoff respects Lorentz symmetry.
Morover, the contribution from the term ∼ /k in the regime k ∼ m�M is suppressed by 1/M2.
Thus, we may disregard the term ∼ /k altogether.

We may then focus on the term ∼ m. It gets a small contribution from the momentum region
k . M and is log-divergent for k � M . We can finally conclude that the leading result for the
mass correction extracted from (1.29) must be proportional to m. Any enhancement beyond this
can at best be logarithmic, but still proportional to m. For the moment this is all we need: We
learn that (1.28) is the right lagrangian after the replacement

m → mEFT ≡ mc ≡ m+ δm ≡ m(1 + y2 ×O(1)) . (1.34)

Here ‘O(1)’ may include a logarithmic cutoff dependence, like in particular ln(Λ/M). Moreover,
as noted earlier, we may define our theory at a finite scale µ1 � M . Then the log-divergence is
traded for ln(µ1/M).

We could have argued the same without even drawing any Feynman diagram: Indeed, writing
our model in terms of left- and right-handed spinors,

ψψ = ψLψR + ψRψL , (1.35)

one sees immediately that for m = 0 it possesses the Z2 symmetry

ψL → ψL , ψR → −ψR , φ→ −φ . (1.36)

The mass term ∼ m breaks this symmetry. Thus, we expect that both the UV theory and the
EFT regain this symmetry in the limit m→ 0. The loop correction δm of

mEFT = m+ δm (1.37)

must hence itself be proprtional to m. The punchline is that, integrating out φ, does not clash
with the lightness (or masslessness) of ψ.

It is interesting and important to develop this language further by considering the low-energy
EFT of the Standard Model below the scale of Higgs, W and Z-bosons or the pion EFT below
the confinement scale ΛQCD. We leave it to the reader to explore this using the vast literature.

1.5 The Standard Model as an effective field theory

Let us now apply the above language to the Standard Model. We first assume that a finite cutoff
Λ� TeV is present and that the Standard Model is the effective theory valid below this cutoff.
At the moment, we allow this cutoff to either be the scale at which the framework of QFT
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becomes insufficient (string or some other fundamental cutoff scale) or, alternatively, the scale
at which the Standard Model is replaced by a different, more fundamental, ultraviolet QFT. It
is natural to view Λ as our main dimensionful parameter and organize the langrangian as

L = L2 + L4 + L5 + L6 + · · · (1.38)

= c0Λ2|Φ|2 − |DΦ|2 − λ|Φ|4 + L′4 + L5 + L6 + · · · (1.39)

Here L′4 is our familiar renormalizable Standard Model lagrangian without the Higgs terms,
which we displayed explicitly. We also have m2

H = c0Λ2 and we note that c0 � 1 is necessary
(with the smallness depending on how high Λ actually is). But our discussion in the previous
section has not lead to an unambiguous conclusion about whether this should be viewed as a
problem.

Since we now think of the Standard Model as of an EFT, we included terms of mass dimension
5, mass dimension 6, and so on. It turns out that, at mass dimension 5, the allowed operator is
essentially unique (up to the flavor stucture). We write it down for the case of a single family
and using a two-component (Weyl) spinor doublet lα.

lL =

(
lα
0

)
. (1.40)

This so-called Weinberg-operator then takes the form

L5 =
c

Λ
(l · Φ)2 + h.c. =

c

Λ
lαi lαjε

ikεjlΦkΦl + h.c. (1.41)

Here we used the fact that two Weyl spinors can form a Lorentz invariant as

ψαψα = εαβψβψα , (1.42)

where the ε tensor appears in its role as an invariant tensor of SL(2,C). The ε-tensors in (1.41)
appear in their role as invariant tensors of the SU(2) factor GSM and allow us to combine two
doublets (Higgs and leptons) into a singlet.

Now, since

〈Φ〉 =

(
0
v

)
, (1.43)

the low energy effect of the above operator is to give mass to the upper component of the lepton
doublet, i.e. to the neutrino:

L5 =
cv2

Λ
νανα + h.c. (1.44)

Writing the neutrino as a Majorana rather than a Weyl fermion, this becomes the familar Ma-
jorana mass term. Introducing three families, the constant c is promoted to a 3 × 3 matrix
cab.

Given our knowledge that neutrino masses are non-zero and (without going into the non-
trivial details of the experimental situation) are of the order mν ∼ 0.1 eV, an effective field
theorist can interpet the situation as follows: The neutrino mass measurements represent the
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detection of the first higher-dimension operator of the Standard Model as an EFT. As such, they
determine the scale Λ via the relation (assuming c = O(1))

mν ∼ v2/Λ ⇒ Λ ∼ 3× 1014 GeV . (1.45)

On the one hand, this is discouragingly high. On the other hand, it is significantly below the
(reduced) Planck scale of MP ' 2.4 × 1018 GeV. It is also relatively close to, though still
significantly below, the supersymmetric Grand Unification scale MGUT ∼ 1016 GeV to which
will return later. Let us note that, without supersymmetry, the GUT scale is less precisely
defined and one may argue that the UV scale derived from the Weinberg operator above is
actually intriguingly close to such a more general GUT scale.

It is very remarkable that the Standard Model with the Weinberg operator allows for a
simple UV completion at the scale Λ. This so-called see-saw mechanism [19] involves (we discuss
the one-generation case for simpicity) the addition of just a single massive fermion, uncharged
under GSM . The relevant part of the high-scale lagrangian is (in Weyl notation for spinors)

L ⊃ βlΦνR −
1

2
MνRνR + h.c. (1.46)

Integrating out the extra fermion (often referred to as the right-handed neutrino νR), one obtains
precisely the previously given Weinberg operator with

c ∼ β2 and Λ ∼M . (1.47)

In other words, the observed neutrino masses behave as

mν ∼ β2v2/M . (1.48)

As a result, we can make M (and thus Λ) smaller, bringing it closer to experimental tests, at the
expense of also lowering β. Of course, one has to be lucky to actually discover νR at colliders,
given that then β would have to take the rather extreme value of

√
100 GeV/1014 GeV ∼ 10−6.

An even more extreme option, which however has its own structural appeal, is to set M to
zero. This can be justified, e.g., by declaring lepton number to be a good, global symmetry of
the Standard Model (extended by r.h. neutrinos). By this we mean the U(1) symmetry l→ eiχl,
νR → e−iχνR. Now the Standard Model has an extra field, the fermionic singlet νR (more precisely
three copies of it). The first term in (1.46) is just another Yukawa coupling (given here in Weyl
notation, but otherwise completely analogous to the e.g. the electron Yukawa term). The second
term is missing. This version of the Standard Model, extended by r.h. neutrinos, is again a
renormalizable theory and it can account for the observed neutrino masses. The latter do not
arise from the see-saw mechanism sketched above, but correspond simply to a tiny new Yukawa
coupling. In this case β ∼ mν/v ∼ 10−12, which may be perceived as uncomfortably small. The
second smallest coupling would be that of the electron, βe ∼ 0.5 MeV /v ∼ 10−5.

At mass dimension 6, there are many further terms that can be added to LSM . For example,
any term of L4 can simply be multiplied by |Φ|2. The arguably most interesting terms are the
4-fermion-operators. They include terms like (again in Dirac notation)

L6 ⊃
∑
ijkl

cijkl(ψiψj)(ψkψl) (1.49)
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as well as similar operators involving gamma matrices. Even with the restriction by gauge in-
variance, there are many such terms and we will not discuss them in any detail. Crucially, many
of them are very strongly constrained experimentally. First, if one does not impose the global
symmetries of lepton and baryon number (the latter being the obvious generalization of the first,
which was introduced above), some of these operators induce proton decay. This would push Λ
up beyond 1016 GeV. But even imposing baryon and lepton number as additional selection rules7

for (1.49), strong constraints remain. These are mostly due to so called flavor-changing neutral
currents (the analogues of the flavor-changing charged currents mentioned earlier) and to lepton
flavor violation (e.g. the decay µ− → e+ + 2e−). Such constraints push Λ to roughy 103 TeV. Of
course, the new physics scale can be much lower if the relevant new physics has the right ‘flavor
properties’ not to clash with data.

1.6 The electroweak hierarchy problem

Now we come in more detail to what is widely considered the main problem of the Standard
Model as an effective theory: the smallness of the Higgs mass term. So far, we have only pointed
out that, in the EFT approach with cutoff Λ, it is natural to write

m2
H ∼ c0Λ2 . (1.50)

We have many reasons to think that Λ is large compared to the weak scale, implying c0 � 1.
The main question hence appears to be whether we can invent a more fundamental theory at
scale Λ in which c0 � 1 can be understood.

Let us first give a very simple argument (though possibly not very strong) why this is not
easy. Namely, consider the theory as given by a classical lagrangian at Λ and ask for low-energy
observables. The most obvious is maybe a gauge coupling,

α−1
i (µ) ' α−1

i (Λ) +
bi
2π

ln

(
Λ

µ

)
+O(1) , (1.51)

where we restricted attention to the one-loop level. The relevant diagrams are just the self-energy
diagrams of the corresponding gauge boson with scalars, fermions and (in the non-abelian case)
gauge bosons running in the loop. We see that, for Λ� µ, the correction becomes large, but it
grows only logarithmically (corresponding to the logarithmic divergence of the relevant diagrams
and the vanishing mass dimension of the coupling). By contrast, for the Higgs mass we find

m2
H(µ) = m2

H(Λ) +
cH

16π2
Λ2 +O(Λ0) , (1.52)

with cH a coupling-dependent dimensionless parameter to be extracted from diagrams like those
in Fig. 2. We see that, suppressing O(1) coefficients and disregarding the logarithmic running of
the dimensionless couplings between µ and Λ, we have cH = λ+ λ2

t + g2
2 + · · · .

7To be precise, the two corresponding U(1) symmetries, known as U(1)B and U(1)L are so-called accidental
symmetries of the Standard Model. This means that, given just gauge symmetry and particle content, and writing
down allowed renormalizable operators, these symmetries are automatically preserved at the classical level. It is
hence not unreasonable to assume that they hold also in certain UV completions and may constrain 4-fermion
operators.
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Figure 2: Contributions to the Higgs self energy.

Thus, cH is an O(1) number and if we set Λ = 1 TeV, only an O(1) cancellation between
the two terms on the r.h. side of (1.52) is required to get the right Higgs mass parameter of the
order of (100 GeV)2. Things are actually a bit worse since there is a color factor of 3 coming with
the top and other numerical factors. But, much more importantly, we can not simply declare
1 TeV to be the scale where our weakly coupled QFT breaks down and some totally unknown
new physics (discrete space time, string theory etc.) sets in. One but not the only reason is the
issue of flavor-changing neutral currents mentioned above. If we take the (still rather optimistic)
value Λ ∼ 10 TeV, we already require a compensation at the level of 1% or less between the two
leading terms on the r.h. side of (1.52). This starts to deserve the name fine-tuning.

A cautionary remark concerning expressions like m2
H(µ) or m2

H(Λ) is in order. Such dimen-
sionful parameters sometimes (not always) have power-divergent loop corrections. The momen-
tum integral implicit in the loop correction is then dominated in the UV and changes by an
O(1) factor if the regularization procedure changes. This is in contrast to e.g. α−1(µ) which is,
at leading order, independent of how precisely the scale µ is defined. One can see that most
easily by noting that ln(Λ/µ) does not change significantly in the regime Λ/µ� 1 if Λ or µ are
multiplied by, say, a factor of 2. Thus, a possibly less misleading way to write (1.52) is

m2
H = m2

H, 0 +
cH

16π2
Λ2 +O(Λ0) , (1.53)

Here m2
H is, by definition, the value of this operator in the IR and m2

H, 0 is the bare or classical
value in the UV lagrangian.

Still, the fine-tuning argument is not very convincing since, in (1.53), the two crucial terms
between which a cancellation is required both depend on the cutoff or regularization used. For
example, in dimensional regularization with minimal subtraction, the second term is simply zero
and no cancellation appears necessary. Now this is clearly unphysical, but one may entertain the
hope that some physical cutoff with similar features will eventually be established, defining a
UV theory with a ‘naturally’ small m2

H in spite of large Λ.

But a much more technical and stronger argument making the fine-tuning explicit can be
given. We make it using a toy model, but the relevance to the Standard Model will be apparent.
The toy model is in essence something like ‘the inverse’ of the Yukawa model of (1.26). There, we
considered the mass correction a fermion obtains when a heavy scalar is integrated out. We found
that no large correction to the small fermionic mass arises. Now consider (again following [17]),

L = −1

2
(∂φ)2 − 1

2
m2φ2 − λ

4!
φ4 + ψ(i/∂ −M)ψ + yφψψ . (1.54)

We literally simply renamed m↔M , having of course in mind that now m�M . As before, we
will not go through a careful procedure of ‘running and matching’ to derive the low-energy EFT,
but take the shortcut of integrating out the heavy field classically and adding loop corrections
to the low-energy lagrangian terms.

16



Since the fermion appears only quadratically in the action, its equations of motion are solved
by ψ = 0 for any field configuration φ(x). Hence, the first step consists in just dropping all terms
with ψ. When considering loops, we focus only on corrections to the scalar mass proportional to
y2, finding

LEFT = −1

2
(∂φ)2 − 1

2
m2
EFTφ

2 − λ

4!
φ4 + · · · , (1.55)

with

m2
EFT ' m2 +

cy2

16π2

∫ Λ2

0

k2 d(k2)
tr(/k −M)2

(k2 +M2)2
. (1.56)

Here c is a numerical constant and the integral corresponds to the second diagrams of Fig. 2. It
is immediately clear that both terms proportional to Λ2 as well as to M2 will arise:

m2
EFT ' m2 +

y2

16π2

(
c1Λ2 + c2M

2 ln(Λ2/M2) + c3M
2 + · · ·

)
. (1.57)

See e.g. [6] for a corresponding analysis in dimensional regularization. (Note that, while a
quadratic divergence in 4 dimensions does not show up as a pole at d = 4, it corresponds
to a logarithmic divergence in 2 dimensions and hence shows up as a pole at d = 2.)

Crucially, we now see that if, by some ‘UV miracle’, the m2 and Λ2 terms always cancel to
make m2

EFT very small, the tuning issue still remains: Even a very tiny relative change of M2

(assuming that M2 � m2
EFT ), would upset this cancellation. Of course, we can not rule out a

UV model where everything, including masses of particles at intermediate scale (like our M with
mEFT � M � Λ) are automatically correctly adjusted to ensure the necessary cancellation
(1.57). But now it becomes more apparent how tricky any mechanism accoplishing that would
have to be.

Concretely in the Standard Model with a see-saw mechanism for neutrino masses, the scale
M might be that of the heavy r.h. neutrino and one has, given the above, a strong argument for
fine-tuning. Alternatively, one can of course avoid any such heavy particles (also giving up on
Grand Unifcation - see below) and imagine that the Standard Model directly runs into a new
theory in the UV where, at some scale Λ, a massless scalar is explained without tuning. I am
not aware of any such scenario, but we will nevertheless return to a more detailed discussion of
this and related logical possibilities later on.

For now, let us accept that, from an EFT perspective, the Standard Model with UV scale Λ
is fine tuned and try to quantify the problem.

1.7 Fine tuning

Let us first emphasize that, having a small (dimensionful or dimensionless) parameter in an EFT
is not in itself problematic or related to tuning. Indeed, the electron mass is small, but it comes
from a dimensionless Yukawa coupling which only runs logarithmically. Thus, once small in the
UV, it will stay small in the IR ‘naturally’.

Moreover, the relevant coupling of type

λelLΦeR (1.58)
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is forbidden by chiral symmetry transformations, e.g. eR → eiαeR. One can view λe as a small
effect in the UV lagrangian breaking this symmetry. Hence, the above operator will only receive
loop corrections proportional to this symmetry breaking effect, i.e. to λe itself.

Moreover, the same argument can be made for fermion masses even when they are viewed
as dimensionful parameters. We have seen one example in Sect. 1.3. Another example is the
Standard Model below the electroweak symmetry breaking scale, where the electron mass term

meee = meeLeR + h.c. (1.59)

can be forbidden by the global U(1) symmetry eR → eiαeR, as above. Hence, there will be no
loop corrections driving me up to the electroweak scale, given that the tree-level value is small.

Small parameters with this feature are called ‘technically natural’, a notion due to
’t Hooft [22]. More precisely, a small parameter is technically natural if, by setting it to
zero, the symmetry of the system is enhanced. The crucial point for us is that finding such
a symmetry for the Higgs mass term turns out to be difficult if not impossible: One obvious
candidate is a shift symmetry, Φ → Φ + α, with α =const. But this forbids all non-derivative
couplings and hence clashes with the main role the Higgs plays in the Standard Model, most
notably with the top-Yukawa coupling, which is O(1). Nevertheless, attempts to at least allevi-
ate the hierarchy problem using this idea have been made and we will discuss them. Another
option is scale-invariance but, once again, the Standard Model as a quantum theory is not scale
invariant - couplings run very significantly. Moreover, in the UV, most ideas for how the uni-
fication with gravity will work break scale invariance completely. Again, attempts along these
lines nevertheless exist and will be discussed. However, at our present ‘leading order’ level of
discussion it is fair to say that the smallness of m2

H is probably not technically natural.

Somewhat more vaguely, one may say that the Higgs mass term is unnaturally small. To
make this statement more precise, the notion of tuning or fine tuning has been introduced.
Roughly speaking, a theory is tuned if the parameters in the UV theory (at the scale Λ) have to
be adjusted very finely to realize the observed low-energy EFT.

It is not immediately obvious how to implement this in terms of formulae since, as just
explained, e.g. the electron mass is known with high accuracy and even a tiny change of the
UV-scale Yukawa coupling will lead to drastic disagreement with experiment. The main point
one wants to make is that, as we have seen, the smallness of the Higgs mass apparently arises
from the compensation between two terms,

m2
H = m2

H, 0 +
cH

16π2
Λ2 + · · · . (1.60)

Clearly, in such a situation, a small relative change, e.g., m2
H, 0 induces a much larger relative

change of m2
H .

A widely used formula implementing this is known as the Barbieri-Giudice measure for
fine-tuning [23] (see also [24] and, for a modern exposition, [25]):

FT =

∣∣∣∣ xO ∂O
∂x

∣∣∣∣ =

∣∣∣∣∂ ln(O)

∂ ln(x)

∣∣∣∣ . (1.61)
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Here x is the theory parameter and O the relevant observable. In our case, x = m2
H, 0 and

O = m2
H is given by (1.60), such that

FT = m2
H, 0

∂ ln(m2
H, 0 + cHΛ2/(16π2))

∂m2
H, 0

=
m2
H, 0

m2
H, 0 + cHΛ2/(16π2))

∼ Λ2/(16π2)

m2
H

. (1.62)

Here, in the last step, we assumed that m2
H � cHΛ2/(16π2), such that m2

H, 0 ∼ cHΛ2/(16π2).
Moreover, we have used that cH = O(1). As already noted earlier, this just formalizes what we
said at the intuitve level earlier: The fine tuning is roughly Λ2/(1 TeV)2.

For completeness, we record the natural multi-particle generalization of the Barbieri-Giudice
measure. In this more general context, one may call it a ‘fine tuning functional’, defined as a
functional on the space of theories T (following [25]):

FT [T ] =
∑
ij

∣∣∣∣xiO j

∂Oj
∂xi

∣∣∣∣ . (1.63)

We also note that our discussion was somewhat oversimplified and less concrete than in [23].
There, the observable was m2

Z (this is clearly tied to m2
H , which is however not directly observ-

able). Furthermore, the UV theory was not some very vague cutoff-QFT but it was a concrete UV
QFT (the supersymmetric, in fact even supergravity-extended version of the Standard Model).
We will get at least a glimpse of this below.

Unfortunately, the above definition of fine-tuning has many problems. First, it is clearly not
reparameteization independent. In other words, it crucially depends on our ad hoc choice of xi as
operator coefficients in a perturbative QFT and of the Oi as, roughly speaking, particle masses.
Thus, one is justified in looking for other, possibly related, definitions. One such alternative
definition is probabilistic: Choose a (probability) measure on the set of UV theories and
ask how likely it is to find a particular low-energy observable to lie in a certain range. For example,
we might consider m2

H, 0 to have a flat distribution between zero and 2Λ2/(16π2) (where we also
set cH = −1). Then we obtain a small Higgs mass only if m2

H, 0 happens, by chance, to fall very
close to the center point of its allowed range.

To make this quantitative in the sense just outlined, we will use the variable m2
H for the

Higgs mass squared in any of our statistical set of theories. By contrast, we will denote the
concrete Standard Model value by m2

H, obs.. Then, we may ask for the probability to find m2
H in

the interval [−m2
H, obs.,m

2
H, obs.], or equivalently |m2

H | . m2
H, obs.. We obtain

p(m2
H, obs.) '

m2
H, obs.

Λ2/(16π2)
. (1.64)

This is just the inverse of the Barbieri-Giudice fine tuning value, confirming at least at some
intuitive level that the above definitions make sense. However, it becomes even more apparent
that some ad hoc assumptions have come in. In particular, we required a measure on the space
of UV theories or UV parameters.

Finally, another ambiguity of the probabilistic view on fine-tuning is related to the choice
of the allowed interval of the EFT observable. In the above, things were rather clear since our
task was to quantify the problematic smallness of the Higgs mass relative to the cutoff. It was
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then natural to define all theories with |m2
H | . m2

H, obs. as ‘successful’. However, the Higgs mass
is by now known rather precisely, mh = 125.18 ± 0.16 GeV [26], which translates in similarly
precise value for m2

H . If we had defined successful theories as those with mH, obs. falling into that
interval, a much larger fine-tuning would result. Even much worse, one could consider the very
precisely known electron mass in the same way and would find a huge fine tuning of the UV-scale
coupling λe, in spite of the logarithmic running and the technical naturalness.

Thus, one has to be careful with both definitions and it may well be that the final word
about this has not yet been spoken. A suggestion for sharpening the probabilistic perspective
is as follows: Consider the manifold of UV couplings (with some measure) and the map to the
manifold of observables. On the latter, let O0 be some qualitatively distinguished point, in
our case the point of vanishing Higgs mass term. This point is distinguished since it specifies
the boundary between two qualitatively different regimes – that with spontaneously broken and
unbroken SU(2) gauge symmetry. Let us assume that for any other point O, we can in some way
measure the distance to this special point, |O − O0|. Now one may say that an observed EFT,
corresponding to a point Oobs. on the manifold of observables, is fine tuned to the extent that
the probability for all theories with

|O − O0| < |Oobs. −O0| (1.65)

is small. In other words, we measure how unlikely it is that a randomly chosen theory falls more
closely to the special point O0 than our EFT under discussion.

1.8 Gravity and the cosmological constant problem

If we include gravity,

LSM [ψ, ηµν ] → LSM [ψ, gµν ] +
1

2
M2

P

√
gR[gµν ]−

√
gλ , (1.66)

two essential modifications of the discussion above arise. First, we learn that the Higgs mass
problem is just one of two instances of very similar hierarchy problems - the other being the
cosmological constant problem. Second, gravity sets an upper bound on the cutoff Λ, in a way
that sharpens the Higgs mass hierarchy problem.

In more detail, let us start by recalling what we need to know about gravity [27–31]. On
the one hand, gravity changes the picture very deeply: The arena of our Standard-Model QFT
changes from R4 (with flat Lorentzian metric) to a Lorentzian manifold with dynamical metric,
horizons, singularities in the cosmic past or future, or possibly even with topology change. The
causal structure, which is so crucial for the definition of a QFT, becomes dynamical together
with the metric. In particular, if one takes the metric itself to be a dynamical quantum field, the
quantization of this field depends on the causal structure, which follows from the (then a priori
unknown) dynamics of this field itself. Diffeomorphism invariance makes it very hard to define
what a local observable in the usual QFT sense is supposed to be. Finally, to just mention one
more issue, QFTs are most easily defined in Euclidean metric. But this is extremely problematic
in gravity since even for a 4d euclidean manifold R[gµν ] can take either sign. Thus, fluctuations
around a flat euclidean background do not necessarily suppress the weight factor exp(−SE) in
the path integral, the well-definedness of which hence becomes problematic.
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But, on the other hand, one may also ignore most of the deep conceptual problems above
and pretend that one has added to the Standard Model QFT just another gauge theory (see
e.g. [32]). We can not develop this approach here in any detail but only sketch the results: One
expands the metric around flat space,

gµν = ηµν + hµν . (1.67)

and tries to think of hµν as a gauge potential, analogous to Aµ. One recalls that

Dµvν = ∂µvν − Γµν
ρvρ with Γµν

ρ =
1

2
gρσ(∂µgνσ + · · · − · · · ) (1.68)

and (symbolically, suppressing the index structure)

R ∼ [D,D] ∼ [∂ − Γ, ∂ − Γ] . (1.69)

From this, it is clear that the gravitation lagrangian takes the form

M2
P [h∂2h+ h(∂h)2 + h2(∂h)2 + · · · ] . (1.70)

Defining κ ≡ 1/MP and rescaling h→ κh, this becomes

h∂2h+ κh(∂h)2 + κ2h2(∂h)2 + · · · . (1.71)

This is already quite analogous to the gauge theory structure (we are thinking of the non-abelian
case, but suppress the group and gauge indices for brevity)

A∂2A+ gA2∂A+ g2A4 . (1.72)

The crucial differences are that g is dimensionless and the series of higher terms terminates at
the quartic vertex. By contrast, in gravity the coupling has mass dimension −1 and the series
goes on to all orders (both from R as well as from the R2, R3 terms etc. which have to be
added to the lagrangian to absorb all divergences arising at loop level). We will not discuss the
technicalities of this – suffice it to say that the Fadeev-Popov procedure and the introduction of
ghosts work, at least in principle, as in gauge theories.

We also recall that, for any observable that we can calculate in perturbation theory, the
expansion reads

c0 + c1κΛ + c2κ
2Λ2 + · · · (1.73)

on dimensional grounds. From this we see that we have to expect power divergences and that
higher loops are more and more divergent, consistent with the well-known fact that quantum
gravity is perturbatively non-renormalizable.

Finally, coming closer to our main point, we remember that gµν or, in our approach hµν
appears also in LSM [ψ, gµν ]. Since, as we know, the energy momentum tensor is defined as the
variation of SSM with respect to gµν at the point gµν = ηµν , it is clear that the leading order
coupling of h with matter is given by

L ⊃ κhµνT
µν . (1.74)
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This is, once again, completely analogous to the gauge theory coupling to matter via

L ⊃ gAAµ j
µ
A with, e.g. ψγµTAψ . (1.75)

What is essential for us is that the cosmological constant term gives rise to an energy mo-
mentum tensor

T µν ∼ ηµνλ . (1.76)

If λ is non-zero, then this gives rise to a non-zero source (a tadpole term) for the metric (gauge)
field hµν :

L ⊃ κhµνη
µνλ . (1.77)

The meaning of the word tadpole in this context becomes obvious if one considers the above as
a tree-level diagrammatic effect and adds the first loop correction (due e.g. to a scalar particle
minimally coupled to gravity). This is illustrated in Fig. 3.

Figure 3: Tree level and loop effect of the cosmological constant term on the metric field hµν .

One may think of the loop diagram in Fig. 3 as a correction to λ, in direct analogy to the loop
corrections to the Higgs mass from integrating out heavy particles which we discussed before.
Thus, in analogy to e.g. (1.53) and renaming our original cosmological term in the tree-level
action to λ0, we have

λ = λ0 +
cλ

16π2
Λ4 . (1.78)

The coefficient cλ does not include a small coupling constant but is merely proportional to the
sum of bosonic and fermionic degrees of freedom (one may interpet this sign difference either as
being due to the usual ‘minus’ for each fermion loop or as the negative sign of the vacuum energy
of the fermionic harmonic oscillator. Related to this, one can of course interpret the divergence as
a sum over the vacuum energies of the oscillators corresponding to free field momentum modes.

Famously, if one compares the observed value of the vacuum energy,

λ ' (2.2 meV)4 , (1.79)

with the expectation from (1.78) based on Λ = MP ' 2.4× 1018 GeV, one finds a mismatch (i.e.
a required fine tuning) of 10120. As in the Higgs mass case, there are caviats to this argument:
Indeed, the value of the loop correction depends completely on the UV regularization and one may
imagine schemes where it would simply be zero. Also, as in Higgs case, there are couterarguments
to this suggestion. Indeed, any massive particle contributes to the loop correction in a way that
depends on its mass. Thus, the observed value changes dramatically if, e.g., the mass of the
heavy r.h. neutrino needed in the see-saw mechanism changes.

To see this more explicitly, it is useful to give an explicit covariant formula for the one-loop
correction to λ (see problems for a derivation). For a single real scalar and in euclidean signature,
one has

δλ =
1

2

∫
d4k

(2π)4
ln(k2 +m2) = c0Λ4 + c1Λ2m2 + · · · . (1.80)
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We see that even the subleading term proportional to the mass is still also proportional to Λ2 and
hence huge. In fact, this is true even for the light particles of the Standard Model. Furthermore,
there are effects due to the Higgs potential, the non-perturbative gluon-condensate of QCD and
from all couplings (which enter at the two and higher-loop level). Thus, the case for an actual
fine-tuning appears to be very strong indeed. Clearly, the amount of fine tuning may be strongly
reduced compared to what we just estimated: We could add to the Standard Model heavy bosons
and fermions, such that above a certain mass scale M the number of fermions and bosons is equal
and at least the leading Λ4 term disappears.

This last idea turns out to work much better than expected. It is realized in a systematic
way in supersymmetry (SUSY) or supergravity (SUGRA). It still does not solve the cosmological
constant problem, even in principle. The reason is that the scale of supersymmetry breaking is
much too high. It does, however, solve the Higgs mass or electroweak hierarchy problem in
principle. The fact that this solution does not work (at least not very well) in practice is due to
fairly recent data, especially from the LHC. Nevertheless, it will be important for us to study
SUSY in general and to a certain extent the SUSY version of the Standard Model. The reasons
are twofold. First, as noted, SUSY is an excellent example for how things could work out well
at the cutoff scale Λ such that apparent fine tunings are at least mitigated. Second, if one wants
quantum gravity divergences to also be tamed at the cutoff scale, SUSY is not enough and string
theory is required. But the relation of the latter to real-world physics relies (at least in the best
understood cases) on SUSY, which we hence have to understand at least at an introductory
level.

2 Supersymmetry and Supergravity

There are many motivations to learn about SUSY. Let us give a few: SUSY is the only known
symmetry relating fermions and bosons and may as such be a logical next step in the historical
road towards unification in fundamental physics. String theory is the best-understood model of
quantum gravity (or indeed the true theory underlying quantum gravity) and its stable versions
all rely on SUSY (in 2d and in 10d). The only controlled roads from 10d strings to the 4d Standard
Model involve 4d SUSY theories as an intermediate step. SUSY can resolve the hierarchy problem
at the scale where it becomes manifest. (If it had been discovered at the electroweak scale, we
could have found ourselves in a world without the hierarchy problem.) Even if that happens at,
say, 10 TeV, the tuning would be much less severe than without SUSY. Finally, SUSY is a central
tool in formal field theory research since SUSY theories usually involve many cancellations at
the loop-level making them much better controlled. For example the, best-understood example
of AdS/CFT involves an N = 4 super-Yang-Mills (SYM) theory.

The structure and notation of what follows will be strongly influenced by the classic text [35],
but there are many other useful books [36–39].
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2.1 SUSY algebra and superspace

Recall the Poincare algebra

[Pµ, Pν ] = 0 (2.1)

[Mµν , Pρ] = iηµρPν − iηνρPµ (2.2)

[Mµν ,Mρσ] = iηµρMνσ + · · ·+ · · · (2.3)

as the symmetry algebra of R1,3. This algebra can be representred by differential operators acting
on functions on R1,3, e.g.

Pµ = −i∂µ
(
∂µ =

∂

∂xµ

)
. (2.4)

Indeed, these operators generate translations according to

exp[iεµPµ] f(x) = f(x) + εµ∂µf(x) + · · · = f(x+ ε) . (2.5)

Finite rotations in R1,3 are analogously generated by Mµν .

Any relativistic QFT has the above symmetry, but it may have additional (‘internal’) sym-
meties acting on the fields. Examples are a shift symmtry φ → φ + ε or rotations in field space
Φ → exp(iεaTa)Φ with Φ ∈ CN and Ta the SU(N) generators. Here ‘additional’ means that
the full symmetry algebra is the direct sum of Poincare and internal algebra. The Coleman-
Mandula theorem [33] claims that such a direct sum structure is the only possibility for how
the Poincare-Algebra can be extended to a larger symmetry of a QFT (more precisely, of the
S-matrix).

This theorem can be avoided if one generalizes the definition of a symmetry by a Lie algebra:
One replaces the latter by a so-called a Lie superalgebra. Moreover, the resulting extension of the
Poincare algebra is (essentially) unqiue and is called the supersymmetry algebra. This uniqueness
is the statement of the Haag-Lopuszanski-Sohnius theorem [34].

We will not demonstrate uniqueness but only present the result of the analysis: The new
generators to be added are (Weyl) spinors Qα and the crucial new algebra relations are

{Qα, Qα̇} = 2(σµ)αα̇Pµ , {Qα, Qβ} = 0 , {Qα̇, Qβ̇} = 0 . (2.6)

The main novelty is that for these generators one does not provide commutators but anti-
communtators, hence we are now dealing with a Lie superalgebra.

The object (σµ)αα̇ is defined as

σµ = (−1, σ1, σ2, σ3) (2.7)

and is an invariant tensor of SL(2,C) just like (γµ)ab is an invariant tensor of SO(1, 3). In fact,
these two statements are of course related since the Lie algebras are the same and, roughly
speaking, γ consists of two blocks of σs. We will return to this in more technical detail. One
can avoid σs and Weyl spinors and formulate everything using left-handed 4-spinors, but Weyl
spinors are very convenient in this context.
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Relations between two bosonic generators remain commutators and relations between the
new fermionic and the old bosonic commutators are also formulated in terms of commutators:

[Pµ, Qα] = 0 , [Mµν , Qα] = i(σµν)α
βQβ , (2.8)

where

σµν ≡ −
1

4
(σµσν − σνσµ) and (σµ)α̇α ≡ εα̇β̇εαβ(σ∗µ)β̇β . (2.9)

We will often use an overline instead of the star (or dagger) for complex conjugation (or the
adjoint operator). The overline on σ does not specify whether upper or lower indices are assumed.
Indices can be raised or lowered using the ε tensor. Given that we need the lower-upper index
version of (σµν)α

β in (2.8), the expression on the l.h. side of (2.9) should be read as defining
precisely this version. Hence, it involves a upper-upper index version of σ, which is provided on
the r.h. side of (2.9).

The full SUSY algebra is defined by (2.1)-(2.3) together with (2.6) and (2.8). Thus, we
see that it consists of the Poincare algebra, the Q anticommutators, and the claim that the
Qs transform under the Poincare algebra as space-time independent spinors. It may at this
point also be useful to say more formally what a Lie superalgebra is: It is a vector space with
a Z2 grading (it splits in an even and odd part) and with a binary operation that obeys the
rules even×even→ even, even×odd→ odd and odd×odd→ even. Furthermore, there are rules
concerning the symmetries of these operations and Jacobi-like identities. These are, however,
automatically fulfilled if the operations are explicitly realized through (anti)commutators, as in
our case.

Next we want to represent this algebra on a larger space, called superspace. Its coordinates
are

xµ (µ = 0 · · · 3) and θα (α = 1, 2) , (2.10)

the latter being fermionic (Grassmann variables) and forming a Weyl spinor. The key relations
for our purposes are

(θα)∗ = θ
α̇
, {θα, θβ} = 0 and h.c. , {θα, θα̇} = 0 (2.11)

or, more explicitly,
(θ1)2 = (θ2)2 = 0 , θ1θ2 = −θ2θ1 , etc. (2.12)

One also defines partial derivatives

∂α =
∂

∂θα
∂α̇ =

∂

∂θ
α̇

(2.13)

together with the obvious rules

∂αθ
β = δα

β , ∂α̇θ
β̇

= δα̇
β̇ , ∂αθ

β̇
= 0 ∂α̇θ

β = 0 . (2.14)

The reader should check that, as a result of the anticommutation relations for the θs, the ∂s also
anticommute.

The space parameterized by the xµ and θα is called superspace, in this case R4|4, with
4 bosonic and 4 real fermionic (or two complex fermionic) dimensions. Intuitively, one may
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want to think of R4 not as a set of points but, equivalently, as the algebra of functions on R4:
{1, xµ, xµxν , · · · }. The generalization to superspace is then obvious: One simply thinks of the
algebra of functions including θs, i.e. {1, xµ, θα, xµxν , xµθα, · · · }.

Next, we naturally expect that a symmetry of this enlarged space will involve some analogue
of the familiar generators of translations, i.e. Qα ∼ ∂α + · · · . The ellipsis stands for extra terms
which must come in to ensure that Qs anticommute to give the P s. The correct formulae turn
out to be

Qα = ∂α − i(σµ)αα̇θ
α̇
∂µ , Qα̇ = −∂α̇ + iθα(σµ)αα̇∂µ . (2.15)

It is a straightforward but very important excercise to derive the essential part of the SUSY
algebra from this:

{Qα, Qα̇} = 2i(σµ)αα̇∂µ , {Qα, Qβ} = 0 , {Qα̇, Qα̇} = 0 . (2.16)

Let us pause for a small, technical comment: The reader will have noticed that, with the
standard identification Pµ = −i∂µ (recall that we are using a mostly-plus metric), the algebras
of (2.6) and (2.16) differ by a sign. This is nothing deep but merely a result of two different
ways of defining the operators Q and P . On the one hand, one may think of them as acting on
functions. On the other hand, as acting on coordinates. To make this clear, one may consider
the relation

(ÂB̂f)(x) = (B̂f)(Ax) = f(BAx) (2.17)

between operators A, B acting on coordinates x and the corresponding operators Â, B̂ acting
on functions of x. It is immediately clear from the above that

[Â, B̂] = Ĉ and [A,B] = −C (2.18)

follows if the operators C and Ĉ are related as explained above for A,B and Â, B̂. Thus, the
sign in the Lie algebra flips between the two different definitions.

2.2 Superfields

Now one builds a field theory on this enlarged space. A (complex) general superfield is a function

F (x, θ, θ) = f(x) + θφ(x) + θχ(x) + θ2m(x) + θ
2
n(x) + θσµθvµ(x)

+θ2θλ(x) + θ
2
θψ(x) + θ2θ

2
d(x) . (2.19)

Here the r.h. side is a Taylor expansion of the l.h. side where, however, all higher terms vanish.
Here φ, χ, λ and ψ are Weyl spinors, anticommuting among each other and with the θs.

We have started to use a very convenient shorthand notation for the product of Weyl spinors,
for example

θφ ≡ θαφα = εαβθαφβ , and analogously θ2 = θαθα . (2.20)

It is an essential part of this convention that suppressed undotted indices are always summed
from upper-left to lower-right. For dotted indices, the rule is inverse:

θχ ≡ θα̇χ
α̇ . (2.21)
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This convention goes together with certain ε tensor conventions:

εαβ =

(
0 −1
1 0

)
, εαβ =

(
0 1
−1 0

)
, with εαβε

βγ = δα
γ . (2.22)

With this contraction one has, in spite of the anticommutation relations,

ψχ = χψ , (2.23)

as the reader should check.

It goes without saying that the Poincare algebra acts on superfields in the usual way, e.g.

δεF = iεµPµF = εµ∂µF . (2.24)

By analogy, we define the SUSY transformation

δξF = (ξQ+ ξQ)F = [ (ξ∂ − iξσµθ∂µ) + h.c. ]F . (2.25)

Here by ‘h.c.’ we mean the application of a formal ∗-operation on the algebra of functions
and differential operators. In essence, this is just complex conjugation and its obvious extension
to the θs. A crucial exception is the rule

(∂α)∗ = −∂α̇ , (2.26)

which is required by consistency. The reader should check this by carefully thinking about the
possible ways to evaluate (∂αθ

β)∗.

Returning to our SUSY transformations, we note that the superfield F is of course just an
abstract concept useful for the defining ‘component’ fields f , φα etc., which are conventional
quantum fields. Thus, after calculating δξF , we expand it in a Taylor series and define δξf , δξφ,
etc. as the coefficients of the various terms with growing powers of θ:

δξF = δξf + θα(δξφ)α + · · · . (2.27)

This defines the SUSY transformation of the component fields.

2.3 Chiral superfields

The general superfield is too large to be practically useful and it does indeed correspond to a
reducible representation of the SUSY algebra. Simpler superfields exist and are sufficient to write
down the most general SUSY lagrangian.

To define the chiral superfield, it is useful to first introduce SUSY-covariant derivatives (in
a way very similar to the Qs):

Dα = ∂α + i(σµ)αα̇θ
α̇
∂µ , Dα̇ = −∂α̇ − iθα(σµ)αα̇∂µ . (2.28)

They obey
{Dα, Dα̇} = −2i(σµ)αα̇∂µ , {Dα, Dβ} = 0 , {Dα̇, Dα̇} = 0 (2.29)
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and, crucially, any D or D anticommutes with any Q or Q,

{Dα, Qα̇} = 0 etc. (2.30)

This last feature implies that

Dα̇F = 0 ⇒ Dα̇δξF = 0 . (2.31)

In other words, superfields fullfilling the condition Dα̇F = 0 form a subrepresentation of the Lie
superalgebra representation provided by general superfields. We call them chiral superfields.

It can be shown that chiral superfields can be written as

Φ = Φ(y, θ) with yµ = xµ + iθσµθ (2.32)

and expanded according to
Φ = A(y) +

√
2θψ(y) + θ2F (y) . (2.33)

As explained above for the general superfield, one obtains the SUSY transformations of the
component fields by expanding δξΦ in the same way as Φ. The result reads

δξA =
√

2ψξ

δξψ = i
√

2σµξ∂µA+
√

2ξF (2.34)

δξF = i
√

2ξσµ∂µψ .

We note that one can analogously define antichiral superfields, DαΦ = 0, and that the conjugate
of a chiral superfield is antichiral.

2.4 SUSY-invariant lagrangians

We state without proof that the most general such lagrangian, at the 2-derivative-level and built
from chiral superfields {Φ1, · · · ,Φn} only, reads

L = K(Φi,Φı)
∣∣∣
θ2θ

2
+W (Φi)

∣∣∣
θ2

+ h.c. . (2.35)

Here K is a real function of a set of complex variables Φi. With Φi being chiral superfields, K
becomes a general superfield. It is not chiral since both Φi and Φı are involved. The first term in
L is the projection of the general superfield K on its highest component, i.e., it is the analogue
of the function d(x) appearing in the Taylor expansion (2.19).

The function K is called the Kahler potential (for those who know this term from complex
geometry: the relevance in the present context will become clear momentarily). The expression

K
∣∣∣
θ2θ

2
, viewed as part of the lagrangian, is called the D-term. This name comes simply from the

traditional use of the variable d(x) for the highest component. The key point in this non-trivial
way of writing a lagrangian is, of course, its required invariance under SUSY transformations.
For this, we need to recall that the commutator of Q and Q is P . Hence the mass dimension
of Q is 1/2. Since Q involves ∂/∂θ, the mass dimension of θ is −1/2 (one may think of it very
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vaguely as the square root of x). Thus, in the Taylor expansion of superfields in powers of θ
the mass dimensions of components grow. As a result, due also to the linear nature of SUSY
transformations, the highest component can not transform into any other component – there
simply is no component with a suitably high mass dimensions. The only way it can transform is
into a derivative of another component. Thus, the first term of the above lagrangian is invariant
up to total derivatives, as one would have hoped.

Similarly, W is called the superpotential and it is an analytic (or holomorphic) function of
the Φi. This makes W a chiral superfield. In its Taylor expansion in θ, with the coefficients
being functions of y, the highest component is tradtionally called F (cf. (2.33)). Hence the
corresponding two terms in (2.35) are sometimes called F terms. To be very concrete, to get
these terms one expands the chiral superfield W (Φi) in θ (with the coefficients being functions
of y), extracts the coefficient of θ2, and replaces y by x. The result, together with its hermitian
conjugate, is the F -term lagrangian. It is SUSY invariant up to a total derivative for the same
reason as explained in the case of the D term.

An equivalent way of writing this lagrangian is as

L =

∫
d2θ d2θ K(Φi,Φı) +

∫
d2θW (Φi) + h.c. . (2.36)

Using standard integration rules for Grassmann variables,∫
dθ1 θ1 = 1 and

∫
dθ1 1 = 0 , (2.37)

and the analogous formulae for θ2, one can easily check that the integral formulation is equivalent
to the projection formulation of L. The SUSY invariance is particularly easily seen in the integral
formulation: The SUSY generator Q is a linear combination of x derivatives and θ derivatives.
The x derivative of any lagrangian is, by definition, a total derivative and thus leaves the action
invariant. The θ derivative of any expression in θ integrates to zero,∫

dθ1
∂

∂θ1

(
· · ·
)

= 0 , (2.38)

as one can easily convince oneself. Thus, any action which is an integral over the full superspace
is invariant. Similarly, any action built as the integral of an expression in θ (not θ) and integrated
over half the superspace is invariant. (Here it is important to note that we can replace y with x
by appealing to the Taylor expansion and the irrelevance of total derivatives.)

2.5 Wess-Zumino-type models

The possibly simplest interesting SUSY model is the Wess Zumino model. It is defined by

K = ΦΦ , W =
m

2
Φ2 +

λ

3
Φ3 . (2.39)

A straightforward explicit calculation according to the rules above gives the following component
form of the lagrangian:

L = −|∂A|2 − iψσµ∂µψ +
(
−m

2
ψ2 + λψ2A

)
+ h.c. + (mA+ λA2)F + h.c. + |F |2 . (2.40)
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Since F has no kinetic term (and thus does not propagate) we can integrate it out by purely
algebraic operations and without any approximation. Such fields are called auxiliary fields. The
equation of motion for F is

F = −mA− λA2
, (2.41)

and inserting this into the original lagrangian gives

L = −|∂A|2 − iψσµ∂µψ +
(
−m

2
ψ2 + λψ2A

)
+ h.c.− V (A,A) , (2.42)

with the scalar potential (or F term potential)

V (A,A) = |F |2 = |mA+ λA2|2 . (2.43)

This is easily generalized to (non-renormalizable and multi-field) models of the type

K = K(Φi,Φı) , W = W (Φi) . (2.44)

We only display the purely bosonic part of the resulting component lagrangian. More details are
given in the problems. The auxiliary fields have already been integrated out:

L = Ki(Ak, Ak) (∂Ai)(∂A) +Ki(Ak, Ak) (∂iW (Ak))(∂W (Ak)) + · · · . (2.45)

Here
Ki = ∂i∂K and KiK

k = δi
k , (2.46)

in other words, indices denote partial derivatives and the upper-index matrix is defined as the
inverse.

We note that the scalar components Ai parametrize a complex manifold (as in so-called
sigma-models) and, in supersymmetry, the metric on this field space is the Kahler metric Ki,
defined with the help of the Kahler potential K. The superpotential W is locally a holomorphic
function on this manifold; globally it is a section in an appropriate complex line bundle.

2.6 Real Superfields

We have to discuss real superfields, another subrepresentation contained in that of the general
superfield, since they are needed to describe gauge theories. But we will be very brief since,
conceptually, the procedure is similar to that used in the chiral superfield case.

A real superfield V = V (x, θ, θ) is defined by the condition V = V . It can be Taylor expanded
in θ and θ. We will build lagrangians which are invariant under the SUSY gauge transformation

2V → 2V + Λ + Λ , (2.47)

with Λ a chiral superfield. Using this transformation, V can be brought to a form where certain
components vanish (the so-called Wess-Zumino gauge):

V = −θσµθAµ + iθ2 θλ− iθ2
θλ+

1

2
θ2θ

2
D . (2.48)
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From V , one can constuct the so-called field-strength superfield

Wα = −1

4
D

2
DαV , (2.49)

which can be shown to be chiral and gauge invariant. Its name is justified since it does indeed
contain the field strength Fµν = ∂µAν − ∂νAµ in one of its components:

W = iλ(y) + [D(y) + iσµνFµν(y)] · θ + θ2σµ∂µλ(y) . (2.50)

One can show that SUSY gauge transformations contain standard gauge transformations as a
subset. Hence, it is natural to look for SUSY-invariant and SUSY-gauge-invariant lagrangians.
At the 2-derivative level, the unique option is

L =
1

4g2

(
WαWα

∣∣∣
θ2

+W α̇W
α̇
∣∣∣
θ
2

)
=

1

g2

{
−1

4
FµνF

µν − iλσµ∂µλ+
1

2
D2

}
, (2.51)

where λ is the gaugino and D a real auxiliary field.

It is straightforward to extend this to the non-abelian case, where V and W are matrix-valued
superfields taking values in the Lie Algebra of the gauge group. Let us write the corresponding
lagrangian including also a charged matter superfield Φ, to be thought of as column-vector in
some appropriate representation. We have

L =
1

2g2
tr
(
W 2
∣∣∣
θ2

+ h.c.
)

+ Φ†e2V Φ
∣∣∣
θ2θ

2
+W(Φ)

∣∣∣
θ2

+ h.c. . (2.52)

Here e2V has to be taken in the representation of Φ and Φ† has to be interpreted as a row vector.
This lagrangian is invariant under the non-abelian super gauge transformations

e2V → eΛ†e2V eΛ , Φ→ e−ΛΦ . (2.53)

One very frequently uses the naming conventions for components

Φ = {Φ, ψ, F} , V = {Aµ, λ,D} . (2.54)

It is a slight abuse of notation to denote the scalar matter component by the same name as
the superfield, but this convention is widespread and it is usually clear from the content which
meaning is intended. With these conventions, the component form of the lagragian reads

L =
1

g2
tr

{
−1

2
FµνF

µν − 2iλσµDµλ+D2

}
(2.55)

−|DµΦ|2 − iψσµDµψ + |F |2 + i
√

2
(
Φ†λψ − ψλΦ

)
+ Φ†DΦ .

This lagrangian is called off-shell since it is SUSY invariant without using the equations of
motion. Integrating out the auxiliary field, one arrives at the on-shell lagrangian. Concerning
F , this step is trivial in this simple example: F is just set to zero. By contrast, integrating out
D = DaTa induces a quartic term in the scalar fields, the so-called D-term potential.
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2.7 SUSY breaking

We have so far defined the spinor Q as a differential operator on superspace. Hence, it is an
operator on the space of superfields, hence an operator transforming different component fields
into each other. After quantization, we will thus be able to define a corresponding operator Q
on the Hilbert space. This operator will mix bosons and fermions and, since

[Qα, PµP
µ] = 0 , (2.56)

this implies that the mass of fermions and bosons (in the same superfield or multiplet) is the
same. Thus, to be relevant for the real world, supersymmetry must be spontaneously broken. In
other words, while the action should be supersymmetric, the vacuum should not be invariant.

At the perturbative level, this simply means that the lowest-energy field configuration should
not be invariant under SUSY. Thus, in the context of chiral superfields, the r.h. side of

δξA =
√

2ψξ

δξψ = i
√

2σµξ∂µA+
√

2ξF (2.57)

δξF = i
√

2ξσµ∂µψ

should be non-zero. Maintaining Lorentz-invariance, this can only be achieved if F 6= 0 in the
vacuum. This is called F -term breaking and the simplest lagrangian with this feature is

L = ΦΦ
∣∣∣
θ2θ

2
+ cΦ

∣∣∣
θa

+ h.c. . (2.58)

The relevant terms in component form are

L = FF + cF + h.c. + · · · , (2.59)

which implies F = −c in the vacuum. However, while SUSY is formally broken, the theory is
free, thus F does not couple to other fields and hence the spectrum remains supersymmetric.

This is easily remedied adding a higher-dimension operator,

L =

[
ΦΦ− 1

M2
(ΦΦ)2

] ∣∣∣
θ2θ

2
+ cΦ

∣∣∣
θa

+ h.c. (2.60)

Now, ignoring fermions and derivative terms, the component lagrangain reads

L = FF − 4FFΦΦ/M2 + cF + h.c. + · · · . (2.61)

The vacuum is again at Φ = 0 and F = −c, but now this non-zero F introduces scalar masses
and supersymmetry is broken in the spectrum of the theory.

We note that apparently simpler models which extend (2.58) by adding terms ∼ Φ2 or ∼ Φ3

to the superpotential do not work in our context. They reinstate a SUSY-preserving vacuum,
which is obvious since in such models the linear term can be absorbed in a shift of Φ. In fact,
the simplest renormalizable model with chiral superfields and spontaneous SUSY breaking is the
O’Raifeartaigh model with lagrangian

L =
3∑
i=1

ΦiΦi

∣∣∣
θ2θ

2
+
[
Φ1(m2 + λΦ2

3) + µΦ2Φ3

] ∣∣∣
θa

+ h.c. . (2.62)
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It is easy to write down the F -term potential and minimize it to find spontaneous SUSY breaking.
Sometimes the name O’Raifeartaigh model is used more generally for any model with F -term
breaking.

A completely analogous story can be developed for real superfields, i.e. (abelian) gauge
theories, where SUSY breaking is signalled by a non-zero VEV of the D-term. The simplest
model realizing this is

L =
1

2g2
W 2
∣∣∣
θ2

+ 2κV
∣∣∣
θ2θ2

, (2.63)

where the new term linear in V is known as Fayet-Ilopoulos or FI term. At the component level
one finds

L =
1

2g2
D2 + κD ⇒ D = −κg2 6= 0 . (2.64)

As before, the model needs to be enriched to see this formally present SUSY breaking in the
spectrum. This can be achieved e.g. by adding two chiral superfields (to avoid anomalies) with
charge ±1 and mass m. One finds that the femions remain massless while the boson masses split
according to m2

1,2 = m2 ± κg2.

2.8 Supersymmetrizing the Standard Model

The Minimal Supersymmetric Standard Model or MSSM is obtained basically by promoting
all fermions and scalars of the Standard Model to chiral superfields and all vectors to real
superfields. The additional components introduced in this way are made heavy by an appropriate
mechanism of SUSY breaking, to be discussed shortly. The only exception to this rule arises in
the Higgs sector, where one now needs two different Higgs doublets and hence two corresponding
superfields: Hu and Hd. The reason will become clear immediately. Of the many reviews of this
wider subject we refer in particular to [17,41,42].

After these preliminaries, we give the set of chiral superfields,

Φa = {Q,U,D,L,E,Hu, Hd} , (2.65)

in complete analogy with (1.2) and with gauge charges as in (1.6). The lagrangian can be
organized in three pieces. First,

Lgauge =
3∑
i=1

tr

(
1

2g2
i

(Wi)
α(Wi)α

∣∣∣
θ2

+ h.c.

)
, (2.66)

with tr→ 1/2 in the U(1) case. Second,

LK =
7∑

a=1

Φ†ae
2V Φa

∣∣∣
θ2θ2

, (2.67)

where K stands for kinetic or Kahler potential term and where the superfield V = V1 + V2 + V3

contains the three real superfields corresponding to three factors of GSM and one must always
use the representation appropriate for Φa. Third, we have the superpotential term

LW = (Wµ +WY +We)
∣∣∣
θ2

+ h.c. (2.68)
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with
Wµ = µHuHd , WY = λuQHuU + λdQHdD + λeLHdE , (2.69)

and
We = aLHu + bQLD + cUUD + dLLE . (2.70)

The structure of Lgauge and LK requires no further comments: They simply provide the necessary
kinetic terms and gauge interactions. The Yukawa couplings come, together with new interac-
tions, from WY . To give masses to all fermions, we were forced to introduce two Higgs fields.
Indeed, holomorphicity forbids the appearance of Φ̃ used in the up-type Yukawa in the non-
supersymmetric Standard Model. Hence, a new Higgs multiplet Hu with opposite U(1) charge
has to be introduced. An independent reason for this second doublet is the need to cancel the
U(1) anomaly introduced by the fermion (the ‘Higgsino’) contained in Hd.

Finally, there are extra terms without a Standard Model analogue, allowed due to the enlarged
field content. We have collected these terms in We but, since some of them induce proton decay
and lepton number violation, we basically want to forbid them. We also note that we have
limited ourselves to the renormalizable level – hence W is truncated at cubic order. To see that
cubic terms correspond to marginal operators, recall that θ2 has mass dimension −1. Hence,
projection on the θ2 component corresponds to raising the mass dimension by one unit. Thus,
mass dimension 3 in W corresponds to mass dimension 4 in L.

To forbid We, the concept of an R-symmetry (which is crucial in SUSY independently of
phenomenology) is useful. To explain this concept, we define standard (global) U(1) and U(1)R
transformations of chiral superfields as follows:

U(1) : Φ(y, θ)→ eimεΦ(y, θ) , U(1)R : Φ(y, θ)→ einεΦ(y, e−iεθ) . (2.71)

Here m and n = R(Φ) are the U(1) and U(1)R charges of Φ respectively. It follows immediately
that, and this is the crucial feature of an R symmetry, the components transform differently,
depending on their mass dimension:

A→ einεA , ψ → ei(n−1)εψ , F → ei(n−2)εF . (2.72)

Invariance of the lagrangian requires R(K) = 0 and R(W ) = 2. The former is clear since the

projection on the θ2θ
2

component does not change the R-charge. By contrast, projection on the
θ2 component lowers the R-charge by 2.

For our purposes, the interesting assignment is:

For Q,U,D,L,E : R = 1 and for Hu, Hd : R = 0 . (2.73)

This restricts W to the Yukawa terms. However, this is too strong since it also forbids the so-
called µ term µHuHd. But the latter is needed since even after SUSY breaking (see below) it is
the only source for Higgsino masses. (Higgsinos are the - so far unobserved and hence heavy -
fermionic partners of the Higgs).

A possible resolution is the breaking of U(1)R to its Z2 subgroup, defined by restricting { eiε }
to the two elements with ε = 0 and ε = π. After this breaking to Z2, R-charges are identified
modulo 2. Indeed, superfields with R-charge m and m+2 now transform identically. In particular
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the selection rule R(W ) = 2 for superpotential terms is modified to R(W ) = 2 mod 2 . In other
words, one now only demands R(W ) ∈ 2N. As a result, the µ term is allowed while all terms
in We are still forbidden. Moreover, the transformation rules of the Standard Model fields and
their superpartners under this so-called Z2 R-parity are

Even: Higgs scalars, fermions, gauge bosons (2.74)

Odd: Higgsinos, sfermions, gauginos . (2.75)

This implies that any of the so-called superpartners can not decay into a combination of Standard
Model particles. Hence the lightest superpartner (the lightest supersymmetric particle or
LSP) is absolutely stable and provides a natural dark matter candidate. Unfortunately, with
growing LHC-bounds on its mass the abundance predicted from its so-called freeze-out in early
cosmology tends to become too high, calling for extensions of the simplest settings.

2.9 Supersymmetric and SUSY breaking masses and non-renorma-
lization

The simplest way to make the above construction realistic is to add mass terms to the supersym-
metric Standard Model such that all remaining superpartners become sufficiently heavy. (Recall
that the Higgsino can be made heavy by a sufficiently large µ term.) While technically correct,
such an approach of explicit SUSY breaking is not very satisfying or illuminating concerning the
resolution of the hierarchy problem.

Hence, we will introduce somewhat more structure and try to arrive at the MSSM using
spontaneuous SUSY breaking. Specifically, we introduce a hidden sector in which SUSY is
broken spontaneously. 8 It will then be communicated to the Standard Model by higher-dimension
operators. To illustrate this structure, we start with the toy-model lagrangian

L =
(
SS − c1(SS)2

) ∣∣∣
θ2θ

2
+ c2S

∣∣∣
θ2

+ h.c. + ΦΦ
∣∣∣
θ2θ

2
+

1

M2
ΦΦSS

∣∣∣
θ2θ

2
. (2.76)

We recognize a model with a chiral superfield S and with spontaneous SUSY breaking (FS 6= 0).
In addition, we have free and massless chiral superfield Φ. The latter represents the Standard
Model or, more specifically, its Higgs sector. Finally, the last term is a higher-dimension operator,
suppressed by a large mass scale M , coupling the two sectors. All we need to know about the
hidden sector is that S = 0 and FS 6= 0 in the vacuum. Inserting this in our lagrangian and
focussing on the Φ-sector only, we have

L ⊃ ΦΦ
∣∣∣
θ2θ

2
+

1

M2
AΦAΦF SFS , (2.77)

where we also ignored a quartic fermionic term arising from the superfield higher-dimension
operator. We see that the result is equivalent to just having added a (‘soft’) SUSY-breaking
scalar mass term to the Φ sector

L ⊃ m2
soft|AΦ|2 with m2

soft = |FS|2/M2 . (2.78)

8In principle, one may imagine situations where SUSY is broken spontaneuously in the supersymmetrized
Standard Model, without introducing any additonal fields. However, it turns out that this does not work in
practice, taking into account experimental constraints on masses and the phenomenologically required gauge
symmetry breaking.
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Crucially, in our approach we see right away that this term is radiatively stable - it is secretly a
higher-dimension operator and does as such not receive power-divergent loop corrections. This
explains the name ‘soft’. In fact, the two sectors decouple completely as M →∞, making it clear
that the coupling operator can only renormalize proportionally to itself. (We see here another
possibility, in addition to symmetries, why a certain coefficient in the lagrangian may be zero in a
natural way: In its absence, the model becomes the sum of two completely independet theories.)

Our point about the mass term not being quadratically divergent may appear trivial - after
all the Φ sector itself is free theory, so of course nothing renormalizes. However, it is immediate
to enrich our model by e.g. W (Φ) ∼ Φ3, leading to quartic self interactions. Alternatively, Φ may
be charged under some gauge group, like the Higgs in the Standard Model is. Nothing in our
argument changes: The operator ∼ 1/M2 inducing the mass can not have power-divergences.

However, one could clearly add a term W (Φ) ∼ mSUSY Φ2 to our action, in other words, a
supersymmetric mass term. We have to be sure that interactions in the Φ sector will not, if such
a term is absent in the beginning, induce it through loop corrections. This, as it turns out, is in
fact the main point where SUSY saves us: The superpotential does not renormalize. This
so called non-renormalization theorem is, at least at a superficial level and in our simple model,
easy to understand [40]:

Indeed, consider the WZ model with tree level superpotential

W =
m

2
Φ2 +

λ

3
Φ3 . (2.79)

Introduce a U(1) and U(1)R symmetry under which Φ has charges (1, 1). Clearly, this is re-
spected by our canonical Kahler potential K, but the superpotential breaks both symmetries.
One can interpret this breaking as being due to non-zero VEVs of superfields m and λ, the
scalar components of which have acquired non-zero VEVs. For this interpretation to work, one
needs to assign to m the charges (−2, 0) and to λ the charges (−3,−1). Now, assuming that
perturbative loop corrections break neither these U(1) symmetries nor SUSY, we expect that
the effective superpotential (relevant for the Wilsonian effective action) will still respect the two
U(1) symmetries. Using holomorphicity and the fact that each term in W must have charges
(0, 2), we have

Weff =
∑
ijk

cijkm
iλjΦk = mΦ2 f(λΦ/m) . (2.80)

In the second step, we used the fact that, under the symmetry constraints, the triple sum collapses
to a single sum, which can then be viewed as a power series in (λΦ/m). This last combination
of fields can appear to any power, since both its U(1) and U(1)R charge vanish.

Now, the constant and linear term in f correspond to the terms already present at tree level
- their values are 1/2 and 1/3 by assumption. We see that higher terms in λ, which may in
principle arise from loop corrections, always come with higher powers of Φ and hence do not
affect mass and trilinear coupling. Moreover, it is easy to convince oneself that such higher terms
in λ, as derived from (2.80), correspond precisely to terms following from tree-level exchange of
Φ. But such tree-level effects should not be included in Weff . They appear in the calculation of
observable if one uses only tree-level expression for W together with the standard Feynman rules.
Including them in Weff would lead to double counting. Now, compared to tree-level effects, loop
effects always have a higher power of λ (given a certain number of external legs). Hence such
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loop effects are not described by the higher-λ terms in f . As a result, we learn that Weff = W
and no loop corrections arise.

In summary, we have learned that the structure of (2.76), supplemented by a superpotential of
type (2.79), is radiatively stable. In particular, the supersymmetric and supersymmetry-breaking
mass terms can both be chosen small compared to the cutoff scale and are not subject to power-
like divergences.

2.10 The Minimal Supersymmetric Standard Model (MSSM)

With this, it is straightforward to introduce SUSY breaking by a spurion superfield S into the
SUSY Standard Model. Without aiming at completeness, we give three types of higher-dimension
terms which are sufficient to generate all essential SUSY breaking effects:

L1 =
1

M2
QQSS

∣∣∣
θ2θ

2
, L2 =

1

M2
Q2SS

∣∣∣
θ2θ

2

(2.81)

L3 =
1

M
Q3S

∣∣∣
θ2

+ h.c. , L4 =
1

M
WαWαS

∣∣∣
θ2

+ h.c.

Here Q stands for generic Standard Model chiral superfields. The different factors of Q in one
term may also be replaced by different Standard Model fields, e.g. Q3 → QHuU .

The effects of these different terms are easy to read off. For example,

L1 ⊃
|FS|2

M2
|AQ|2 ≡M2

0 |AQ|2 , (2.82)

where we refer to M0 as the soft mass which AQ acquires. Similarly, L2 induces a holomorphic
soft mass, which due to symmetry constraints arises only in the Higgs sector, with Q2 → HuHd.
Furthermore, L3 induces soft trilinear or ‘A-terms’:

L3 ⊃
FS
M
A3
Q ≡ A · A3

Q . (2.83)

Finally, the last term induces gaugino masses M1/2,

L4 ⊃
FS
M
λαλα ≡M1/2λ

αλα . (2.84)

A standard scenario, known as ‘Gravity Mediation’ has M ∼MP ∼ 1018 GeV, a value which
corresponds the scale at which one may expect quantum gravity to induce all allowed higher-
dimension operators. Then one would need the SUSY breaking scale in the hidden sector to be√
|FS| ∼ 3× 1010 GeV (which is sometimes referred to as an ‘intermediate scale’) to obtain

M0 ∼ A ∼M1/2 ∼ 1 TeV . (2.85)

Of course, many new parameters are introduced in this way. In particular, there are as many
A-terms as there are entries in the Yukawa coupling matrices, and the soft masses come as
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3 × 3 matrices in generation space. If the scale of the soft terms (sometimes referred to as the
SUSY breaking scale) is low - e.g. in the TeV range, then generic values for the soft terms are
ruled out by flavor changing neutral currents (FCNCs) and other experimental signatures. Some
symmetry-based model building is needed to make this scenario realistic.

It is crucial that no renormalizable couplings between hidden and visible sector are present.
In particular, a superpotential term SQ2 (or concretely SHuHd) would induce a Higgs mass
∼
√
|FS|, destabilizing the hierarchy. Furthermore, we need a non-zero µ term for the Higgs, but

it should not be too large, again to avoid a hierarchy destablization.

There is a very elegant solution to the problem of inducing a supersymmetric µ term of the
same size as the (otherwise very similar) SUSY-breaking holomorphic mass term ∼ HuHd. This
is known as the Giudice-Masiero mechanism and is based on the higher-dimension couplings

L ⊃
(

1

M
SHuHd +

1

M2
SSHuHd

) ∣∣∣
θ2θ

2
. (2.86)

They induce terms

L ⊃ F S

M
HuHd

∣∣∣
θ2

+
|FS|2

M2
HuHd (2.87)

at the (partial) component level. The first is the previously discussed µ term, but with a coefficient
governed by the SUSY-breaking scale, µ ∼ F S/M , the second is the so-called Bµ term, the
previously mentioned holomorphic mass term for the Higgs:

L ⊃ BµHuHd with Bµ ∼ |FS|2/M2 . (2.88)

Upon integrating out the F -terms of the Higgs superfields, the µ term also contributes to
the quadratic Higgs scalar potential, which in total reads

V2 = (|µ|2 +m2
Hu)|Hu|2 + (|µ|2 +m2

Hd
)|Hd|2 +BµHuHd + h.c.

(2.89)

=

(
Hu

εHd

)†( |µ|2 +m2
Hu

Bµ

Bµ |µ|2 +m2
Hd

)(
Hu

εHd

)
.

The second line makes it apparent that we are dealing simply with a 4×4 complex mass matrix,
giving mass to the 4 scalars contained in (Hu, εHd)

T . Due to SU(2) symmetry, this matrix has
a 2× 2 block structure and hence only two distinct eigenvalues. Electroweak symmetry breaking
requires one of the eigenvalues to be negative.

An independent quartic Higgs interaction is not present in the SUSY Standard Model since
no cubic Higgs superpotential is allowed. However, the D term of the SU(2)×U(1) SUSY gauge
theory does the job:

V4 =
1

8
(g2

1 + g2
2) (|Hu|2 + |Hd|2)2 +

1

2
g2

2|HuHd|2 . (2.90)

Assuming soft terms are close to the weak scale, the scalar potential V2 + V4 and its symmetry
breaking structure has been analysed in great detail, but we will not discuss this. Suffice it to say
that electroweak symmetry can be broken as required, both Higgs doublets generically develop
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VEVs (the ratio being parametereized by tan β ≡ vu/vd), and the Higgs mass is predicted in
terms of this mixing angle and the gauge couplings. This is a great success, given in particular
that all parameters of this model are now protected from power-divergences, the SUSY breaking
and weak scale are naturally small, and the model is renormalizable and can, in principle, be valid
all the way to the Planck scale. In addition, extrapolating the Standard Model gauge couplings to
high energy scale, one finds that they meet rather precisely at the GUT scale MGUT ' 1016 GeV.
This has been known since about 1990 and has provided a lot of credibility to the model.

However, the predicted Higgs mass is bounded by the Z-boson mass at tree level, which is
clearly incompatible with observations. The correction need to bring the Higgs mass up to its
observed value of 125 GeV can be provided by loops, but this requires a large stop quark mass
or large trininear terms. This drives (again through loops) the Higgs VEV to higher values and
partially spoils the success of the hierarchy problem resolution. In addition, the non-discovery of
superpartners at the LHC has raised the lower limits for soft terms, also limiting the success of the
hierarchy problem resolution. Thus, the phenomenological status of this model has deteriorated.
From a modern prespective, it may be more appropriate to think of this not as of a weak scale
model but rather as a model at a higher scale msoft � mew.

This perspective implies that one integrates out all SUSY partners and the second Higgs at
msoft and is left with just the Standard Model below that scale. More precisely, this requires that
the lowest eigenvalue of the Higgs mass matrix in (2.89) is smaller than the typical entries (which
are ∼ m2

soft). This is a fine tuning of the order m2
ew/m

2
soft which one may have to accept. This

fine tuning ensures that m2
H of the Standard Model Higgs, which sets the weak scale, is somewhat

below the SUSY breaking scale. One may refer to this as a ‘high-scale’ or ‘split’ MSSM [43,44],
and it is not implausible that such a model (or some variant thereof) arises in string theory (see
e.g. [45, 46]).

2.11 Supergravity - superspace approach

All that was said above must, of course, be consistently embedded in a generally relativistic
framework and the resulting structure, known as supergravity, is equally elegant and unique,
though technically much more complicated, than flat-space SUSY. We can only give a brief
summary of results. Since we described flat SUSY using the superspace approach, let us start
by noting that a similar (curved) superspace approach can also be used to derive supergravity
[35,47]. For a brief discussion of this see also [48].

One starts, as before, with coordinates

zM = (xµ, θτ , θτ̇ ) (2.91)

with the above indices being ‘Einstein indices’, as in conventional general relativity. Then one
introduces a vielbein, EA

M(z), i.e. a basis of vectors, labelled by the ‘Lorentz indices’

A = (a, α, α̇) . (2.92)

As in general relativity, one defines a connection, introduces constraints (such as the vanishing
torsion constraint), and removes gauge redundancies. This is very cumbersome in the present
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case, but it eventually leads to a supergravity superspace action

S =

∫
d8z E Ω(Φ,Φ) +

∫
d6z ϕ3W (Φ) + h.c. (2.93)

Here E is the determinant of the vielbein EA
M . The latter contains a real vector superfield and

an (auxiliary) chiral superfield

Hµ = θσaθea
µ + iθ

2
θαψα

µ + h.c. + θ2θ
2
Aµ (2.94)

ϕ = e−1
(

1− 2iσaψ
µ

+ Fϕθ
2
)

(2.95)

with e = det(ea
µ). We thus have the component fields

ea
µ(x) , ψα

µ(x) , Aµ(x) , Fϕ(x) . (2.96)

Here the first is the familar vielbein of Einstein’s theory, and the last two are auxiliaries (some
authors use the notation B(x) ≡ Fϕ(x)). The crucial new feature is a physical, propagating
spin-(3/2) field, called the gravitino, which is the superparter of the vielbein (or equivalently
of the metric or graviton). The z integrations are over the full or half of the Grassmann part of
superspace, as in the flat case. The argument Φ stands for as many chiral superfields, containing
matter degrees of freedom, as one wants. The function Ω is real.

It goes far beyond the scope of these notes to derive the component action. However, to get
a glimpse of what is going on, we can consider the flat-space limit:

ea
µ = δa

µ , ψα
µ = 0 , Aµ = 0 , ϕ = 1 + θ2Fϕ . (2.97)

Then the action takes the form

S =

∫
d8z ϕϕΩ(Φ,Φ) +

∫
d6z ϕ3W (Φ) + h.c. (2.98)

From this, integrating out FΦ and Fϕ, one can straightforwardly obtain the supergravity scalar
potential. To be specific, one finds the potential in the Brans-Dicke-frame. This is so because, in
the curved case, one would have also found

S ⊃
∫
d4x
√
g

1

2
M2

P R ·
Ω(Φ,Φ)

3
, (2.99)

i.e., the Einstein-Hilbert term in the Brans-Dicke frame. Rescaling the metric to absorb the
factor Ω/3, one arrives at an Einstein-frame curvature term together with the supergravity
scalar potential

V = eK/M
2
P

(
Ki(DiW )(DW )− 3|W |2/M2

P

)
(2.100)

where
DiW = ∂iW +KiW (2.101)

and
K = −3M2

P ln[−Ω/(3M2
P )] or Ω = −3M2

P exp[−K/(3M2
P )] . (2.102)
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This goes together with conventional kinetic terms for the fields Φi, based on the supergravity
Kahler metric Ki. We have given all of the above keeping MP explicit to make it easy to see
that the flat space limit, MP → ∞, takes us back to previous formulae. In particular, one can
see that the first term in (2.100) correponds to the familar F -term scalar potential while second
term is supergravity-specific. It is non-zero even if W is just a number and thus allows for the
introduction of a cosmological constant, albeit only a negative one. This is consistent with the
fact that the Poincare superalgebra can be generalized to Anti-de-Sitter but not to de-Sitter
space.

In practice, one mostly works with the above formulae in units in which MP = 1. This is
much more economical and we will do so from now on.

Let us note that, among many other terms, one has

L ⊃ −eK/2Wψµσ
µνψν + h.c. , (2.103)

which implies a gravitino mass
m3/2 = eK0/2W0 , (2.104)

where W0 and K0 are the vacuum values of W and K. We will suppress the indices ‘0’ from now
on since it will be clear from the context whether the vacuum value or some other dynamical
value is meant. Supersymmetry breaking is, as before, governed by non-zero VEVs of (some of)
the F -terms,

F i = eK/2DiW = eK/2KiDW . (2.105)

Realistically, we have λ = V0 ' 0 (the non-zero meV-scale value is negligible compared to
particle-physics scales). Hence, the positive-definite F -term piece and the negative |W |2 piece
compensate with high precision in the formula for V . We thus have

|F | ∼ eK/2|W | and hence m3/2 ∼ |F | . (2.106)

Here |F | is the length of the vector F i, calculated using the Kahler metric Ki. We note, however,
that this is in Planck units and, reinstating MP , one has m3/2 ∼ |F |/MP . Thus, if one takes
the hidden-sector F very low, near the weak scale (as is in principle consistent with our SUSY-
breaking discussion), the gravitino can still be very light. This, however, requires that it couples
to Standard Model fields only very weakly.

We note that the SUSY solution to the weak-scale hierarchy problem works as before: All
that we said remains valid since we are working at an EFT scale µ � MP and the rigid limit
(supplemented by the gravitino, if it is sufficiently light) can be used. The non-renormalization
theorem extends to the W of supergravity. What is more, the presence of higher-dimension oper-
ators which was central in the communication of SUSY breaking from hidden to visible sector can
be argued to be generic in the supergravity context: After all, the theory is non-renormalizable,
so all in principle allowed operators are expected to be present with MP -suppression. Also, the
non-linear structure of Ω expressed in terms of K suggests such operators. The corresponding,
very generic way of SUSY breaking mediation (through Planck suppressed higher-dimension
operators) is called gravity mediation.
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2.12 Supergravity - component approach

Before closing this chapter, we should note that we only discussed the superfield approach to
supergravity since it fits the previous analysis of rigid supersymmetry best. It is not the most
economical or widely used approach, which is instead based on the component form of SUSY
multiplets and (superconformal) tensor calculus [49].

Very briefly, the story can be told as follows: In general relativity, Lorentz symmetry becomes
local. Since the SUSY parameter ξ, being a spinor, transforms non-trivially under the Lorenzt
group, it would be inconsistent to consider it a global object. Instead, it must be promoted to a
space-time dependent quantity,

ξ → ξ(x) , (2.107)

such that supersymmetry becomes a gauge symmetry. But now we are clearly missing a gauge
field defining the connection associated with our gauge symmetry. By analogy to

Aµ(x) → Aµ(x) + ∂µε(x) , (2.108)

one writes
ψµ(x) → ψµ(x) + ∂µξ(x) . (2.109)

The new field ψµ is a vector-spinor, also known as gravitino. We here interpret both ξ and ψµ
as 4-component spinors, specifically Majorana spinors. The presence of the gravitino can also be
motivated in a different way:

Indeed, we are clearly missing a superpartner for the graviton. As it turns out, the right
object is ψµ. To understand this better, we take a step back, forget about superfields, and recall
the SUSY algebra with its generators Q and Q (that come on top of the Poincare generators).
They have spin and hence raise or lower the spin of objects on which they act. Indeed, developing
the representation theory of the SUSY Poincare algebra one finds multiplets including particles
with different spin or, in the massless case, helicity. We aready know the multiplets

(0, 1/2) and (1/2, 1) (2.110)

corresponding to the chiral and real superfield (or the scalar and vector multiplet). Naturally,
one expects and indeed finds the multiplet

(3/2, 2) (2.111)

containing gravitino and graviton. For this to be consistent, one needs the gravitino to contain
2 degrees of freedom on shell, to match those of the graviton. Indeed, the general expressions for
numbers of degrees of freedom of a vector spinor, initially and after taking into account gauge
redundancy, constraints and the on-shell condition, are

d · 2[d/2] → 1

2
(d− 3) · 2[d/2] . (2.112)

Here the exponent [d/2] (the integer fraction of d/2) characterizes the dimension of a general
spinor, the reduction from d to d− 3 is associated with gauge freedom and constraints, and the
prefactor 1/2 is the usual reduction from off-shell to on-shell degrees of freedom affecting any
spinor (due to the equation of motion being first order).
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We record for completeness the underlying action and equation of motion (the Rarita-
Schwinger equation),

S = −
∫
ddxψµγ

µνρ∂νψρ and γµνρ∂νψρ = 0 , (2.113)

although we will not have time to discuss the derivation of the physical degrees of freedom
from this dynamical description. Furthermore, we should note that the modern way of deriving
actions in this context is the so-called tensor calculus. By this one means rules for multiplying
(combining) multiplets to obtain new multiplets. We saw an expample of this when we noted that
Φ1(y, θ)Φ2(y, θ), with Φ1 and Φ2 chiral, defines a new chiral superfield. This can be formulated
without superspace, just on the basis of the components. With this methods, the full action
of supergravity, including supergravity coupled to chiral and vector multiplets, can be derived.
More specifically, the method of choice is ‘superconformal tensor calculus’, which first extends
the theory to a conformal supergravity, then breaks scale invariance by a VEV and removes the
extra degrees of freedom by constraints. (The non-SUSY version of this would be to replace the
Planck scale by a field and then recover usual gravity by giving this field a VEV.) In fact, this
superconformal method is also used in the superspace approach and we saw a trace of the field
whose VEV eventually breaks scaling symmetry in the chiral compensator ϕ(y, θ) of (2.98).

Let us end with part of the general 4d supergravity action (the full action being given
e.g. in [35, 49]). The input are three functions, the (real) Kahler potential K, the holomorphic
superpotential W and the (also holomorphic) gauge-kinetic function fab:

1
√
g
L =

1

2
R + εµνρσψµσνDρψσ +Ki

[
(Dµφ

i)(Dµφ

)− iχσµDµχ

i
]

+(Refab)

[
−1

4
F a

µνF
b µν − λaσµDµλ

a

]
+

1

4
(Imfab)F

a
µνF̃

b µν

−eK/2
[(
Wψµσ

µνψν +
i√
2

(DiW )χiσµψµ +
1

2
(DiDjW )χiχj

)
+ h.c.

]
−VF − VD + { further fermionic terms } . (2.114)

Here

DiW = Wi +KiW (2.115)

DiDjW = Wij +KijW +KiDjW +KjDiW −KiKjW − Γij
kDkW .

We already know the F -term potential

VF = eK
(
Ki(DiW )(DW )− 3|W |2

)
. (2.116)

The D-term potential has until now only been given implicitly and in a special case. More
generally, it reads (cf. [50] for a very compact discussion)

VD =
1

2
[(Re f)−1]abDaDb . (2.117)
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To define the D terms, we recall that the scalars parameterize a Kahler manifold which, to be
gauged, must have some so-called (holomorphic) Killing vector fields

Xa = X i
a(φ)

∂

∂φi
. (2.118)

They define the direction in which the manifold can be mapped to itself by the gauge transor-
mation corresponding to the index a. They also appear in the general formula for the covariant
derivatives:

(Dµφ)i = ∂µφ
i − AaµX i(φ) . (2.119)

Now, the D terms are defined as real solutions of the differential equations (the Killing equations)

Xa
i = −iKi ∂Da(φ, φ)

∂φ
 . (2.120)

Mathematically, they are the Killing potentials. They can be given explicitly as

Da = iKiXa
i + ξa , (2.121)

where the ξa are so-called supergravity FI terms. The latter are only allowed for abelian gener-
ators and they correspond to gauged R-symmetries.

The terms we omitted when writing the action involve kinetic mixings between matter
fermions, gauginos, and gravitino (which requires gauge symmetry or SUSY breaking) as well as
4-fermion-terms and couplings between fermions and the gauge field strength.

3 String Theory: Bosonic String

3.1 Strings – basic ideas

What we have achieved so far is not entirely satisfactory: Supersymmetry (more precisely, the
broader framework of supergravity) offers a partial solution to the weak-scale hierarchy problem.
Partial refers to the fact that SUSY partners have not been discovered (yet?) and hence some
fine-tuning is probably needed after all. Supergravity is needed to combine this with general rela-
tivity, but it does not help with the cosmological constant problem, which unavoidably shows up
in this context. Technically, the cosmological constant can be anything in supergravity: It can be
negative due to the −3|W |2 term, or positive due to a dominant |DW |2 term (with SUSY sponte-
naeously broken). It is also affected by UV divergences since (in spite of the non-renormalization
theorems for W ), the Kahler potential K is loop corrected. Moreover, the UV problems of grav-
ity (all operators being generated at the scale MP – i.e. formal ‘non-renormalizability’) is not
resolved by the prefix ‘super’.

The string idea is illustrated in Fig. 4 and states simply that point-particles should be
replaced by little loops of fundamental string. This might help with UV divergences (especially
in gravity) since the interaction point is gone. Hence, when calculating a loop, there is no way in
which this loop can go to zero size by the (e.g. two) interaction points becoming infinitely close.
Some of the many standard textbooks are [51–55].
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Figure 4: Point particle scattering vs. string scattering.

But before discussing scattering, we will of course have to understand how a single string
loop moves through space (in other words, how its worldsheet is embedded in target-space,
more precisely, in target spacetime), see Fig. 5. Before doing so, let us consider the more familiar
case of a point particle, cf. Fig. 6. The embedding of the worldline γ in target space is specified
by the set of functions Xµ(τ) and the natural action is

S = −m
∫
γ

ds with ds2 = −ηµνdXµdXν and dXµ = Ẋµ dτ . (3.1)

More explicitly, this action can be written as

S = −m
∫
dτ

√
−ηµνẊµẊν . (3.2)

One can easily check that this is reparameterization invariant under τ → τ ′ = τ ′(τ) and that
the non-relativistic limit is

S =

∫
dt
(m

2
v2 −m

)
. (3.3)

Much more could be said about this simple and familiar system (see e.g. [56]), but for now this
will suffice to motivate the Nambu-Goto action for the string.

Figure 5: String moving through target space.

Figure 6: Point particle through target space.

45



In complete analogy to the point particle, the Nambu-Goto action for the bosonic string
measures the surface area of the worldsheet embedded in target space:

SNG = −T
∫

Σ

df . (3.4)

To write this more explicitly, one parametrizes the worldsheet by (cf. Fig. 5)

ξ ≡ (ξ0, ξ1) ≡ (τ, σ) . (3.5)

The surface area is nothing but the volume of the 2d manifold, parameterized by ξ, measured
with the induced metric Gab. The latter is defined by

ds2 = ηµνdX
µdXν = ηµν ∂aX

µ ∂bX
νdξa dξb ≡ Gab dξ

adξb . (3.6)

Hence

SNG = −T
∫

Σ

d2ξ
√
−G with G ≡ det(Gab) . (3.7)

The prefactor T determines the tension of the string.

Due to the square root, the system is hard to quantize on the basis of this action. Instead,
one uses the classically equivalent Polyakov action

SP = −T
2

∫
Σ

d2ξ
√
−hhab∂aXµ ∂bX

ν ηµν . (3.8)

Here we introduced a new degree of freedom – the worldsheet metric hab. To see the equivalence,
one integrates out hab by solving its equations of motion

0 = δh
[√
−hhabGab

]
= − δh

2
√
−h

habGab +
√
−h δhabGab . (3.9)

Next, one makes use of the fact that, for a generic matrix A, one has

δ (detA)/(detA) = δ ln(detA) = δ tr ln(A) (3.10)

and hence
δ (detA) = (detA) tr(A−1 δA) = −(detA) tr(AδA−1) . (3.11)

Applying this to δh, the equation of motion for hab becomes

0 = δhab
[

h

2
√
−h

hab h
cdGcd +

√
−hGab

]
(3.12)

or, using the identity h/
√
−h = −

√
−h,

1

2
hab h

cdGcd = Gab . (3.13)

It is solved by hab = αGab for any α. Inserting this in the Polyakov action,

SP = −T
2

∫
d2ξ
√
−hhcdGcd = −T

2

∫
d2ξ
√
−α2G 2α−1 = SNG , (3.14)
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one obtains the Nambu-Goto action.

At this point, jumping somewhat ahead, we can sketch what will follow: The Polyakov action
describes simply a 2d field theory of D free scalars, living on a cylider (S1 × [Time]). This is a
quantum mechanical system and its states have the interpretation of particles living in the D-
dimensional target spacetime. Consistency will require D = 26, and the spectrum will contain a
massless graviton and other massless (as well as many heavy) fields. However, it will also contain
a particle with negative mass squared, a tachyon. Thus, the vacuum of the 26d gravitational field
theory which this bosonic string describes is unstable. This instability problem will be cured if
we move on to the superstring (based on a 2d supersymmetric worldsheet theory). The target
spacetime will then have to be 10d and contact with the real world will be based on compactifying
this 10d supergravity to 4d. The last step means considering geometries M6 × R4, with M6 a
compact 6d manifold.

3.2 Symmetries, equations of motion, gauge choice

It is convenient to think of the worldsheet theory as of a 2d QFT with metric hab and D free
scalars Xµ:

SP = −T
2

∫
d2ξ
√
−h (∂X)2 , (∂X)2 = hab(∂aX

µ)(∂bX
ν)ηµν . (3.15)

The three key symmetries of this theory are

(1) Diffeomorphism: ξa → ξ′a(ξ0, ξ1).

(2) Poincare symmetry: Xµ → X ′µ = Λµ
νX

ν + V ν with Λ ∈ SO(1, D − 1).

(3) Weyl rescalings: hab(ξ) → h′ab(ξ) = hab(ξ) exp[2ω(ξ)], with ω an arbitrary real function.

The first and second are obvious and follow immediately from the structure of our worldsheet
action. It is noteworthy that target-space Poincare symmetry is an interal symmetry from the
worldsheet perspective. The third is a specialty of the string. In other words, for a similar theory
of moving p-branes, parameterized by ξ0, ξ1, · · · , ξp, this symmetry does not exist unless p = 1.

To move on, it is convenient to use the energy-momentum tensor,

TMN =
2√
−g
· δS

δgMN

or, equivalently TMN =
−2√
−g
· δS

δgMN
, (3.16)

which takes the form TMN = diag(ρ, p, · · · , p) for an isotropic fluid. On the string worldsheet, a
slightly different normalization is common:

T ab =
−4π√
−h
· δSP
δhab

. (3.17)

One easily checks that

T ab = − 1

α′

(
Gab − 1

2
hab(hcdGcd)

)
, (3.18)

where we also introduced the Regge slope

α′ ≡ 1

2πT
. (3.19)
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The latter is a different way to parameterize the string tension. It goes back to the early days of
string theory, when the focus was on string theory as a model of hadronic physics. This is nicely
explained in the first chapter of [51].

It follows both from our discussion in the last section as well as from the general definition
of T ab that the equation of motion of hab is

T ab = 0 . (3.20)

Moreover, tracelessness holds as an identity, i.e. independently of whether the field configuration
obeys the equations of motion:

T aa = 0 for any hab . (3.21)

The reader should convince herself that this generally follows from symmetry (3). Finally, the
equations of motion of X are

�Xµ = 0 with � = Da∂a . (3.22)

It is crucial for what follows that diffeomorphisms and Weyl rescalings are (by definition)
not just symmetries but gauge redundancies. This allows one to work in the flat gauge,

hab = diag(−1, 1) . (3.23)

Indeed, very superficially one can argue as follows: A 2d metric contains 3 real functions. Dif-
feomorphisms and Weyl rescalings also contain 2 + 1 = 3 real functions. Hence, it should be
possible to bring hab to any desired form.

In somewhat more detail, one can explicitly check that
√
−h′R[h′] =

√
−h (R[h]− 2D2ω) for h′ab = e2ωhab . (3.24)

Now, starting from any metric h, one may try to solve the equation 2D2ω = R. This can always
be achieved (in non-compact space with localized source R) since it only requires the inversion of
the Klein-Gordon operator. Without prove, we simply state that this holds also on the cylinder,
which is our case of interest. For more details, see e.g. [53].

Once 2D2ω = R is solved, one can Weyl rescale h using the solution ω. The resulting metric
will have vanishing Ricci scalar and, since in d = 2

Rabcd =
1

2
(hachbd − hadhbc)R , (3.25)

it will be flat. More precisely, the worldsheet is a flat metric manifold and hence there exist
coordinates in which the metic is manifestly flat in the sence of (3.23).

Let us now focus on a flat worldsheet and on the corresponding equations of motion

(∂2
τ − ∂2

σ)Xµ = 0 . (3.26)

It is convenient to use light-cone coordinates σ± = τ ± σ, such that

ds2 = −dτ 2 + dσ2 = −dσ+dσ− and h++ = h−− = 0 , h+− = h−+ = −1

2
(3.27)
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and

� = −4∂+∂− with ∂± =
∂

∂σ±
. (3.28)

The equations of motion take the form

∂−∂+X
µ = 0 (3.29)

and have the general solution

Xµ(σ+, σ−) = Xµ
L(σ+) +Xµ

R(σ−) , (3.30)

being further constrained by Xµ(τ, σ) = Xµ(τ, σ + π), cf. Fig. 7. Here we have used the repa-
rameterization freedom to set the circumference of the cylinder to π. This is a convention used
in many string theory textbooks, in particular in [51] which we mostly follow.

Figure 7: The strip with periodic boundary conditions on which the Xµ field theory lives.

Periodicity of Xµ implies periodicity of ∂+X
µ = ∂+X

µ
L and of ∂−X

µ = ∂−X
µ
R. The latter

depend only on σ+ and σ− respectively and can therefore be represented as Fourier series in
these two variables:

∂+X
µ
L ∼ const.L +

∑
n6=0

fL, ne
−2inσ+

, ∂−X
µ
R ∼ const.R +

∑
n6=0

fL, ne
−2inσ− . (3.31)

Returning to Xµ
L and Xµ

R by integration, the exponentials remain exponentials and the constants
translate into linear terms. Moreover two integration constants appear. Hence, with a choice of
prefactors dictated by convention, one finds the general solution or mode decomposition

Xµ
L =

1

2
xµ +

l2

2
pµσ+ +

il

2

∑
n6=0

1

n
α̃µn e

−2inσ+

(3.32)

Xµ
R =

1

2
xµ +

l2

2
pµσ− +

il

2

∑
n6=0

1

n
αµn e

−2inσ− . (3.33)

Here we introduced l =
√

2α′, the so-called string length. One should be aware that the precise
definition (the numerical prefactor) may vary from author to author and from context to context.

We note that the coefficients of the two terms linear in σ+ and σ− are forced to be equal
by the periodicity of Xµ. Their value specificies the center-of-mass momentum of the string. By
contrast, the constants xµ/2 are chosen to be equal by convention. It is only their sum that
has physical meaning, characterizing the position of the center of mass at τ = 0. Reality of Xµ

implies that xµ and pµ are real, consistently with their physical meaning which we pointed out
above. The oscillator modes have to satisfy

(αµn)∗ = αµ−n . (3.34)
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3.3 Open string

It will later on be crucial to also consider open strings. We introduce them already now since
they are in fact a simpler version of the closed string – they basically carry half of the degrees
of freedom. Instead of a cylinder, one now has to think of a strip (parameterized transversely by
σ ∈ (0, π)) embedded in target space, cf. Fig. 8.

Figure 8: Open string.

The variation of the action,

δS =
1

2πα′

∫
d2σ (∂2X) · δX − 1

2πα′

∫
dτ

∫ π

0

dσ ∂σ(∂σX · δX) , (3.35)

now includes boundary terms. Indeed, while the first term vanishes if the equations of motion
are obeyed, the second gives

− 1

2πα′

∫
dτ (∂σX

µ) · δXµ

∣∣∣σ=π

σ=0
. (3.36)

To avoid introducing new degrees of freedom living at the boundary, we need this to vanish. This
can be achieved by two different types of boundary conditions,

∂σX
µ = 0 (Neumann) , δXµ = 0 (Dirichlet) . (3.37)

In the first case the string end moves freely (no momentum is lost at the end of the string), in
the second it is confined to lie in a fixed hyperplane. For example (cf. Fig. 9), one can enforce
Neumann boundary conditions for X0, X2 and Dirichlet boundary conditions for X1. One is then
dealing with an open string living on a D-brane (with D referring to Dirichlet) filling out the
X0 and X2 directions of target spacetime. Specifically, if a brane fills out p spatial dimensions,
i.e. if it is a p-dimensional object in the usual, spatial sense, one calls it a Dp-brane. For target
space to be stationary, branes always have to fill out the time or X0 direction. This, of course,
does not contribute to their dimensionality as a spatial object. However, in spacetime a Dp-brane
is (p+ 1)-dimensional object.

We also note that configurations with various, also intersecting branes are permitted,
cf. Fig. 10. Jumping ahead, we record that, analogously to the closed string states contain-
ing the target-space graviton, the open string states contain a massless vector particle: a U(1)
gauge boson. Thus, on every Dp brane one has localized (p+ 1)-dimensional gauge theory. One
a stack of N D-branes, N2 such states, since each string begin or end on any one of these N
coincident branes. This gives rise to a U(N) gauge theory. If branes or brane stacks intersect,
then the string living at the intersection (as in the last picture in Fig. 10) gives rise to states
(target-space particles or fields) which are charged under the two gauge groups corresponding

50



Figure 9: Open string living on a D1-brane filling out the X2 direction.

Figure 10: Various brane configurations with strings attached.

to the two branes. This is how Standard Model matter fields arise in some of the simplest
phenomenologically interesting string models – the so-called intersecting brane models.

What is interesting for us at the moment is that the mode decomposition of the open string is
simpler than that of the closed string. Indeed, while one needs sines and cosines (or equivalently
exponentials) to Fourier decompose a periodic function, on a interval one can do with just sines
or just cosines. Technically, one may say (and it is easy to demonstrate this explicitly) that,
for the open string, the left and right-moving modes are identified. Explicitly, for the case of
Neumann boundary conditions, one has

Xµ = xµ + l2pµτ + il
∑
n6=0

1

n
αµne

−inτ cos(nσ) . (3.38)

Thus, it is often simpler to discuss the open string and then ‘double’ the result to go over to the
closed case.

We also note that the case of Neumann boundary conditions for all Xµ should actually be
viewed as a situation with spacetime filling branes. Thus, open strings generally end on D-branes.

3.4 Quantization

We will only present the old covariant approach, briefly commenting on light-cone and modern
covariant approach (path integral or BRST quantization) at the end. The starting point is the
flat-gauge Polyakov action wich, breaking 2d covariance, can be written as

S =
1

4πα′

∫
d2σ(Ẋ2 −X ′2) with d2σ = dτdσ . (3.39)

Here we have left the index µ and its contraction implicit. Nevertheless, the above describes D
free bosons and we have to keep in mind that one of them (X0) has a wrong-sign kinetic term.
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The canonical variables are

Xµ and Πµ =
∂L
∂Ẋµ

=
1

2πα′
Ẋµ , (3.40)

with equal-time commutation relations

[Π̂µ(τ, σ), X̂ν(τ, σ′)] = −iδ(σ − σ′)δµν , [X̂µ, X̂ν ] = [Π̂µ, Π̂ν ] = 0 . (3.41)

Promoting our previous mode decomposition of Xµ (and a corresponding decomposition of Πµ)
to the operator level, one finds

[p̂µ, x̂ν ] = −iηµν , [α̂µm, α̂
ν
n] = mδm+nη

µν , [ ˆ̃αµm, ˆ̃ανn] = mδm+nη
µν , (3.42)

where
δm+n ≡ δm+n , 0 . (3.43)

We will drop the hats from now on, assuming that it will always be clear from the context
whether the operator or the classical variable is meant.

As usual in quantum mechanics, we now need a Hilbert space representation of our operator
algebra. Given the non-trivial commutation relations of p and x, we can only choose one of them
to be diagonal. Since we are interested in a particle interpretation of string states, it is natural
to choose p and write

H =
∑
p

H(p) , (3.44)

where H(p) is the eigenspace of the operators {p̂0, · · · , p̂D−1} with eigenvalues {p0, · · · , pD−1}.

We now focus on the subspace corresponding to one particular value of p and rewrite the
mode-algebra acting on it:

[αµm, α
ν
n] = mδm+nη

µν → [αµm, α
ν †
n ] = |m|δm,nηµν . (3.45)

We see that we are dealing simply with a very large set of oscillators, labelled by µ and m > 0.
We define a vacuum state and find the Fock space:

H(p) = Span
{
αµmα

ν
n · · · |0, p〉

∣∣∣ any number of αs; any µ, ν, · · · ; any m,n, · · · > 0
}
. (3.46)

The situation we arrive at is very similar to the initial step of Gupta-Bleuler quantization
of electrodynamics: There, on account of the vector index of Aµ and the non-positive-definite
metric ηµν , the Fock space includes negative norm states. They are removed by a physical state
condition or constraint, related to the gauge invariance of the theory. Here, the same issue arises
due to the vector index of αµm. As will become clear momentarily, the resolution is also similar.

We fixed part of the gauge freedom by eliminating hab. The corresponding equation of motion
was Tab = 0, which now has to be implemented as a constraint. It is convenient to do this in
light-cone coordinates, convincing oneself first that

T aa = 0 ⇔ T+− = 0 . (3.47)
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Since the trace vanishes identically, one only needs to enforce the constraints

T++ = T−− = 0 . (3.48)

It is straightforward to check that

T++ = (∂+XL) · (∂+XL) and T−− = (∂−XR) · (∂−XR) (3.49)

and that, using the mode decomposition, the Fourier modes of the these quantities read

Lm ≡ 1

4πα′

∫ π

0

dσ T−− e
−2imσ =

1

2

∞∑
n=−∞

αm−n · αn (3.50)

L̃m ≡ 1

4πα′

∫ π

0

dσ T++ e
2imσ =

1

2

∞∑
n=−∞

α̃m−n · α̃n . (3.51)

Here we also used the simplifying notation

αµ0 = α̃µ0 =
l

2
pµ . (3.52)

For the open string, one defines

L̃m ≡
1

2πα′

∫ π

0

dσ T++ e
2imσ =

1

2

∞∑
n=−∞

α̃m−n · α̃n , (3.53)

with T−− being a dependent quantity. One can also check that

H = L0 + L̃0 (closed string) , H = L0 (open string) . (3.54)

Note that αµ0 = lpµ for the open string.

One can check that the operators Lm (with or without tilde) satisfy the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n + A(m)δm+n , with A(m) = (m3 −m)D/12 . (3.55)

Here the term proportional to D is called the anomaly term and D is the central charge. Note
that this term depends on a possible additive redefinition of L0, which is related to the ordering
ambiguity present in all the terms of type α−kαk in L0. The form given above assumes normal
ordering, i.e. 〈0, 0|L0|0, 0〉 = 0.

The classical part of this algebra is called Witt algebra and is satisfied by the differential
operators

Dm = ieimθ
d

dθ
, (3.56)

which generate diffeomorphisms on an S1 parameterized by θ ∈ (0, 2π). These remarks are the
beginning of a long and important chapter of a proper string theory course – 2d conformal field
theory. However, we are not going to discuss this, such that a few comments will have to suffice:

When we fixed the gauge (diffeomorphisms and Weyl scalings), a residual gauge freedom
was left. It consists of diffeomorphisms under which the metric changes only by Weyl scaling.

53



Now it is useful to insist on the point of view that, after going the flat gauge, we are in a fixed-
background QFT and coordinate reparameterizations are forbidden. From this perspective, the
residual gauge freedom noted above corresponds to space-time dependent translations of the
field configuration which preserve angles, i.e., conformal transformations (Fig. 11). Our theory
is invariant under those and hence is a conformal field theory or CFT [57–62]. The Virasoro
algebra is the corresponding symmetry algebra. It is clear that conformal transformations can
be generated as spacetime dependent translations. Given that Tab generates translations, we are
not surprised to find that the Fourier modes of Tab are the desired symmetry generators. It is
also natural that the Witt algebra, as introduced above, is the classical counterpart.

Figure 11: Illustration of a conformal mapping of a given field configuration to a new one.

The conformal symmetry just introduced is a central tool in developing string theory and, in
particular, in deriving scattering amplitudes, loop corrections etc. We will have no time for this.
But it may be useful to note that, when studying CFTs in their own right, the anomaly term
or, equivalently, a non-zero central charge do not represent a problem. However, in string theory
the conformal symmetry is part of an underlying gauge symmetry and this term must vanish. It
indeed does, in the so-called critical dimensions, but to see this one needs to do the gauge fixing
more carefully, introducing Fadeev-Popov ghosts. They cancel the central charge coming from
the scalars.

Returning to our main line of development, we now want to be more explicit about the
physical state condition. As in QED, it is sufficient to demand that the ‘annihilator part’ of the
constraint vanishes on physical states, i.e. Lm| phys 〉 = 0 for m ≥ 0. But it turns out that, at
this point, a divergence present in the definition of L0 has to be resolved. This has to do with
operator ordering.

Indeed, our definition so far was

(L0)tot =
1

2

∞∑
n=−∞

α−nαn =
1

2
α2

0 +
1

2

∑
n 6=0

α−nαn . (3.57)

We gave this quantity an index for ‘total’ since we are going to separate the normal ordered part
from it in a moment. We also note that the ordering of the creation and annihilation operators
used above comes directly from the original definition

(L0)tot = Htot =
1

4πα′

∫ π

0

dσ (Ẋ2 +X ′2) . (3.58)

Here, for simplicity, we think of the open string or, equivalently, just the right-moving part of
the closed string.
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To evaluate a constraint like (L0)tot| phys 〉 = 0, we want to work instead with a normal-
ordered operator. Hence, we define

L0 ≡
1

2

∞∑
n=−∞

: α−nαn :=
1

2
α2

0 +
∑
n>0

α−nαn . (3.59)

Note that this supercedes our previous definition of (3.50). The two definitions differ by a
divergent normal ordering constant,

(L0)tot = L0 − a with a = −1

2
(D − 2)

∞∑
n=1

n , (3.60)

following simply from (1/2)(αnα
†
n+α†nαn) = α†nαn+n/2 . The prefactor (D−2) counts the number

of oscillators that contribute. The direct calculation gives, of course,D, but we have corrected this
to (D− 2) on account of the wrong-sign scalar X0. This is necessary since this wrong sign-scalar
is associated with negative norm states, which are connected with the still unfixed (residual)
gauge freedom. The latter corresponds to conformal transformations or reparameterizations of
type σ+ → σ′+ = σ′+(σ) and σ− → σ′− = σ′−(σ), which preserve the flat gauge. One can fix this
further gauge freedom (light-cone gauge and light-cone quantization), which manifestly gets rid
of all oscillators except the (D−2) transversal ones. Alternatively, one can use the Fadeev-Popov
method and introduce ghosts, which will precisely cancel the two modes which we removed by
hand.

We have no time to discuss this in detail, but the reader familiar with QED will immediately
see the analogy with the photon case: Of the formally four degrees of freedom associated with
the vector Aµ, only two transverse modes contribute to physical quantities like Casimir effect or
vacuum free energy. This happens for exactly the same reason as here and to see it explicitly in
a covariant QED calculation one also needs ghosts.

The simplest way to move on is to use ζ function regularization:{
∞∑
n=1

n

}
reg.

= lim
s→−1

(
∞∑
n=1

n−s

)
= lim

s→−1
ζ(s) = ζ(−1) = − 1

12
. (3.61)

This is of course quite formal and not very satisfying. Since the result is important, we want to
spend some time to explain why the normal-ordering constant does in fact have a physical and
a-priori finite definition. To see this, we give the infinite strip on which our 2d field theory lives
a proper, physical width: π → πR. Then we have

Htot =
1

2R

∞∑
n=−∞

α−nαn + πRλ . (3.62)

Crucially, we have here also introduced a cosmological constant counterterm.

We are now dealing with a standard QFT problem – the calculation of the total energy
of a 2d theory on a strip of width πR. The sum over zero modes has a UV divergence, to be
regularized by a introducing a cutoff scale Λ. A cutoff dependence must also be assigned to
the counterterm, λ → λ(Λ). Its form is determined by the requirement that the divergence for
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Λ → ∞ cancels. Moreover, no finite ambiguity will arise since we know from Weyl invariance
that the renormalized cosmological constant must vanish. Thus, we have

Htot =
1

R

(
1

2
α2

0 +
∑
n>0

α−nαn

)
+ lim

Λ→∞

[
D − 2

2R

{
∞∑
n−1

n

}
Λ

+ πRλ(Λ)

]
. (3.63)

A very intuitve way of regularizing this is to think in terms of physical modes with momenta kn =
n/R and to multiply the contribution of each mode by exp(−kn/Λ). It is then a straightforward
exercise to do the summation, find the appropriate counterterm λ(Λ), and to obtain the finite
result

Htot =
1

R

(
1

2
α2

0 +
∑
n>0

α−nαn

)
− D − 2

24R
. (3.64)

The physical interpetation of this finite correction is clear: This is a one-loop Casimir energy,
associated with the finite size of the space on which the QFT lives.9

Returning to our stringy convention with R = 1 and to the notation L0 instead of H, we
have

(L0)tot = L0 − a with L0 =
1

2
α2

0 +
∑
n>0

α−nαn and a =
D − 2

24
. (3.65)

The physical state condition hence reads (m ≥ 0)

(Lm − aδm)| phys 〉 = 0 , (3.66)

where it is crucial to remember that L0 is, by definition, normal ordered.

3.5 Explicit construction of physical states – open string

We start with the open-string worldsheet vacuum,

|0, p〉 , defined by p̂µ|0, p〉 = pµ|0, p〉 . (3.67)

For m > 0, our physical state condition reads

Lm|0, p〉 =
1

2

∑
n

αm−nαn|0, p〉 = 0 , (3.68)

which is satisfied for any p since in any term of this sum either n > 0 or m− n > 0. Thus, there
is always an annihilator involved, giving zero if applied to the vacuum.

By contrast, the m = 0 condition is non-trivial, giving(
p2

2
+
∑
n>0

α−nαn − a

)
|0, p〉 = 0 , (3.69)

9Demonstrating that this result is in fact independent of the precise form of the regularizing function,
exp(−k/Λ)→ f(k/Λ) is not entirely trivial. See e.g. [5] for a discussion of the corresponding 4d problem.
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where we have set l = 1 such that α0 = p. With M2 = −p2, this translates into

M2 = −2a . (3.70)

Thus, not any p is allowed. Rather, the above mass-shell condition must be satisfied.

Moving to the first excited level, we have to consider states

ζµα
µ
−1|0, p〉 , (3.71)

with a polarizaton vector ζ. The mass shell condition now reads

0 = (L0 − a)ζµα
µ
−1|0, p〉 =

(
p2

2
+ α−1 · α1 − a

)
ζµα

µ
−1|0, p〉 =

(
p2

2
+ 1− a

)
ζµα

µ
−1|0, p〉 , (3.72)

implying
M2 = 2(1− a) . (3.73)

Of the Lm conditions with m > 0, now the first also becomes non-trivial:

0 = L1 ζ · α−1|0, p〉 =

(
1

2

∑
n

α1−n · αn

)
ζ · α−1|0, p〉 . (3.74)

Of the various terms in the sum, only those can contribute where n ≤ 1 and 1 − n ≤ 1. This
occurs only for n = 0, 1, such that we find

0 =
1

2
(α1 · α0 + α0 · α1) ζ · α−1|0, p〉 = ζ · α0|0, p〉 = ζ · p|0, p〉 . (3.75)

The implication is that the polarization has to be transverse. We also need the norm of the state,
which is

〈0, p|(ζµαµ−1)†(ζνα
ν
−1)|0, p〉 = 〈0, p|0, p〉ζµζµ = ζ2 . (3.76)

At the so-called second excited level, one has to analyse states of the form

(εµνα
µ
−1α

ν
1 + εµα

µ
−2)|0, p〉 , (3.77)

but we will not do so.

Instead, we summarize the results by focussing on the first excited level:

(A) For a > 1 we have M2 < 0. This means that p is spacelike and hence timelike ζ with ζ ·p = 0
exist. Thus, there are allowed states with ζ2 < 0 and hence negative norm. This is excluded.

The deeper is reason for the problem is that a Weyl anomaly arises, which can only be cured
by considering a background which is not simply flat D-dimensional Minkowski space. This is
know as Supercritical string theory and may (in the supersymmetric case) nevertheless be
relevant phenomenologically, although this is not established.

(B) For a = 1, we have M2 = −p2 = 0, implying that the (D− 1) independent ζs which satisfy
ζ · p = 0 fall into two classes:

One longitudinal, ζ||p, with zero norm.
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(D − 2) transverse, which are spacelike and give rise to positive-norm states. One may think
e.g. of p = (1, 1, 0, · · · , 0) and ζi = (0, 0, · · · , 0, 1, 0, · · · , 0), with unity at position 1 + i and
i ∈ {1, 2, · · · , (D − 2)}. This is consistent with Gupta-Bleuler quantization QED. It gives the
correct description of a gauge theory with a massless vector. This case is known as Critical
string theory and we will completely focus on this case, with the critical dimension D = 26,
in what follows.

(C) For a < 1 we have M2 > 0 for the first excited (and all higher) levels. Thus except
possibly for the vacuum state, this case is practically not very interesting. It is not inconsistent
at the present level of analysis (giving rise to a massive vector with (D−1) positive norm states).
Problems, possibly solvable, arise in the interacting theory. This is known as the Subcritical
string. The Weyl anomaly is also present, as in the supercritical case. Together, cases (A) and
(B) are known as non-critical string theory.

We close by mentioning that the overall picture in the critical case is just like in gauge theory
quantization: We have restricted our Fock space by imposing the physical state condition. The
resulting space has no negative norm states, but so-called null states are still present. The actual
positive-definite Hilbert space is constructed as a quotient

H0 ≡ Hphys/Hnull . (3.78)

The mass-shell condition, originating from (L0 − 1)| phys 〉 = 0, can be written as

M2 = −p2 = 2(N − 1) with N ≡
∑
n>0

α−nαn . (3.79)

The operator N or its expectation value is called the level. We have found a tachyon at
level 0, a massless vector at level 1, and we could have found massive string excitations at
level 2 and higher. The tachyon corresponds to the statement that our assumed 26d Minkowski
vaccum is unstable since a scalar with negative mass squared is present. It will decay by tachyon
condensation, which is an interesting subject of research. But we will not discuss this since we
use the bosonic string only as a toy model get ready for the superstring.

3.6 Explicit construction of physical states – closed string

A repetition of the analysis of the previous section will again single out the case a = 1 or D = 26.
We focus right away on this case, recalling however that the number of operators and constraints
is now doubled. We rewrite

(L0 − a)| phys 〉 = 0 , (L̃0 − a)| phys 〉 = 0 (3.80)

as
(L0 − L̃0)| phys 〉 = 0 , (L̃0 + L̃0 − 2a)| phys 〉 = 0 . (3.81)

We recall that

L0 =
α2

0

2
+N =

p2

8
+N , (3.82)
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since for l = 1 one finds α0 = p/2 in the closed-string case. Analogous equations hold for the
left-movers. With this, the physical state conditions become

(N − Ñ)| phys 〉 and (p2/4 +N + Ñ − 2)| phys 〉 , (3.83)

known as level matching and mass shell conditions respectively. The latter is also frequently
given as

M2 = 4(N + Ñ − 2) . (3.84)

Now one proceeds systematically, level by level, as before. At the vacuum level one again
finds a tachyon,

|0, p〉 , M2 = −8 . (3.85)

At the first excited level, due to the level matching condition, both α−1 and α̃−1 have to be
used:

ξµνα
µ
−1α̃

ν
−1|0, p〉 , M2 = 0 . (3.86)

Note that, as before, one really has M2 = 4(1 + 1 − 2a), such that masslessness follows only
for a = 1, i.e. in the critical dimension. At the first excited level, the L1 and L̃1 constraints are
non-trivial. They read

ξµνp
µ = 0 and ξµνp

ν = 0 . (3.87)

It is also easy to check that the norm of our states is

〈 phys | phys 〉 ∼ ξµνξ
µν , (3.88)

which is always non-negative if the physical state conditions are satisfied.

To classify the states, it is helpful to think of the polarization tensor literally as of an element
in the tensor product of two copies of RD,

ξµν =
∑
ab

vµ(a) ⊗ v
ν
(b) . (3.89)

In analogy to the standard treatment of the photon, one chooses a basis v(a) with one element
v(0) ∼ p, one lightlike element v(1) with non-zero product with p, and D − 2 spacelike elements.
Of these, only the spacelike and v(0) are allowed to appear, hence we have (D−1)2 physical basis
states. Furthermore, (D − 2)2 of them (those built from spacelike vectors only) have positive
norm. The rest corresponds to gauge freedom.

Choosing p ∼ v(0) ∼ (1, 1, 0, · · · , 0) and v(1) ∼ (1,−1, 0, · · · , 0), we see explicitly how prod-
ucts of the (D − 2)2 transverse vectors form a basis for the transverse polarizations ξt, which
correspond to the lower-right corner of the matrix ξ:

ξ =


0 0
0 0

0 · · · 0
0 · · · 0

0 0
· ·
0 0

ξt

 . (3.90)
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The transverse physical polarizations ξt transform under SO(D−2), the group of rotations in the
spacelike hyperplane transverse to p. This is called ‘little group’ – the subgroup of SO(1, D− 1)
leaving p invariant. This rank-2 tensor representation is not irreducible but decomposes into
symmetric, antisymmetric and trace part, corresponding to 3 different fields of the D-dimensional
field theory which the string describes from the target space perspective. They are:

(1) The graviton Gµν , with (D − 1)(D − 2)/2 − 1 d.o.f.s (note that for D = 4 this correctly
reproduces the known result of 2 d.o.f.s).

(2) The Kalb-Ramon field or antisymmetric tensor Bµν , with (D − 2)(D − 3)/2 d.o.f.s.

(3) The dilaton φ, with 1 d.o.f.

We could go on to discuss excited states, but all we will need to know is that there they form
a tower with increasing mass and the number of states at each consecutive level grows extremely
fast. The mass spacing is ∆M2 ∼ 1/α′.

3.7 The 26d action

We are only interested in the critical case, D = 26, and we focus on the closed string (for more
details see e.g. [52]). It is immediate to write down a quadratic-level action for the above fields
(to be supplemented by the tachyon which, as we know, has negative mass squared and make
the 26d Minkowski-space solution unstable). Assuming that one also knows how to compute
scattering amplitudes, one can supplement this action by interaction vertices and write down
the full, non-linear expression at the 2-derivative level. It reads (suppressing the tachyon):

S =
1

κ2

∫
d26x
√
−Ge−2φ

[
R[G]− 1

12
HµνρH

µνρ + 4(∂φ)2

]
. (3.91)

where
H = dB , (3.92)

in complete analogy with F = dA in the 1-form case.

Many important comments have to be made. First, it is apparent that the value of κ2 can
be changed by a shift of φ. Thus, we can for example define κ2 = cα′12, with some numerical
constant c. Then the choice of the background value of φ determines the 26d Planck mass relative
to the mass of the excited string modes, which is ∼ 1/

√
α′. It also governs the perturbativity of

the theory, i.e. the importance of string loops, as we will discuss further down.

Second, the apparently wrong sign of the dilaton-kinetic term is misleading. Indeed, the
above is called the string-frame action (similar to what is called the Brans-Dicke frame in the
non-string context) and one can go to the Einstein frame by the Weyl rescaling

Gµν = G̃µν e
−φ/6 . (3.93)

The result is

S =
1

κ2

∫
d26x

√
−G̃

[
R[G̃]− 1

12
e−φ/3HµνρH

µνρ − 1

6
(∂φ)2

]
. (3.94)

In this frame, the Planck mass is manifestly fixed and the mass of the excited states changes
with varying dilaton background.
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Third, this is the first (but not the last) time we encounter a higher-form gauge theory. So it
may be useful to remind the reader of some basics (a standard summary of conventions can be
found in the Appendix of Volume II of [52]). It is convenient to think not just of an antisymmetric
field Aµ1···µp but of a differential form,

Ap =
1

p!
Aµ1···µpdx

µ1 ∧ · · · ∧ dxµp . (3.95)

Our present case p = 2 with Bµ1µ2 = Aµ1µ2 is part of the more general structure of such gauge
theories.

One should think of the dxµ as basis vectors of the dual tangent space (the cotangent space)
of a manifold, such that

dxµ
(

∂

∂xν

)
= δµν . (3.96)

Higher p-forms take their values in the p-fold exterior product (the antisymmetric part of the
tensor product) of the cotanget space. This is symbolized by the wegde, e.g.

dx1 ∧ dx2 = dx1 ⊗ dx2 − dx2 ⊗ dx1 . (3.97)

It generalizes to
dx1 ∧ · · · ∧ dxp = p! dx[1 ⊗ · · · ⊗ dxp] , (3.98)

where [· · · ] stands for antisymmetrization. The implication is, for example, that

Ap(∂1, · · · , ∂p) = A[1···p] = A1···p . (3.99)

Consistent with the above, one formally defines the product of two forms

(Ap ∧Bq)µ1···µp+q =
(p+ q)!

p!q!
A[µ1···µpBµp+1···µp+q ] . (3.100)

Crucially, the natural map from functions (0-forms) to 1-forms,

d : f 7→ df = ∂µf dx
µ with df(∂µ) ≡ ∂µf , (3.101)

has a generalization to higher forms:

(dAp)µ1···µp+1 = (p+ 1)∂[µ1Aµ2···µp+1] . (3.102)

By its very definition, a p-form provides, at every point, a totally anstisymmetric map from
the p-fold tensor product of the tangent space to the real numbers. Thus, it can be used to define
the volume of an infinitesimal parallelepiped (with orientation, i.e. ordering of the vectors by
which it is spanned) at any point of the manifold. This gives rise to the possibility of integrating
a p-form over a finite p-dimensional submanifold:

V (Cp) =

∫
Cp

Ap . (3.103)
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With this, interpreting Ap as a physical gauge potential, one has the invariant field strength and
the gauge transformation

Fp+1 = dAp and Ap → Ap + dχp−1 . (3.104)

The natural lagrangian is |Fp+1|2 ∼ Fµ1···µp+1F
µ1···µp+1 and the natural coupling to charged objects

is

Smatter ∼
∫

Σp

Ap . (3.105)

This is completely analogous to electrodynamics, where the matter coupling is the integral of
A1 along the worldline of the electron. Here, it is the integral of Ap along the p-dimensional
worldvolume Σp of a (p − 1)-brane. (Recall the convention that the variable p in the term Dp-
brane counts only the spatial dimensions.)

In our case at hand, a charged objects suitable as a source for B2 is already present in the
theory we have so far developed: It is the fundamental string itself. Thus, the term∫

Σ2

B2 (3.106)

has to be added both to our 10d action and to our worldsheet action for the string. If B2 is
non-zero, this changes our 2d theory and its quantization.

Similarly, we see that (3.91), with Gµν = ηµν , φ = 0 and B = 0 describes the solution in the
background of which our fundamental string propagates. This is the 2d theory one is easily able
to quantize. But clearly other solutions for this 10d action exist and the string can be quantized
in their background as well. The 2d theory is then much more complicated, e.g. through∫

d2σ
√
−hhab(∂aXµ)(∂bX

ν)ηµν →
∫
d2σ
√
−hhab(∂aXµ)(∂bX

ν)Gµν(X) . (3.107)

We see that this theory now ceases to be free or quadratic in the fields. For example, if near
X = 0 we can write

Gµν = ηµν + c · (X1)2ηµν + · · · , (3.108)

we encouter a quartic interaction vertex in the worldsheet theory. Similarly, a non-zero B2 =
B2(X) adds new terms to the worldsheet lagrangian. In particular, the X dependence of B2 leads
to new interaction terms in the theory of scalars Xµ living on the worldsheet.

Before closing this section, we should discuss the role of the dilaton φ from the worldsheet
perspective. This field is related to the Einstein-Hilbert term,∫

d2σ
√
−hR , (3.109)

of the worldsheet action. At first sight, this term is clearly allowed. It respects all symmetries of
the worldsheet, including in particular Weyl invariance. A more careful analysis reveals, however,
that it can be written as a total derivative and hence does not affect the equations of motion.
Indeed, following the standard derivation of Einstein’s equations from the Einstein-Hilbert action,
one finds

δh

∫
d2σ
√
−hR =

∫
d2σ

(
Rab −

1

2
habR

)
δhab + boundary terms . (3.110)
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But in d = 2 one has

Rab −
1

2
habR = 0 (3.111)

as an identity. This follows from the symmetries of the Riemann tensor which, as already noted
above, can be expressed in terms of the Ricci scalar. Thus, the worldsheet Einstein-Hilbert term
does not change under continuous deformations of the worldsheet metric. Its integral can however
be non-zero, measuring topological features of the worldsheet (see below).

Now, comparing the dynamics described by the target-space action given above and the role
of the Einstein-Hilbert term on the worldsheet (we will see more details of this further down), one
can establish that φ has to be identified with the coefficient of the worldsheet Einstein-Hilbert
term:

SP ⊃
1

4π

∫
d2σ
√
−hRφ . (3.112)

As before, if φ = φ(X) is non-constant, new interactions are introduced into the worldsheet
theory.

As a final remark, we note that backrounds solving the 26d equations of motion are precisely
those in which the Weyl invariance on the propagating string worldsheet remains unbroken. In
this sence, the 2d theory can be used to directly determine the 26d dynamics, without calculating
scattering amplitudes and comparing them to 26d EFT vertices.

4 String Theory: Interactions and Superstring

Before we can see what the string-theoretic UV completion of gravity has to say about the real
world, a few more formal developments are necessary. First, we want to understand at least in
principle how scattering amplitudes and loop effects are calculated. Second, we need to introduce
fermions and get rid of the tachyon.

4.1 State-operator correspondence

Before discussing scattering amplitudes and loops, a few more words about the worldsheet theory
after gauge fixing are necessary. We learned that this is a CFT and we will here work with the
Euclidean version of this theory. The symmetries of the CFT include angle-preserving deforma-
tions of the worldsheet. For example, we can map our fundamental cylinder corresponding to
the propagation of the string to the z-plane,

z = r eiϕ ∈ C , (4.1)

such that time runs radially and circles of constant r correspond to constant-time cuts through
our cylinder (cf. Fig. 12). The reader is invited to consider the explicit map z = exp(iw) and
identify a strip in the w-plane (with periodic boundary conditions, i.e. a cylinder) that is mapped
to the z-plane in the desired way.

Next, let us recall that a state in a 4d QFT may, analogously to the Schrödinger wave
function of quantum mechanics, be described by a Schrödinger wave functional,

Ψ : φ 7→ Ψ[φ, t] ∈ C . (4.2)
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Figure 12: String propagation mapped to the z-plane. The part of the cylinder between initial
time τi and final time τf corresponds to the annulus (ring) between ri and rf .

Here φ : x 7→ φ(t, x) ∈ R is a field configuration at fixed time. The evolution of such states is
described by the QFT version of the Feynman path integral.

In our context, a string state at time τi is then represented, in the radial representation, by
a wave functional

Ψi[Xi, ri] . (4.3)

HereXi stands for any of the possible field configurationsXµ
i (ri, ϕ). The wave functional obtained

by Hamiltonian evolution at radial time rf reads

Ψf [Xf , rf ] =

∫
DXi

∫ Xf

Xi

DX e−S[X] Ψi[Xi, ri] . (4.4)

Here the labels Xi and Xf of the integral mean that we integrate over field configurations X(r, ϕ)
satisfying X(ri, ϕ) = Xi(ϕ) and X(rf , ϕ) = Xf (ϕ).

Now, consider the limit in which our evolution starts at τi = −∞, corresponding to ri = 0
or z = 0. In this limit, we can write (4.4) as

Ψf [Xf , rf ] =

∫ Xf

DX e−S[X] lim
ri→0

Ψi[X(ri, ϕ), ri] =

∫ Xf

DX e−S[X] O(z = 0) . (4.5)

Here, in first step, we have absorbed the integral over Xi in the integral over X, dropping the
initial boundary condition. In the second step, we have introduced the operator O in the CFT,
i.e., some expression involving X(0) and its derivatives.

By the above procedure, we have understood how a given state, in our case the state defined
by Ψi, specifies an operator. The opposite direction is obvious: Clearly, Equation (4.5) may be
interpreted as describing the evolution of some state, defined by O, from τ = −∞ to τf .

Thus, we now know how to associate a CFT state with an operator and vice versa.

4.2 Scattering amplitudes

After the discussion of the previous section, it should be at least intuitively clear that the integral
over fields on a cylinder can be replace by the integral over fields on the sphere, with appropriate

64



operators inserted at the points which are mapped to τ = ±∞. This is illustrated in Fig. 13
together with an analogous map corresponding to the 2-to-2 scattering of string states.

Figure 13: Identification of string propagation or scattering with compact worldsheets (in this
case spheres) with operator insertions.

This leads very naturally to the following fundamental formula for n-point scattering ampli-
tudes in string theory, which one may view as the definition of the theory:

An =
∞∑
g=0

∫
DhDX

VolDiff.×Weyl

e−S[X,h]

∫
d2z1 · · · d2zn V1(z1, z1) · · ·Vn(zn, zn) . (4.6)

Here the sum is over all compact oriented 2d manifolds (Riemann surfaces), as illustrated in
Fig. 14. The terms are labelled by the genus g of the worldsheet. The integration is not only over
field scalar field configurations X but also over metrics h. This definition is more fundamental
and the gauge-fixed integral just over X (corresponding to the CFT language) must be carefully
derived from it. The reason is that there is a non-trivial interplay between the topology of the
manifold, the position of the vertex operators and the residual gauge freedom. In this process, one
also has to divide out the infinite factor coming from gauge redundancies. This factor becomes
manifest when one uses the Fadeev-Popov method to treat the functional integration.

Figure 14: Contributions of worldsheets of genus zero, one and two to the four-point scattering
amplitude.

The action to be used in the above is

S[X, h] =
1

4πα′

∫
Σ

d2σ
√
−h(∂X)2 +

φ

4π

∫
Σ

d2σ
√
−hR , (4.7)

where we suppress boundary terms relevant in the open-string case. We have also assumed that
the target space is flat and the dilaton constant. Restricting our attention to the oriented string,
one has

1

4π

∫
Σ

d2σ
√
−hR = χ(Σ) = 2− 2g , (4.8)

where χ is known as the Euler number. Thus, the second term on the r.h. side of (4.7) just
supplies a factor

g−χs = g−2+2g
s with gs ≡ eφ . (4.9)
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The quantity gs is known as the string coupling.

Finally, the so-called vertex operators Vi have to be chosen appropriately to reflect the
physical states in the scattering of which one is interested. They can be derived from our un-
derstanding of the physical states of the quantized string and the state-operator mapping. Here,
we only provide as an example the vertex operator for the tachyon of momentum k, which is
basically the simplest operator that has the desired transformation properties under translations:

V (k, z, z) = gs : eik
µXµ(z,z) : . (4.10)

The normalization by gs ensures that that free propagation is proportional to g0
s , tree-level

4-point-scattering to g2
s , one-loop 4-point-scattering to g4

s , and so on.

From here, it would be relatively straightforward to calculate some of the simplest amplitudes
and loop diagrams (a.k.a. higher genus contributions) and convince oneself of the promised very
soft UV behaviour and loop finiteness. But we have to move on.

4.3 World sheet supersymmetry

We need to find a string theory which desribes target space fermions and which has no tachyon.
Both can be achieved by supersymmetrizing the worldsheet. As in 4d, we simply add fermionic
worldsheet coordinates,

σa ‘+’ θα . (4.11)

The 2d Lorentz transformations are completely analogous to the familiar 4d case,

σa → Λa
bσ

b , θα → Sα
βθβ , (4.12)

with
Λ = exp(iεabJab) and S = exp(iεab {i[γa, γb]/4}) . (4.13)

One may easily check that

γ0 =

(
0 −i
i 0

)
, γ1 =

(
0 i
i 0

)
(4.14)

fulfil
{γa, γb} = −2ηab . (4.15)

Of course, both i[γa, γb]/4 and Jab, of which there is in each case only one independent element,
have the same, trivial commutation relations: After all, SO(1, 1) is a one-parameter group.
Nevertheless, the two representations are different, as the reader may want to check explicitly.

Furthermore, since S is real, one may obviously demand that the spinor is real:

θ∗ =

(
θ−
θ+

)∗
=

(
θ−
θ+

)
= θ . (4.16)

This is a particularly simple version of the familiar Majorana condition

ψ = ψc ≡ C ψ
T
. (4.17)
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They reader may want to consult the appendix of Volume 2 of [52] for a systematic discussion
of spinors in various dimensions.

Following very closely the familiar 4d procedure, we promote our scalars to (general) super-
fields,

Xµ → Y µ(σ, θ) (4.18)

with

Y µ(σ, θ) = Xµ(σ) + θψµ(σ) +
1

2
θθ Bµ(σ) . (4.19)

Here θ = θ†γ0, as in 4d. We define SUSY generators

Qα =
∂

∂θ
α + i(γaθ)α ∂a , (4.20)

which are also Majorana spinors, and observe that they satisfy the SUSY algbera relation

{Qα, Q
β} = −2i(γa)α

β∂a . (4.21)

The SUSY transformation can be defined by

δξY (σ, θ) = (ξQ)Y (σ, θ) , (4.22)

leading to

δξX
µ = ξψµ (4.23)

δξψ
µ = −i(γaξ)∂aXµ +Bµξ (4.24)

δξB
µ = −iξγa∂aψµ . (4.25)

To write down SUSY-invariant actions, it is sufficient to integrate any expression in the Y µ

over the full superspace. In our case this is simply a d2σ d2θ integral. However, we are looking for
a specific action which would serve as a generalization of the (so far flat-space) bosonic Polyakov
action. For this purpose, it is convenient to introduce the supercovariant derivative

Dα =
∂

∂θ
α − i(γaθ)α∂a . (4.26)

The SUSY version of our bosonic action (with l = 1) can then be given as

S =
i

4π

∫
d2σ d2θ (D

α
Y µ)(DαYµ) = − 1

2π

∫
d2σ (∂aX

µ ∂aXµ − iψ
µ
/∂ψµ −BµBµ) . (4.27)

The auxiliary field vanishes on-shell such that, in summary, we have simply added a free fermion
ψµ for every scalar.

67



4.4 World sheet supergravity

The next step is to introduce gravity (more precisely, to promote the metric to a field, since
gravity in the sense of a dynamical theory does not really exist d = 2). This implies making
SUSY local, as explained earlier.

To explain this at the technical level, we first note that (since our theory contains spinors),
we have to introduce a vielbein

hab = (em)a(e
n)b ηmn , (4.28)

where a, b, · · · are ‘curved’ or ‘Einstein indices’ as before and m,n, · · · are ‘frame’ or ‘Lorentz
indices’. Furthermore, since the Lorentz symmetry transforming the Lorentz indices is local, we
require a spin connection, to define covariant derivatives of objects with frame indices:

∇av
m = (∂a + ωa)v

m with ωa ∈ Lie(SO(1, d− 1)) , (4.29)

in our case with d = 2. It is defined by demanding covariant constancy of the vielbein,

0 = ∇ae
m
b = ∂ae

m
b + (ωa)

m
ne
n
b − Γcabe

m
c , (4.30)

where Γ stands for the usual Christoffel symbols. Clearly, the object on which ∇ acts can
transform in any representation of SO(1, d − 1), in which case ωa has to be taken in that
representation.

With these preliminary remarks our action becomes, in the first step,

S2 = − 1

2π

∫
d2σ e

{
hab(∂aX

µ)(∂bXµ)− iψµγa∇aψµ

}
. (4.31)

The index 2 stands for ‘quadratic order’. We want to make this invariant under a local version
of the SUSY transformations above, i.e. with ξ → ξ(σ). In addition, we need to define SUSY
transformations of our new field, the metric or, more appropriately, the vielbein. Working at
leading order in perturbations around flat space, ema = δma, one postulates

δξe
m
a = −2iξγmχa . (4.32)

Here χa is the gravitino, the appearance of which on the r.h. side is natural since we introduced
it earlier as the superpartner of the metric. The rest of this relation is fixed (up to normalization)
by covariance.

The action of (4.31) is not invariant but, since it was invariant under the global version, its
non-invariance is controlled by the derivative of ξ. Thus, we have

δξS2 =
2

π

∫
d2σ
√
−h (∇aξ) J

a , (4.33)

where Ja is by definition the Noether current corresponding to the global version of the symmetry.
Explicitly, one finds (at quadratic order in the fields)

Ja =
1

2
γbγaψµ∂bXµ , (4.34)
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known as the supercurrent. This can be compensated by adding a term

S3 = − 2

π

∫
d2σ
√
−hχa Ja = − 1

π

∫
d2σ
√
−hχaγbγaψµ∂bXµ , (4.35)

and introducing the transformation law

δξχa = ∇aξ . (4.36)

For obvious reasons, this method of constructing supergravity actions is known as the Noether
method.

It is not yet complete: Only after a modification of δξψ by a term proportional to the gravitino
and the addition of a quartic term,

S4 = − 1

4π

∫
d2σ
√
−h (ψψ) (χaγ

bγaχb) , (4.37)

does the theory become invariant under local SUSY. We recall that the Einstein-Hilbert term
is a total derivative. This matches the fact that the gravitino kinetic term is identically zero in
d = 2 (since γ[aγbγc] = 0).

Finally, the theory is still Weyl invariant, with transformation laws

δωX = 0 , δωe
m
a = ωema , δωψ =

1

2
ωψ , δωχa =

1

2
ωχa . (4.38)

Due to SUSY, this symmetry now has a fermionic counterpart, parameterized by the infinitesimal
Majorana spinor η:

δηX = δηe = δηψ = 0 , δηχa = iγaη . (4.39)

This makes our theory super-Weyl-invariant and, after gauge fixing, superconformal.

4.5 Quantization of the superstring

The large gauge symmetry (Diffeomorphisms, local Lorentz symmetry and local SUSY, super-
Weyl-invariance) allow us to go to flat gauge, with trivial vielbein and vanishing gravitino. Thus,
we haved to quantize the simple action

S = − 1

2π

∫
d2σ

[
(∂aX

µ)(∂aXµ)− iψµγa∂aψµ
]
. (4.40)

As before, the equations of motion of the fields that have been eliminated by gauge fixing must
be imposed as constraints. These are

Tab = 0 , (4.41)

as before, where we now have

Tab = (∂aX) · (∂bX) +
i

2
ψ · γ{a∂b}ψ −

1

2
hab

(
(∂X)2 +

i

2
ψ · /∂ψ

)
. (4.42)
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Here the curly brackets stand for symmetrization. In addition, we can use local SUSY and super-
Weyl invariance (see [53] for details) to set the gravitino χa to zero. But, as we have just seen
in the last section, its equations of motion correspond, at leading order in χ, to the vanishing of
the supercurrent:

(Ja)α = 0 . (4.43)

This is the second, new constraint.

The mode decomposition for the bosonic part is as before. To discuss the mode decomposition
of the fermionic part, write

S = SB + SF with SF =
i

π

∫
d2σ (ψ− · ∂+ψ− + ψ+ · ∂−ψ+) , where γ± = γ0 ± γ1 .

(4.44)
This explains our indexing convention in

ψ =

(
ψ−
ψ+

)
(4.45)

since we now see that ψ− and ψ+ are left and right movers respectively. Due to the fermionic
nature of ψ, a sign is not detectable (observables are alway built from bilinears), such that two
different types of boundary conditions (known as Ramond and Neveu-Schwarz) are possible.
This leads to 4 sectors:

ψ+(σ + π) = +ψ+(σ) ; ψ−(σ + π) = +ψ−(σ) R-R

ψ+(σ + π) = +ψ+(σ) ; ψ−(σ + π) = −ψ−(σ) R-NS

ψ+(σ + π) = −ψ+(σ) ; ψ−(σ + π) = +ψ−(σ) NS-R

ψ+(σ + π) = −ψ+(σ) ; ψ−(σ + π) = −ψ−(σ) NS-NS . (4.46)

Note that we could not have used an arbitrary phase exp(iα) instead of the sign since our spinors
are real. The mode decomposition in the R-NS sector reads

ψµ+ =
∑
r∈Z

ψ̃µr e
−2ir(τ+σ) , ψµ− =

∑
r∈Z+ 1

2

ψµr e
−2ir(τ−σ) , (4.47)

and analogously for the other 3 sectors. The reality constraint translates to the usual relation
between modes with opposite frequency, e.g. (ψµr )∗ = ψµ−r.

On the open string, one only has R-R and NS-NS sectors. This is clear since one can think of
the open string as coming from the closed (to be viewed as a theory on S1) by ‘modding out’ a
Z2 symmetry. In other words, one goes from S1 to S1/Z2. The Z2 acts by σ → −σ on the space,
which means that it exchanges left and right movers in terms of fields. This would be inconsistent
in a R-NS or NS-R sector. Of course, the above can be translated into the alternative picture
of the superstring on an interval, with two consistent sets of boundary conditions at the two
boundaries σ = 0 and σ = π. We leave that to the reader.

Skipping the standard steps of canonical quanitization, we immediately display the commu-
tation relations of the oscillator modes, promoted to operators:

[αµm, α
ν
n] = mδm+n η

µν (4.48)

{ψµr , ψνs} = δr+s η
µν with

{
r, s ∈ Z (R)
r, s ∈ Z + 1

2
(NS)

.
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The different normalizations (manifest in the prefactor m and the missing prefactor r) is conven-
tional. As before, the operators responsible for the constraints are expanded in Fourier modes,

Lm =
1

π

∫ π

−π
dσ eimσ T++ , Gr =

√
2

π

∫ π

−π
dσ eirσ J+ , (4.49)

with

Lm =
1

2
:

{∑
n∈Z

α−n · αm+n +
∑
r∈Z+ν

(
r +

m

2

)
ψ−r · ψm+r

}
: (4.50)

Gr =
∑
n∈Z

α−n · ψr+n where ν ≡
{

0 (R)
1/2 (NS)

(4.51)

These operators generate the super-Virasoro algebra, of which we display only the general
structure:

[L,L] ∼ L+ anomaly , [L,G] ∼ G , {G,G} ∼ L+ anomaly . (4.52)

As before, only the annihilator-part of the classical constraints is imposed quantum-
mechanically:

(Lm − aδm) |phys〉 = 0 (m ≥ 0) , Gr |phys〉 = 0 (r ≥ 0) , (4.53)

where we note that there is no normal ordering ambiguity and hence no normal ordering constant
associated with G0.

We do not repeat the derivation but simply quote the result for the normal ordering constant:

a = (D − 2)

(
1

24
− 1

24

)
= 0 (R) , a = (D − 2)

(
1

24
+

1

48

)
=
D − 2

16
(NS) . (4.54)

We see that, in the Ramond-case, the fermions precisely cancel the effect of the bosons. In the
Neuveu-Schwarz case, this supersymmetric cancellation is upset by the non-trivial boundary
conditions imposed on the fermions but not on the bosons.

Let us now turn concretely to the Fock space of the open-string NS sector: We have

Vacuum: |0, k〉 , Creation operators: αµ−m ; ψµ−r (m, r > 0) . (4.55)

The mass shell condition reads

0 = (L0 − a) |0, k〉 = (α′p2 +Nα +Nψ − a) |0, k〉 , (4.56)

where
Nα =

∑
m=1,2,···

α−mαm , Nψ =
∑

m= 1
2
, 3
2
,···

r ψ−rψr . (4.57)

This implies that there is a scalar at level zero,

α′M2 = −a , (4.58)
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and a (target-space!) vector corresponding to the physical ψ−1/2 excitations at level 1/2:

εµψ
µ
−1/2|0, k〉 with α′M2 =

1

2
− a . (4.59)

In analogy to the logic of the bosonic case, we expect that D = 10 (with a = 1/2) is the
critical dimension, corresponding to the vector being massless (and the scalar a tachyon, as in
the bosonic string).

Next, we turn to the open-string R-sector, which superficially differs only very little in that

Nψ =
∑

r=0,1,2,···

r ψ−r · ψr =
∑

r=1,2,···

r ψ−r · ψr . (4.60)

But this number operator leads to the very peculiar situation that the ψµ0 do not appear in L0

and hence do not affect the energy (mass squared) of a state. They do, however, satisfy the
non-trivial algebra (D-dimensional Clifford algebra)

{ψµ0 , ψν0} = ηµν . (4.61)

Hence, every mass eigenspace must carry a representation of this algebra, i.e. it must be a
target-space spinor:

Vacuum: |α, k〉 with α = 1, 2, 3, · · · , 2D/2 = 32 . (4.62)

Since a = 0, this spinor is massless. To derive the critical dimension we would need to either
consider heavier, excited states or involve ghosts and vanishing central charge argument. We do
not do this here and only assert that the critical dimension is still D = 10.

4.6 GSO or Gliozzi-Scherk-Olive projection

Before constructing the 10d superstring theories which may be relevant for the real world, we
need a further technical ingredient. The underlying idea is that one may always use a projection
operator (an operator P with P 2 = P ) commuting with H to reduce the Hilbert space in
a consistent manner. A familiar example is the projection on symmetric and antisymmetric
subspaces of H ⊗ H to define bosons and fermions in 2-particle quantum mechanics. Another
example (from this course) is the projection of functions on S1 to functions on S1/Z2, which
corresponds to the projection to even and odd functions and hence to the projection from closed
to open string (with Dirichlet or Neumann boundary conditions). The new Hilbert space after
projection is, by definition, Image(P ).

Here, we focus on the open superstring and consider

P =
1

2
(1 + (−1)F ) , where F ≡ Fermion number . (4.63)

This amounts to keeping only states with even F (note that F is only defined mod 2). Concretely,
one defines

(−1)F |0, k〉 = −|0, k〉 (NS)

(−1)F |α, k〉 = |β, k〉Γβα (R) where Γ ≡ Γ11 ≡ Γ0Γ1 · · ·Γ9 . (4.64)
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together with
(−1)FXµ = Xµ(−1)F and (−1)Fψµ = −ψµ(−1)F . (4.65)

Here the appearance of Γ ≡ Γ11 (the 10d version of γ5) is enforced by the necessity to have
(−1)F anticommute with all ψµr s, including ψµ0 (the latter being identified with the Γµs).

After this projection, the tachyon is gone and the 32-component Majorana spinor has turned
into a 16-component Majorana-Weyl spinor (in 10d both conditions may be imposed together).
On shell and in terms of the appropriate representations of the little group SO(8), one has

massless vector (8v) + Majorana-Weyl fermion (8) . (4.66)

Here the symbol 8v stands for the (defining) vector representation of SO(8), the symbol 8 for
the chiral Majorana spinor. We will later on also need the opposite-chirality Majorana spinor,
which corresponds to an inequivalent representation. It is denoted by 8′.

The 8v + 8 found above fit a 10d supersymmetric gauge theory. But we will not develop this
construction since it anyway must be coupled to a closed string sector. Our purpose was only
to explain the idea of this particular projection on even (or similarly on odd) fermion number
states.

4.7 Consistent type II superstring theories

We now turn to the closed string case. The name ‘type II’ refers to the presence of two super-
symmetries (equivelently two gravitini) in 10d, as will become clear in a moment. We first recall
the relevant mass-shell and level-matching conditions

(L0 + L̃0) |phys〉 = 0 and (L0 − L̃0) |phys〉 = 0 (4.67)

with

L0 =
α′

4
p2 +N − ν , L̃0 =

α′

4
p2 + Ñ − ν̃ and ν/ν̃ =

{
0 (R)

1/2 (NS)
. (4.68)

Note that the spacing between the different mass levels differs by a factor of 4 compared to the
open string. The lowest levels in the four possible sectors are

Sector SO(8) rep. mass
NS− 1 tachyon
NS + 8v massless
R− 8′ massless
R + 8 massless ,

where ± refers to the eigenvalue of (−1)F on which one can potentially project and 8/8′ refer to
the two inequivalent spinor representations of SO(8). (Of course the ‘1’ appearing in the row of
the tachyon is only intended to say that this is a scalar with a single degree of freedom – it is
strictly speaking not appropriate to classify it using the little group of massless particles in 10d.)
As a side remark, the existence of these in total three 8-dimensional, inequivalent representations
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of SO(8) is related to the Z3 symmetry of its Dynkin diagram. When combining left and right-
moving sectors, the level matching constraint allows NS− to be paired only with itself, the other
3 sectors can be paired in any combination. This gives the unprojected spectrum

Sector SO(8) rep.
(NS−, NS−) 1
(NS +, NS +) 8v × 8v
(NS +, R−) 8v × 8′

(NS +, R +) 8v × 8
(R−, NS +) 8′ × 8v
· · · · · · .

There are in total 10 sectors in this table and (indepedently of the specific fermion-number-
projector), one might imagine building a consistent theory from any combination of them.
Clearly, there are 210 possibilities to select some subset of these sectors. But this selection can
not be random: We want it

(1) Not to contain a tachyon.

(2) To be modular invariant (i.e. invariant under large diffeomorphisms of the torus, for example
under exchange of τ and σ and hence under reinterpretation of the direction of time flow,
cf. Fig. 15)

(3) To obey certain mutual consistency rules among the selected vertex operators on the world-
sheet. (There should be no leftover phase or branch cut when one operator circles another,
cf. Fig. 16. The operator product expansion should close or, in other words, it should not be
possible to produce a state in scattering which we have excluded from our selection.)

Figure 15: Illustration of the intuitive meaning of modular invariance.

With this, only two inequivalent possibilities of the 210 are left [52]. The corresponding
selections are easily formulated using fermion number constraints or projections:

Type IIA: left: (−1)F = 1 right: (−1)F̃ = 1 (NS) / (−1)F̃ = −1 (R)

Type IIB: left: (−1)F = 1 right: (−1)F̃ = 1 .
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Figure 16: In principle, branch cuts can arise in the correlation function between two vertex
operators. This should, however, be forbidden since it makes the integration over all positions
impossible.

These general rules translate, specifically in type IIA in:

Sector SO(8) rep.

(NS+,NS+) 8v × 8v = 1 + 28 + 35 = [0]φ + [2]B2 + (2)G
(NS+,R−) 8v × 8′ = 8 + 56′ = spinor + vector-spinor′

(R+,NS+) 8× 8v = 8′ + 56 = spinor′ + vector-spinor
(R+,R−) 8× 8′ = 8v + 56t = [1]C1 + [3]C3

To derive the last two columns of this table, one needs elementary representation theory. We
will only interpret the results. We note that SO(8) has three inequivalent 56-dimensional rep-
resentations, two vector-spinors and one antisymmetric rank-2 tensor. We used a square and
round bracket for antisymmetric and traceless symmetric tensors of a given rank. Hence e.g. [2]
stands for the familiar Kalb-Ramond field and (2) for the graviton. On the bosonic side, we have
dilaton, B2, gµν and two form-fields, C1 and C3. The latter are a new feature of the superstring
and the correponding charged states are so-called D0 and D2 branes, which are non-perturbative
objects (in the sense that they do not directly follow from the perturbative analysis of world-
sheet degrees of freedom). They have to be introduced into the theory for consistency, have their
own action and dynamics, and provide potential endpoints for open strings.

We are finding a so-called N = 2 supersymmetric theory since we have two gravitini which
are both partners of the same, unique graviton. The other two spinors are known a dilatini. There
are two independent SUSY generators and hence SUSY transformations relating the graviton to
either one or the other gravitino. However, the overall structure is more involved and all degrees
of freedom are needed in fully match fermions and bosons.

Analogously, one finds the field content of the type IIB string:

Sector SO(8) rep.

(NS+,NS+) 8v × 8v = 1 + 28 + 35 = [0]φ + [2]B2 + (2)G
(NS+,R+) 8v × 8 = 8′ + 56 = spinor′ + vector-spinor
(R+,NS+) 8× 8v = 8′ + 56 = spinor′ + vector-spinor
(R+,R+) 8× 8 = 1 + 28 + 35+ = [0]C0 + [2]C2 + [4]+ , C4

The key differences are that this theory is chiral (a preference is given to one of the two
different available chiralities of spinors and vector-spinors). Furthermore, the form-field and
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hence the brane content is different. It is easy to remember that type IIA and IIB theory contain
odd and even p-form gauge potentials respectively and hence even and odd Dp-branes. A further
noteworthy specialty of the IIB theory is the fact that the C4 theory is subject to a self-duality
constraint, F5 = F̃5, which halves the number of degrees of freedom (cf. the index of [4]+ and
35+).

4.8 Other 10d theories

The name type II refers to the two supersymmetries. There is also a minimally supersymmetric
10d superstring theory called type I with unoriented strings. It follows by modding out world-
sheet parity. By this one means the introduction of an operator Ω which realizes the classical
transformation σ → −σ at the quantum level (hence Ω2 = 1) and projecting on the 1-eigenspace
of

P =
1

2
(1 + Ω) . (4.69)

A detailed analysis reveals that stability (‘tadpole-cancellation’) always requires the presence of
32 D9-branes, giving rise to gauge fields living in 10d. Due to the projection the group is not
U(32) but its ‘real subgroup’, SO(32).

Furthermore, it is consistent (and allows for tachyon removal) to supersymmetrize only the
left- or right-moving half of the worldsheet theory. For obvious reasons such theories are called
heterotic and they come in two types, named after their non-abelian gauge group (which are
present in both cases): heterotic E8 × E8 and heterotic SO(32).

Not surprisingly, the latter is related to type I by a so-called duality. In this particular case,
it is a so-called strong-weak duality saying that type I at weak string coupling is identical to
heterotic at strong coupling and vice versa. In fact all of the 5 10d theories above are related to
each other by dualities, projections or compactifications (see Fig. 17) and are sometimes referred
to collectively as the (perturbative corners of) M-theory. One usually includes 11d supergravity
in this set, although the fundamental objects there appear to be membranes (specifically M2-
branes) rather than strings and the theory is much less well understood in the ultraviolet.
Occasionally, the name M-theory is also used to refer only to 11d-supergavity rather than to the
whole set of theories. It is believed that these 6 theories are the calculable, perturbative corners
of a more general and not yet fully understood structure - M-theory as ‘defined’ by the inner
region of the ‘amoeba’ in Fig. 17.

5 10d actions and compactification

5.1 10d supergravities and Type IIB as an example

The existence of a target space action for each consistent string theory and its fundamental
relation to the worldsheet perspective has already been discussed in the context of the bosonic
string. All that was said there remains true. In particular, there are always the 10d graviton
and B2 field, coupling to the worldsheet (except in the case of the unoriented type I string,
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Figure 17: Illustration of M-theory and its perturbative corners: the 5 superstring theories and
11d SUGRA.

where it falls victim to the projection taking us from type IIB to type I). There is also always
the dilaton governing the convergence of perturbation theory. Together, dilaton, graviton and
B2 form the NS-NS sector (see above). As a novelty, one has the Cp+1 (or R-R) form fields
and the corresponding Dp-branes. These are dynamical objects, just like the string itself, but
with different dimensionality and (at weak string coupling) larger tension. This analysis would
be slightly different in the heterotic case, where there are no C-forms but rather gauge fields.
Crucially, there are fermionic partners for all the fields above.

What is very different from the bosonic case is the uniqueness of the above 5 theories,
independently of the stringy construction. This is due to supergravity. Indeed, supersymmetry
(and supergravity) exists in various dimensions (cf. Appendix of volume II of [52]), but its
realization becomes harder and harder as the dimension grows. This can be roughly understood
by noting that the spinor dimension grows exponentially with D, making it more difficult to find
a matching bosonic structure.

Let us start by noting that for even D one has

Γ0, · · · ,ΓD−1 and Γ ≡ Γ0 · Γ1 · · · · · ΓD−1 , (5.1)

allowing us to define chirality through the projector (1 + Γ)/2. In the dimension (D+ 1), which
is now odd, Γ becomes the highest ‘usual’ gamma matrix and the product of all gamma matrices
becomes Γ · Γ ∼ 1. Hence, chirality can not be defined.

In some dimensions (see [52]) there is a Majorana spinor and, if both Weyl and Majorana
spinors exist independently, it is sometimes possible to impose both constraints together. We
have seen that this happens in D = 2, where the naive spinor dimension is 2D/2 = 2, i.e. 4 real
d.o.f., and we found spinors with one real component.

This situation occurs again in D = 10, where the Dirac spinor has 32 components and a
16-component real spinor exists. This spinor has 4 times the degrees of freedom of a minimal
4d spinor, hence the minimal 10d SUSY is referrred to as N = 4 SUSY in 4d language. One
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may also characterize this as 10d N = 1 SUSY. We have encountered a gauge theory with this
amount of supersymmetry when we quantized the open superstring in 10d. This gauge theory
(more precisely its non-abelian version) can be coupled to supergravity and it is the SUSY of the
heterotic and type I theories. It is also possible to have 10d N = 2 supergravity (correspnding
to N = 8 in 4d language. Gauge fields can not be added to such theories. This is the SUSY of
the type II string. Very interestingly, this higher-dimensional, highly supersymmetric setting is
so constraining that (under very reasonable assumptions) these 4 theories can be shown to be
the only 10d supergravities. This uniqueness includes the gauge group – only E8 × E8 and
SO(32) are possible on anomaly cancellation grounds. It is very intriguing that precisely these
4 10d supersymmetric field theories are realized in string theory. All these theories are unique
also in the sense that no dimensionless parameters are present. An equally unique supergravity
theory exists in 11d - it is the 11d theory linked to type IIA via compactification on S1 as notes
earlier. No other supergravity theories above 9 dimensions are known.

All of them have been tried as starting points for a stringy description of the real world. The
landscape, i.e. a very large number of potentially suitable 4d models has been most convincingly
established in type IIB (although there are still reasonable doubts, to which we will come). We
hence focus on this theory.

In the widely used conventions of [52, 63], the bosonic part of the string-frame type IIB
action reads

S =
1

2κ2
10

∫
d10x
√
−g
{
e−2φ

[
R+ 4(∂φ)2 − 1

2 · 3!
H2

3

]
− 1

2
F 2

1 −
1

2 · 3!
F̃ 2

3 −
1

4 · 5!
F̃ 2

5

}
+SCS+Sloc .

(5.2)
Here 2κ2

10 = (2π)7α′4 and

F̃3 = F3 − C0 ∧H3 , F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 . (5.3)

The RR-form field strengths with a tilde are gauge invariant (as is H3). This implies special
gauge transformation properties of some of the potentials, e.g.

C2 → C2 + dλ1 goes together with C4 → C4 +
1

2
λ1 ∧H3 . (5.4)

Furthermore, terms which do not involve the metric are often referred to as Chern-Simons terms.
In our case it reads

SCS =
1

4κ2
10

∫
eφC4 ∧H3 ∧ F3 . (5.5)

Finally, we collect the actions of the various branes (including extended fundamental strings)
which may be present in the target space and are described by the ‘localized’ part Sloc. We just
display the example of a D3-brane

Sloc ⊃ SD3 =
1

2π3α′2

∫
D3

C4 −
∫
D3

d4ξ
√
−g T3 with T3 =

1

(2π)3α′2
. (5.6)

The first part of SD3 may also be called a Chern-Simons-type term since the metric does not
enter. The coordinates ξ parameterize the world-volume of the brane and the metric next to
them is the pullback of the 10d metric. Analogous expressions for the other odd-dimensional
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Dp-branes and the string have to be added. The general formula for the tension appearing in
the SDp is

Tp =
e(p−3)φ/4

(2π)pα′(p+1)/2
. (5.7)

We do not display the completely analogous expression for type IIA, where the relevant RR
form fields are C1 and C3. We only note that the non-localized CS term takes the form∫

B2 ∧ F4 ∧ F4 . (5.8)

The action for type I follows from that of type IIB upon a so-called orientifold projection,
i.e., a projection on states invariant under worldsheet-parity inversion. In 10d, this implies the
removal of C0, B2 and C4. Furthermore, 32 D9-branes have to added, also subject to a certain
projection, which restricts the gauge group to SO(32). Thus, one basically includes the lagrangian
of the corresponding 10d super-Yang-Mills (SYM) theory.

Finally, in the heterotic case one removes the C-forms (keeping B2) and adds SYM la-
grangians with groups E8 × E8 or SO(32). It is then clear that the advertised duality between
the type-I and the heterotic SO(32) theory also involves the exchange of the F3 and H3.

We recall again that the fermionic parts also differ strongly between the various theories,
given in particular that SUSY is reduced to 10d N = 1 in all but the two type II theories.

5.2 Kaluza-Klein compactification

One has thus arrived at a possibly fundamental and (involving the various dualities above)
unique 10d theory. To describe a 4d world on this basis, the logical procedure is to employ the
idea of Kaluza-Klein compactification. This method of obtaining lower from higher-dimensional
theories is old and has, as we will see, some appeal in its own right [64–69].

Let us start with what may be the simplest example: a 5d scalar field on M = R4 × S1,
where the S1 has radius R (such that x5 ∈ (0, 2πR)):

S =

∫
M

d5x
1

2
(∂Mφ)(∂Mφ) , M ∈ {0, 1, 2, 3, 5} . (5.9)

We take φ = 0 (in fact any other value, φ = const., would be equally good) as our vacuum and
parameterize fluctuations around this solution according to

φ(x, y) =
∞∑
n=0

φcn(x) cos(ny/R) +
∞∑
n=1

φsn(x) sin(ny/R) . (5.10)

Here we renamed x5 according to x5 → y and we use the argument x as x = {x0, x1, x2, x3}. One
immediately finds

S = 2πR

∫
d4x

[
1

2
(∂φc0)2 +

1

4

∞∑
n=1

{
(∂φcn)2 +m2

n(φcn)2 + (∂φsn)2 +m2
n(φsn)2

}]
, (5.11)
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with mn = n/R. Hence, our model is exactly equivalent to a 4d theory with one massless field and
a (doubly degenerate) tower of KK modes. The massless mode parameterizes a ‘flat direction’,
i.e. it is not only massless but has no potential at all. It can hence take an arbitrary constant
value, which would still be a solution. Such a field is called a modulus.

We will frequently encounter cases where the value of the modulus governs the masses and
couplings of the rest of the 4d theory. To create such a situation in our toy model, enrich our
theory by 5d fermions and introduce the 5d coupling

λφψψ . (5.12)

It is an easy exercise to derive the 4d action as above and read off explicitly how the 4d fermion
masses depend on the VEV of φ. Now φ is more like one of the moduli we will encounter in more
realistic cases below. We note that our ‘modulus’ has the problem that loop corrections will give
it a potential even in the 5d local lagrangian. In this sense it is really not a proper modulus. We
will see better examples below.

Indeed, let us now turn to the historical example which is most directly associated with the
word Kaluza-Klein theory. Consider pure general relativity in 5d,

S =
M3

P,5

2

∫
d4x dy

√
−g5R5 , (5.13)

parameterize the metric as

(g5)MN =

(
gµν + (2/M2

P )φ2AµAν (
√

2/MP )φ2Aµ
(
√

2/MP )φ2Aν φ2

)
(5.14)

where
M,N, · · · ∈ {0, 1, 2, 3, 5} and µ, ν, · · · ∈ {0, 1, 2, 3} , (5.15)

and we write MP,5 and MP for the 5d and 4d reduced Planck mass respectively.

As above, we assume that y ∈ (0, 2πR) parameterizes an S1 and we base our analysis on
the solution gµν = ηµν , Aµ = 0 and φ2 = g55 = 1. Based on our scalar-field example, we expect
that the Fourier decomposition of all fields as functions of y will give a 4d theory with a tower
of massive modes. Focussing on the zero-modes only corresponds to assuming that all fields are
independent of y. Under this assumption, it is straightforward to work out the higher-dimensional
action, i.e. the 5d Ricci scalar, in terms of the ansatz (5.14). The result reads [67]

S =

∫
d4x
√
−g φ

(
M2

P

2
R− 1

4
φ2FµνF

µν +
M2

P

3

(∂φ)2

φ2

)
, (5.16)

which can of course be brought to the Einstein frame by gµν → gµν/φ.

The key lessons are that the (zero modes of the) 5d metric degrees of freedom have turned
into the 4d metric, an abelian gauge field and a scalar. The appearance of a U(1) gauge theory is
not surprising since our starting point, the R4×S1 geometry, clearly has a global U(1) symmetry.
But, since we are in general relativity and our starting point is diffeomorphism invariant, we are
also allowed to rotate the S1 (i.e. shift y) differently at every point x. Hence, our symmetry must
actually be a U(1) gauge symmetry.
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Moreover, we have a solution of the 5d Einstein equations for every fixed radius R. Thus,
we expect a scalar degree of freedom, corresponding to R, with an exactly flat potential. This
degree of freedom is the scalar field φ. Note that it is sometimes convenient to parameterize the
S1 by the dimensionless variable y ∈ (0, 1) and correspondingly to have φ =

√
g55 = 2πR in the

vacuum. We note that, while MP was originally introduced as a parameter in the metric ansatz,
the result (5.16) used the identification

M2
P = 2πRM3

P,5 . (5.17)

Before closing this generic Kaluza-Klein section, it will be useful to consider yet another
example: Let the geometry again be R4 × S1 and let the 5d lagrangian contain a U(1) gauge
theory. For simplicity, we will focus on the Kaluza-Klein or dimensional reduction of this U(1),
ignoring the 5d gravity part which we just discussed. Thus, we start with

S =

∫
d4x dy

(
− 1

4g2
5

FMNF
MN

)
, (5.18)

where gMN = ηMN and y ∈ (0, 2πR). With the ansatz

AM = (Aµ, φ) (5.19)

one finds, at the zero-mode level,

S =

∫
d4x

(
− 1

4g2
FµνF

µν − 1

2g2
(∂φ)2

)
. (5.20)

The crucial lesson is that the 5d gauge field gives rise to a 4d gauge field and a scalar, the latter
being associated to A5 or, in a more geometrical language, to the Wilson line integral∮

A =

∫
dy A5 = 2πRφ(x) . (5.21)

This Wilson line measures the phase which a charged particle acquires upon moving once around
the S1, just as in the Aharonov-Bohm experiment. Assuming that the minimally charged particle
(we do not display the corresponding part of the lagrangian) has unit charge, the phase measured
by φ becomes equivalent to zero for φ = 1/R. Thus, we have found an exactly massless (at the
classical level) periodic scalar field, also known as an axion or axion-like particle or ALP.

Let us draw a lesson from the above which will also be important for string compactifications,
to be discussed below: We have seen two types of moduli arise, one associated to the geometry
of the compact space (g55), the other to the gauge field configuration in the compact space (A5).
Both have no classical potential since in one case 5d diffeomorphism invariance, in the other case
5d gauge invariance forbid the corresponding potential term. Moreover, due to this symmetry
argument 5d loop corrections do not induce such a potential. However, in both cases 4d loop
corrections can provide a potential and hence give a mass to the above fields. This is not in
contradiction to the symmetry argument just stated since 4d loop effects can in general not be
written in terms of 5d local operators. However, in the presence of enough supersymmetry in
the resulting 4d theory, these loop corrections may be forbidden such that the relevant moduli
remain exactly massless or more precisely, their potential remains identically zero as an exact
statement. This generally happens in 4d N = 2 SUSY.
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5.3 Towards Calabi-Yaus

We now want to explain how the 10d SUGRA theories provided by the superstring can be
compactified to 4d. There are two approaches: We could start by developing the toy model
path started in the previous section, i.e., we could consider the geometry R9 × S1. This would
give us a 9d theory, without too many new features (except for supersymmetry, which would
keep all moduli massless). Next, we could consider R8 × T 2. We would now encounter moduli
corresponding to g88, g99 and g89, characterizing both size and the shape of the torus. Thus, we
would get an 8d theory with (at least) 3 scalars corresponding to geometric moduli. Much more
could be said about compactifications on tori and related simple geometries.

However, we will take a different approach and first introduce a much more general and
powerful set of examples - the Calabi-Yau geometries. These are the compactification spaces on
which the landscape as we presently understand it is mostly built. Later on, we will return to
tori to illustrate some of the more abstract concepts used.

Our key starting point is the desire to find a solution of the 10d equations of motion
corresponding to a 4d world. Setting all fields execpt the metric to zero, this implies that we
must have (R10)MN = 0 to solve Einstein’s equations. This condition is called Ricci flatness
and it is obviously satisfied for S1 and (flat) tori T n mentioned above. The interesting and
non-trivial fact is that there exists a large class of relatively complicated compact 6d manifolds
which are also Ricci flat and hence represent suitable compactification spaces: the Calabi-Yau
manifolds.

Before giving the definition, we need a few geometrical concepts. Our treatment will be
extremely brief and hence, unfortunately, superficial. Much more material can be found in e.g.
in [51, 53,70–72].

To begin, Calabi-Yaus are complex manifolds. This is a fairly straightforward generalization
of the familiar concept of a 2n-dimensional real differentiable manifold X. The key new point is
that the charts

(Ui, φi) , φi : Ui → φi(Ui) ⊂ Cn , (5.22)

are now maps from open sets Ui of X to Cn, with they key compatibility condition being that
the functions φj ◦ φ−1

i are holomorphic. In other words, our manifold locally looks like Cn and
coordinate changes are of the form

z′i = z′i(z1, · · · , zn) , (5.23)

with any appearance of zı in the argument of the new coordinate excluded.

On a complex manifold, it makes sense to complexify tangent and cotangent space as well
as all their higher tensor products. Thus, tensor fields are complex. For example, local bases of
tangent and cotangent space are provided by

∂

∂zi
,
∂

∂zı
and dzi , dzı , (5.24)

with zi = xi + iyi etc. It is natural to define the tensor

J = i dzi ⊗ ∂

∂zi
− i dzı ⊗ ∂

∂zı
, (5.25)
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which roughly speaking corresponds to ‘multiplication by i’ in cotangent space. Its components
are

J =

(
i1 0
0 −i1

)
(5.26)

in a complex basis and

J =

(
0 1

−1 0

)
(5.27)

in a real basis. A crucial feature is J2 = −1.

A real manifold with a tensor J as above is called an almost complex manifold and J is called
an almost complex structure. If such a J satisfies a certain integrability condition (vanishing of
the Niejenhuis tensor), complex coordinates can be given and J turns into the so-called complex
structure of a complex manifold. We will only be interested in this latter case.

Even more, we will demand that our manifold has a metric (is a Riemannian manifold) and
that this metric is compatible with J . In other words, we demand that J is covariantly constant.
This turns the manifold into a Kahler manifold, a concept which we already used when discussing
field spaces of supersymmetric field theories. We will not demonstrate this but give right away a
stronger definition: A complex manifold with a metric is called Kahler if the metric can locally
be written as

gi =
∂2K

∂zi ∂z
, (5.28)

with K a real function defined in every patch and with gij = gı = 0. We note that this last
condition by itself would make the metric hermitian, but we are interested only in the stronger
Kahler condition.

We also note that the metric allows us to lower the second index of J , turning J into a rank-2
lower-index tensor. This tensor turns out to be antisymmetric and hence defines a 2-form, the
so-called Kahler form

J = igi dz
i ∧ dz . (5.29)

We see that, given a complex structure, the 2-form J determines the metric and vice versa.
This will become important below when we will be discussing different metrics on the same
differentiable manifold.

Next, we need the concept of holonomy. We know form basic differential geometry that,
with a metric, one gets a unique Riemannian or Levi-Civita connection and hence the possibility
to parallel-transport tangent vectors. Given any point p ∈ X and any closed curve C beginning
and ending in p, we hence have a linear map

R(C) : Tp → Tp or R(C) ∈ SO(2n) . (5.30)

The latter statement follows if we assume orientability (for complex manifolds this is guaranteed)
and recall that the Riemannian parallel transport does not change the length of a vector. It can
be shown that the set of all R(C) forms a group and that this group does not depend on the
choice of p (assuming X is connected). This is the holomomy group.

We are now in the position to give one (of the many equivalent) definitions of a Calabi-Yau:
A Calabi-Yau 3-fold (our case of interest) is a compact, complex Kahler manifold
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with SU(3) holomomy. More generally, for a complex n-fold one demands that the holonomy is
SU(n) ⊂ SO(2n). As we will argue in a moment, this implies that some of the 10d supersymmetry
is preserved in the 4d effective field theory and that Einstein equations are solved without sources
(Ricci flatness).

Though the Einstein equations are maybe physically more important, we will start with
SUSY. Very superficially, we expect that a 4d supersymmetric effective theory will have massless
spinors. Hence spinors need to have zero-modes which, in the simplest case, corresponds to the
existence of covariantly constant spinors on the compactification space. We will see in a moment
that this covariantly constant spinor is intimately linked to SU(3) holonomy.

But let us first give a more careful argument for why unbroken SUSY requires the compact
space to have a covariantly constant spinor: While we have not given the supergravity transfor-
mations of the various fields in 10d, we may recall the 2d case of worldsheet-SUGRA: Here, we
have seen that the transformation of the gravitino is proportional to the covariant derivative of
the SUSY parameter, i.e. of the spinor ξ(σ):

δξχa = ∇aξ . (5.31)

This is similar in 10d. Hence, to identify a 4d SUSY parameter under which the vacuum is
invariant, one needs a covariantly constant spinor. On a curved manifold this is a non-trivial
requirement.

To see this in more detail, we need the group-theoretic fact that SO(6) = Spin(6)/Z2,
Spin(6) = SU(4) and that the 6d Weyl spinor transforms in the 4 of SU(4), using this isomor-
phism. Furthermore, we embed our 10d spinor in the tensor product of 4d spinor and 6d spinor.
Since 4d space is flat, the critical issue for the constancy of our 10d spinor is the constancy of its
6d spinor part. In other words, we have to take the 6d spinor to be covariantly constant along
X. Furthermore, without loss of generality we assume that this spinor takes the form

ξ(p) =


0
0
0

ξ0(p)

 (5.32)

at some point p ∈ X. Since it is part of a covariantly constant spinor field, the parallel transort
will follow this field and, in particular, bring ξ(p) back to itself for any loop C. But this clearly
means that the holonomy matrices may only act on the first 3 components, i.e. we need SU(3)
holonomy.

The reverse is obvious: Given SU(3) holomomy, a covariantly constant spinor can be con-
structed by parallel transporting ξ(p) given above to any point of X. The only way in which
this might fail is if the construction were ambiguous, i.e., if two different paths from p to p′

gave rise to two different spinors ξ(p′). But this would imply that a closed path starting at p
exists along which the parallel transport of ξ(p) is non-trivial. This would be in contradiction to
SU(3) holonomy. Thus, we have the equivalence between SU(3) holonomy and the existence of
a covariantly constant spinor, i.e. the survival of 4d SUSY.10

10More precisely, 4d N = 2 SUSY in the type II case and 4d N = 1 SUSY in the type I and heterotic case.
The reason is the presence of two independent 10d SUSY generators in the former situation.
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Next, we consider Ricci flatness. We first note that, on Kahler manifolds, the only non-zero
components of the Levi-Civita connection are

Γij
k = gkl∂igjl and Γı

k = gkl∂ıgl . (5.33)

This leads to significant simplifications for the Riemann tensor and the Ricci tensor which we do
not work out. For example, the only non-vanishing Riemann tensor components are of the form

Rikl (5.34)

and those related by antisymmetry in the first and second index pair. In other words, the first two
and last two indices have to be of opposite type (holomorphic and antiholomorphic). Moreover,
the Ricci tensor can be written as

Ri = ∂i∂ ln det g . (5.35)

As is well known, the significance of Ri
α
β is that, if intepreted as a matrix with indices α and

β, it describes the rotation of a covector upon parallel transport along a loop with orientation
specified by i and . Here we use greek letters for the second index pair to emphasize that they
can take either holomorphic or antiholomorphic values, e.g. α = k or α = k. The previously noted
restrictions on holomorphy/antiholomorphy of the second index pair means that either (α, β) =
(k, l) or (α, β) = (k, l). This can straightforwardly be shown to imply that the corresponding
rotation matrix is in the U(n) subgroup of the general holonomy group SO(2n). More generally,
the conditions of a manifold being Kahler and having U(n) holonomy are equivalent.

Since U(n) = SU(n) × U(1), the spin connection of Kahler manifolds can be thought of as
the sum of an SU(n) and a U(1) connection. The latter is just a standard U(1) connection, like
in the case of an abelian gauge theory. Its field strength Fi being non-zero characterizes the
holonomy not being restricted to SU(n).

Concretely, recall that the complex structure is defined as multiplication by ‘i’ on the cotan-
gent or tangent vector space. In components, the corresponding operator or matrix is Jαβ, which
is hence the generator of the U(1). The U(1) part of the U(n) field strength encoded in Ri

α
β

can hence be determined from the projection on Jαβ. An explicit definition is

Fi ≡ tr[R̃iJ ] ≡ Ri
α
βJ

β
α = iRi

k
k − iRi

k
k = 2iRi

k
k = −2iRi

k
k = −2iRi . (5.36)

Here the R̃ denotes the Riemann tensor with suppressed second index pair, not the Ricci tensor.
The final manipulations leading to the Ricci tensor require the use of the symmetry properties
of the Riemann tensor together with the Kahler property of our manifold. We leave that as a
problem (see e.g. [71]). Eventually, we see that the U(1) field strength components equal those
of the Ricci tensor up to a prefactor (note however the different symmetry properties of the two
tensors). Thus, SU(n) holonomy is equivalent to Ricci flatness.

A final important point concerns the definition of Calabi-Yaus via the Chern class. Note first
that, due to the U(n) holonomy (or equivalently because of the special index structure of the
Riemann tensor), the tangent bundle of Kahler manifolds can be viewed as a complex vector
bundle with the curvature specified by Ri

k
l. In other words, one can consider the curvature

2-form
R(TX) = dzi ∧ dzRi

k
l , (5.37)
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which takes its values in Lie(U(n)). It is possible to write down the multi-form

c(X) = det(1+R(TX)) , (5.38)

where the determinant refers to the matrix indices and multiplication relies on the wedge product.
It is then expanded according to

c(X) = 1+c1(X)+c2(X)+· · · = 1+trR(TX)+tr
(
R(TX) ∧R(TX)− 2(trR(TX)2

)
+· · · . (5.39)

Here ck(X) is a (2k)-form, defining the k th Chern class. Concretely, the 1st Chern class is said
to be zero if c1 is exact, which means that c1 = dω for some ω. More formally, this means that
c1 is zero in cohomology, a concept we will discuss next. Crucially, while c1 was defined using
the metric, it is invariant (up to exact pieces) under smooth variations of the latter. It hence
represents a topological invariant.

After these preliminaries, we can formulate the celebrated theorem by Yau: Let X be a
Kahler manifold and J its Kahler form. If the 1st Chern class vanishes, then a Ricci
flat metric with Kahler form J ′ in the same cohomology class can be given. This
so-called Clabi-Yau metric is unique.

Being in the same cohomology class means that J − J ′ is exact. The key point is that, in
practice, finding the Calabi-Yau metric is very hard (it has not been achieved analytically in
any example). However, checking the topological condition of vanishing 1st Chern class is easy
and guarantees the existence of many (explicitly known) suitable complex manifolds on which
we hence know that a Calabi-Yau metric exists. But one will in general not find the metric for
which c1 is zero as a 2-form, only one with c1 = dω.

5.4 Homology and cohomogy

We are overdue with developing a few more simple mathematical ideas concerning in particular
differential forms and topology. We start with homology and define a p-chain as the formal sum
of over p-dimensional submanifolds Si of some compact manifold X:

cp =
∑
i

αi (Sp)i . (5.40)

Depending on whether the coefficients αi are real, complex, integer etc. one can be talking about
holomolgy over the real, complex or integer numbers. In the first two cases, the p-chains form
real and complex vector spaces respectively.

One can consider the boundary of each (Sp)i and hence of cp, which is a (p− 1)-dimensional
submanifold. Taking the boundary is denoted by the doundary operator ∂. A chain without
boundary,

∂cp = 0 , (5.41)

is called a cycle. Crucially, ∂2 is zero, in other words, a boundary has itself no boundary. A few
simple examples are given in Fig. 18.

Given the linear operator ∂ with ∂2 = 0, it is natural to consider its homology groups:

Hp =
Ker(∂p)

Im(∂p+1)
=

p-cycles

boundaries of (p+ 1)-chains
. (5.42)
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Figure 18: Some simple submanifolds and their boundaries.

The word group refers to addition, in the sense in which every vector space is an abelian group.
The index p of ∂p denotes the restriction of ∂ to the space of p-chains. We will suppress this
index when it is clear from the context on which objects ∂ acts. As an example, we display
certain 1-cycles on the genus-2 Riemann surface R2 in Fig. 19. It is easy to convince oneself that,
working over the real numbers, H1(R2) is 4-dimensional. Representatives a, b, c and d of the 4
linearly independent homology classes (the elements of Hp) are shown.

Figure 19: Representatives of the 4 linearly independent homology classes in H1(R2). The cycles a
and a′ are equivelent since they differ by a boundary - the boundary of the hatched 2-dimensional
submanifold.

As another example, consider the 3-torus T 3 and convince yourself (at the intuitve level)
that dim(H0) = 1 (which corresponds to T 3 being connected), dim(H1) = dim(H2) = 3 and
dim(H3) = 1. If the torus is thought of as R3 modulo discrete translations, representatives of H2

can be thought of as 3 planes, each orthogonal to one of the three axes.

One calls the above simplicial homology.

Now we turn to p-forms as the ‘dual’ objects with respect to the chains. So far, we use
the word duality at an informal level, meaning simply that at chain cp and a form ωp can be
combined in a natural way to give a number:

ωp(cp) =

∫
cp

ωp =
∑
i

αi

∫
(Sp)i

ωp . (5.43)

On the space of forms, we have an operator analogous to ∂, which also also squares to zero: It
is the exterior derivative d or, restricted to p-forms, dp:

dp : ωp → ωp+1 = dωp . (5.44)
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Thus, it is natural to consider the cohomology groups of the de Rham cohomology:

Hp =
Ker(dp)

Im(dp−1)
=

closed p-forms

exact p-forms
. (5.45)

In the last expression, we use the definition that a p-form ωp is called closed if dωp = 0. Similarly,
it is called exact if it can be written as ωp = dωp−1.

It is easy to convince oneself that the pairing (5.43) between chains cp and forms ωp induces
a pairing between the correspsonding cohomology classes, sometimes denoted by [cp] and [ωp].
In other words, ∫

cp

ωp (5.46)

is independent of the representative. For example, one has∫
cp

(ωp + dωp−1) =

∫
cp

ωp +

∫
∂cp

ωp−1 =

∫
cp

ωp , (5.47)

since cp has no boundary. Analogously, replacing cp by cp + ∂cp+1 does not affect the pairing.

One can furthermore show that this pairing between homology and cohomology classes is
not degenerate and that hence

Hp(X) = Hp(X)∗ , (5.48)

i.e. they are dual vector spaces (cf. de Rham’s theorems). In particular, their dimensions coincide,
defining the so-called Betti numbers

bp(X) = dimHp(X) = dimHp(X) (5.49)

of the manifold X. Intuitively, they coint the number of inequivalent basis p-cycles.

We note that, if dimX = n, there also exists a natural pairing between p-cycles and (n− p)-
cycles: the intersection number. For example, given T 3, a 1-cycle (a line) and a 2-cyle (a plane),
one can find out whether the two intersect (intersection number one) or don’t (intersection
number zero). For a Riemann surface, the pairing is between 1-cycles and 1-cycles, with the
meaning of the intersection number being obvious from Fig. 19. It is intuitively clear that this
lifts to a paring between homology classes.

The analogue of this on the cohomology side is

[ωp] · [ωn−p] =

∫
ωp ∧ ωn−p . (5.50)

This pairing is also non-degenerate and hence turns Hp into the dual of the vector space Hn−p.
But since we already know that Hn−p is the dual of Hn−p, we have found a canonical isomorphism

Hp(X) ∼= Hn−p . (5.51)

This is known as Poincaré duality. To say this more explicitly, a p-form ωp is Poincare dual
to an (n− p)-cycle cn−p if ∫

cn−p

ωn−p =

∫
ωp ∧ ωn−p , ∀ωn−p . (5.52)

88



More structure arises if a metric is present. In particular, with a metric comes the Hodge
star operator,

∗ : ωp 7→ (∗ω)n−p with (∗ω)µp+1···µn =

√
g

p!
ωµ1···µp εµ1···µn . (5.53)

This gives rise to scalar product on the space of p-forms,

(ωp, αp) =

∫
X

ωp ∧ ∗αp . (5.54)

As a result, one can define the adjoint of d, the so-called co-differential d†. On forms of degree
p, it takes the explicit form

d† = (−1)p ∗−1 d ∗ . (5.55)

With this, one defines the Laplace operator

∆ = d†d+ d d† . (5.56)

A form is called harmonic if ∆ω = 0. This definition gives rise to the Hodge decomposition
theorem, which states that on a compact manifold X any form has a unique decomposition in
an exact, a coexact and a harmonic piece:

ω = dα + d†β + γ with ∆γ = 0 . (5.57)

It can furthermore be shown that β vanishes if ω is closed. As a result, any representative of a
given cohomology class has a unique decomposition in an exact and harmonic piece. In other
words, there is a unique harmonic form in any cohomology class. Intuitively speaking, this is the
constant form with the right integral on all cycles (these integrals being fixed by the class). To
give a simple concrete example, consider T 2 being parameterized by (x, y) ∈ [(0, 1)× (0, 1)]. The
harmonic one form with integral zero on the x-cycle and integral 1 on the y-cycle is obviously
given by ω = dy. A non-harmonic form in the same class would e.g. be ω = (1 + sin(2πy)) dy.

Finally, it is possible to take the above to the realm of complex manifolds. To do so, recall
that on a complex manifold a 1-form takes the form

ω(z, z) = ω(z, z)idz
i + ω(z, z)ıdz

ı ≡ ω(1,0) + ω(0,1) . (5.58)

In other words, we can decompose it in its (1, 0) and (0, 1) parts. The first corresponds to a tensor
with one holomorphic and no antiholomorphic index, the second to a tensor with no holomorphic
and one antiholomorphic index.

Such a decomposition carries over to higher forms (i.e. antisymmetric tensors) and to coho-
mology classes. For example,

ω3 = ω(3,0) + ω(2,1) + ω(1,2) + ω(0,3) , (5.59)

where, e.g.,

ω(2,1) = ωijk dz
i ∧ dzj ∧ dzk + ωik dz

i ∧ dz ∧ dzk + ωıjk dz
ı ∧ dzj ∧ dzk

= 3ωijk dz
i ∧ dzj ∧ dzk . (5.60)
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To see the corresponding, refined cohomology construction more expliclitly, recall that the
exterior derivative has the particularly compact definition

d = dxa
∂

∂xa
. (5.61)

Here the partial derivative is supposed to act on the coefficients of any given form and, sub-
sequently, dxa has to be multiplied with the form using the wedge product from the left.
Let us consider specifically a manifold of complex dimension n (real dimension 2n), such that
a = 1, 2, · · · , 2n. Then it is easy to check that

d = dzi
∂

∂zi
+ dzı

∂

∂zı
, (5.62)

or

d = ∂ + ∂ with ∂ = dzi
∂

∂zi
and ∂ = dzı

∂

∂zı
. (5.63)

Here i = 1, 2 · · · , n. Furthermore, the holomorphic and antiholomorphic exterior deriva-
tives square to zero:

∂2 = ∂
2

= 0 . (5.64)

This permits the construction of a corresponding cohomology, the result being independent of
whether ∂ or ∂ is used. Conventionally ∂ is used. Thus, one defines the Dolbeault cohomology

Hp,q =
Ker(∂p,q)

Im(∂p,q−1)
, (5.65)

which contains finer information than the de Rham cohomology. One may say that it characterizes
the interrelation between the non-trivial cycles and the complex structure. We also note the so-
called Hodge decomposition

Hk = ⊕p+q=kHp,q . (5.66)

The dimensions of Dolbeault cohomology groups are known as Hodge numbers,

hp,q(X) ≡ dimHp,q(X) . (5.67)

They are commonly arranged in a so-called Hodge diamond. With a view to our application
to Calabi-Yau manifolds, we display the general form for the case of a complex 3-fold:

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

. (5.68)
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5.5 Calabi-Yau moduli spaces

Due to SU(3) holonomy, the hodge diamond for a Calabi-Yau 3-fold is very special. Using the
same arrangement as in (5.68), it reads

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

. (5.69)

Here, the simplifications arising from the vertical and horizontal reflection symmetry of the
Hodge diamond (e.g. h1,1 = h2,2) are generic - they hold for any complex n-fold. Furthermore,
connectedness implies h0,0 = h3,3 = 1. But some features are specific to Calabi-Yaus, such as
h1,0 = h2,0 = 0 and, crucially, h3,0 = h0,3 = 1. The latter implies the existence of a unique
holomorphic, harmonic 3-form which is convnntionally denotes by Ω,

Ω = Ωijk(z) dzi ∧ dzj ∧ dzk . (5.70)

Its existence can be understood on the basis of the covariantly constant spinor ψ:

Ωijk ∼ ψΓijkψ . (5.71)

We will not argue for uniqueness. It however useful to note that the existence of a harmonic,
holomorphic 3-form Ω can be used as a defning feature for Calabi-Yau spaces: More generally, a
Calabi-Yau n-fold can be defined as a Kahler manifold with a trivial canonical bundle. The
latter is the nth exterior power of the cotangent bundle - this is the bundle in which Ω lives and
which is trivial exactly if there is a nowhere vanishing section - in our case the n-form Ω.

Now, given a Calabi-Yau 3-fold, Yau’s theorem guarantees the existence of a unique (given
Kahler class and complex structure) Ricci flat metric gi . A key question for physics is whether
this metric can be defomed maintaining Ricci-flatness since this would imply the existence of
moduli:

gi dz
i dz → gi dz

i dz + δgi dz
i dz + δgij dz

i dzj + h.c. (5.72)

Clearly, if such deformations exist then, not to contradict the uniqueness part of Yau’s theorem,
they must be accompanied by a change of either the Kahler class or the complex structure. This
is indeed the case: A change of the metric of type δgi can be directly interpreted as change of (the
harmonic reperesentative of) the Kahler form J . The number of such independent deformations,
also called Kahler deformations is counted by h1,1. This number is at least unity since it
is always possible to simply rescale the metric, making our manifold larger or smaller without
changing its shape.

By contrast, a deformation of type δgij violates the hermiticity assumption and and it must
hence be accompanied by a change of the complex structure if one wants to restore explicitly the
Calabi-Yau situation after adding this δg to the original metric. To count these deformations it
is useful to define a (2, 1) form

δχ = Ωij
k δgkl dz

i ∧ dzj ∧ dzl ∈ H2,1(X) (5.73)
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associated with δgkl. Here the index k of Ωijk has been raised using the Calabi-Yau metric.
It can be shown that this represents a one-to-one map between distinct complex structure
deformations (and hence corresponding metric deformations) and linearly independent Dol-
beault cohomology classes of type (2, 1). Here by distinct we mean those not corresponding to
reparametrizations zi → z′i.

There is another way of understanding the counting of complex structure deformations:
Think of the complexified vector space of 3-cycles, with dimension 2h2,1 + 2. Two directions are
distinguished by Ω and Ω, a feature only visible in Dolbeault but not in de Rham cohomology.
Now, the change of complex structure is accompanied by a change of the direction of Ω (and
hence of Ω) in this space. In other words, Ω is infinitesimally rotated and these possible rotations
are parameterized by h2,1 complex numbers. One may say that there are h2,1 complex directions
in which Ω can develop new, infinitesimal components.

One can also invert the equations above, i.e., given a harmonic (2, 1)-form δχ, one can
explicitly write down how Ω and the metric change:

δgı = − 1

||Ω||2
Ωı

kl δχkl , δΩ = δχ . (5.74)

with the constant

||Ω||2 =
1

3!
ΩijkΩ

ijk
. (5.75)

Together with the previously discussed relation

δgi = −iδJi , (5.76)

we now see explicitly how the cohomology groups H1,1(X) and H2,1 (viewed as a subspace of
H3(X), that moves as the complex structure changes) play a central role in describing the moduli
space of a Calabi-Yau. An illustration of this has been attempted in Fig. 20. In addition to the
textbook literature given earlier, the reader may want to consult [73, 74] for more details.

Figure 20: A visuablization attempt of how J and Ω move in the spaces H2(X) and (the com-
plexification of) H3(X), thereby determining the metric on a Calabi-Yau.

Before characterizing Calabi-Yau moduli spaces more quantitatively, we want to give at
least the simplest example. To do so, let us start with an important set of examples for compact,
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complex Kahler manifolds: the so-called complex projective spaces. To begin, recall that a real
projective space RP n is Rn \ 0 modulo the equivalence relation x ∼ λx with λ ∈ R \ 0.
Intuitively speaking, this is the set of lines through the origin, which can easily be given a
differentiable structure. For the case of RP 2, the real projective plane, we can equivalently think
of S2/Z2 – a sphere with antipodal points identified.

This has a natural generalization in the complex numbers: the complex projective space
CP n. They are defined analogously as the set of all (n + 1)-tuples of complex numbers (not all
zero) with the equivalence relation

(z0, · · · , zn) ∼ (λz0, · · · , λzn) with λ ∈ C \ 0 . (5.77)

For the subset Ui of all equivalence classes in which zi 6= 0, a chart is provided by

φi : { class of (z0, · · · , zn) } 7→
(
z0

zi
, · · · , z

i−1

zi
,
zi+1

zi
, · · · , z

n

zi

)
∈ Cn . (5.78)

It is easy to show that these charts form an atlas and give explicitly the (holomorphic) transition
maps. A Kahler potential in Ui is provided by

K(i)(x) =
1

2
ln

(
1 +

n∑
j=1

|xj|2
)

, with {x1, · · · , xn} =

{
z0

zi
, · · · , z

i−1

zi
,
zi+1

zi
, · · · , z

n

zi

}
(5.79)

the coordinates defined above. A straightforward calculation shows that this gives rise to a
globally defined Kahler form and metric, the Fubini-Study metric. To be very concrete, it is
easy to check that CP 1 is the Riemann sphere. Crucially, all CP n are compact.

Generally, submanifolds can easily be given as zero sets of polynomials, such as x2 + y2 − 1
on R2. The naive generalization to (holomorphic) polynomials on Cn is not useful for us since
the resulting submanifolds are always non-compact (for n > 1). This is due to a generalization
of the maximum modulus theorem for analytic functions. However, starting from the compact
space CP n, compact submanifolds can be defined by polynomials. For the zero set to be well
defined on the set of equivalence classes, the polynomials have to be homogeneous. Now, it can
be shown that the crucial Calabi-Yau condition, the vanishing of the 1st Chern class, depends
on the homogeneity degree of the polynomial. If we want to get a 3-fold, we must start from
CP 4. The Chern class vanishes if an only if the defining polynomial is of degree 5:

P5(z) = ci1···i5z
i1 · · · zi5 , (5.80)

with indices running from 0 to 4 and labelling the projective coordinates of CP 4. The so called
quintic is then defined as the zero set,

P5(z) = 0 , z ∈ CP 4 . (5.81)

Here by z we mean both the set of 5 numbers {zi} and the corresponding point in the projective
space. As the coefficients of the polynomial vary, the complex structure changes. A concrete
example is given, e.g., by

P5(z) = (z0)5 + · · ·+ (z4)5 . (5.82)
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It is interesting to count the possible deformations such a quintic hypersurface: One first
notes that the number of different monomials in a homogeneous polynomial of degree d in n
variables is given by the binomial coefficient11(

d+ n− 1
n− 1

)
. (5.83)

In our case this gives (
5 + 5− 1

5− 1

)
=

(
9
4

)
= 126 . (5.84)

From this, we have to subtract the 25 parameters of the symmetry group GL(5,C) of CP 4, giving
us 101 parameters. Recalling what was said before about the interplay of Dolbeault coholomogy
and complex structure moduli spaces, we conclude that h2,1(Quintic) = 101. Without derivation
we also note that the Kahler form of CP 4 is unique up to scaling, such that h1,1 = 1. Thus, for
the quintic the Hodge diamond reads

1
0 0

0 1 0
1 101 101 1

0 1 0
0 0

1

(5.85)

and the real dimension of the moduli space is 2 · 101 + 1 = 203.

We note that the same construction goes through for the quartic polynomial in CP 3, giving
rise to the unique Calabi-Yau 2-fold, known as the K3-surface. However, for 3-folds there are
many more examples. First, one can generalize to the intersection of hypersurfaces (defined by
polynomials) in products of projective spaces (giving rise to so-called complete-intersection CYs
or CICYs). Then one can generalize from projective space to weighted projective spaces, in which
case the different variables scale differently with a complex parameter λ. Furthermore, one may
mod out not just by the rescaling by one such complex parameter, but by several such scalings
(with different paramters λi). This leads to the concept of toric geometry and toric hypersurfaces,
in which Calabi-Yaus can again be defined by polynomials of suitable degrees in the different
variables (Batyrev’s construction). Even more general Calabi-Yau constructions exist. The total
number of distinct examples is about half a billion: ∼ 5× 108.

5.6 Explicit parameterization of Calabi-Yau moduli spaces

We start with an extremely simple toy model: T 2. We can give it a complex structure by defining
it as C/Z2. By this we mean starting from the complex plane and modding out a lattice of
translations, generated by unity and τ ∈ C. The resulting set of independent points, the so-
called fundamental domain, is shown in Fig. 21. It is parameterized, on the one hand, by z and,
on the other hand, by x, y ∈ [0, 1), with the relation

z = x+ τy . (5.86)

11Try to prove this!
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The complex number τ determines the complex structure. Note that tori with different τ are (in
general) not isomorphic as complex manifolds. The holomorphic (1, 0)-form in this case is clearly

Ω = α dz = α dx+ α τ dy , (5.87)

with α ∈ C an arbitrary constant.

Figure 21: Torus defined as C/Z2.

Now, in analogy to the proper Calabi-Yau case, the complex structure can be defined using
the position of Ω in the complexification of H1(T 2). For this, it is sufficient to know the periods,
i.e. the integrals of Ω over the integral 1-cycles:

Π1 =

∫
y= const.

Ω =

∫ 1

0

α dx = α , Π2 =

∫
x= const.

Ω =

∫ 1

0

α τ dy = ατ . (5.88)

They can be combined in the period vector Π = (Π1,Π2). Since the normalization of Ω is
arbitrary, only ratios of these periods are meaningful. Concretely, the (in this single) complex
structure parameter is given by τ = Π2/Π1.

Next, we come to the moduli (in this case the modulus) associated with the Kahler form.
The Kahler form is harmonic and can be decomposed in a basis of harmonic 2-forms,

J = tiωi . (5.89)

Here the ωi are in general chosen to represent an integral 2-form basis (where by integral we
mean Poincare dual to the naturally defined integral basis of 4-cycles or, what is the same, the
dual basis to the integral 2-cycle basis). In our case there is of course only one such 2-form:

ω1 = dx ∧ dy , such that J = t dx ∧ dy . (5.90)

At the same time, we know that

J = igi dz
i ∧ dz = igzz dz ∧ dz = igzz(dx ∧ τ dy − τ dy ∧ dx) = −i(τ − τ) gzz dx ∧ dy . (5.91)

Hence, we identify t as t = −i(τ − τ) gzz and, recalling the general metric form

ds2 = 2gzz dz dz = 2gzz
[
dx2 + |τ |2dy2 + (τ + τ) dx dy

]
, (5.92)
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we can finally explicitly give the matrix form of the metric in terms of the parameters t, Π1, Π2

which govern the position of J and Ω in their respective cohomology groups:

gab = 2gzz

(
1 Re τ

Re τ |τ |2
)

=
t

Im(Π2/Π1)

(
1 Re(Π2/Π1)

Re(Π2/Π1) |Π2/Π1|2
)
. (5.93)

With somewhat more writing, one can achieve the same level of explicitness for the toy-model
3-fold T 2 × T 2 × T 2, defined by modding out an appropriate lattice of translations from C3.
Nevertheless, this is not a proper Calabi-Yau since its holonomy group is trivial. By contrast, a
Calabi-Yau should have holonomy group SU(3) (not just a subgroup). However, this is clearly
to some extent a matter of convention. More importantly, T 6 is too simple for most physical
applications and it does not give rise to the large landscape of solutions of string theory that we
are after.

Thus, we now turn to the general case of proper Calabi-Yau 3-folds, such as the quintic and
similar, even more complicated examples. The complete explicitness of metric parameterization
that we saw above can of course not be achieved in such cases. But our main goal for the moment
will be a description in 4d supergravity language,

L = Ki(∂X
i)(∂X


) + gauge, fermion, and other fields , (5.94)

where K is the Calabi-Yau metric on moduli space, parameterized by the X i, which include both
Kahler and complex structure moduli. This can be given rather explicitly, even in the proper
Calabi-Yau case.

Let us start with the Kahler moduli. As we already explained,

J = tαωα with α = 1, · · · , h1,1 . (5.95)

Moreover, the volume of the Calabi-Yau can be given as

V =
1

6

∫
X

J ∧ J ∧ J =
1

6
καβγt

αtβtγ . (5.96)

Here one may intuitively think of components the vector tα as measuring the volumes of the
different 2-cycles present in the Calabi-Yau. The integers καβγ are the so-called triple intersection
numbers of the 4-cycles Poincare dual to the ωα.12 The volumes of the dual 4-cycles, which are
also labelled by the index α, are given by

τα =
1

2

∫
cα4

J ∧ J =
1

2
καβγt

βtγ . (5.97)

Clearly, the variables tα and τα encode the same information. Using them as N = 1 SUGRA
variables corresponds to choosing either of two different N = 1 sub-algebras of the N = 2 SUSY
of a Calabi-Yau compactification of type IIA or IIB string theory. We focus (for the purpose of

12Note that 2 4-cylces in a 6d manifold intersect in a 2d submanifold. The latter intersects the 3rd 4-cycle in
points. The total number of those, with orientation, is a function of the homology classes and is counted by the
κs.
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our later discussion of a particularly well-understood model, called KKLT) on the IIB case and
the τ variables. They are real but, in 4d SUSY, are complexified by adding the imaginary parts

cα =

∫
cα
C4 . (5.98)

Only as a side remark we note that, in the other SUSY, the tα would be complexified by corre-
sponding integrals of B2 or C2, depending on the particular model (for many more details see
e.g. [75–78]).

Thus, we can solve for the tα:

tα = tα(τ1, · · · , τh1,1) (5.99)

and, with Tα = τα + icα and

τα =
1

2
(Tα + Tα) , (5.100)

we are finally able to give the type-IIB Kahler moduli Kahler potential:

KK = −2 lnV with V = V(Tα, Tα) . (5.101)

To describe the complex structure moduli space, we start by recalling the basis of H1(R2) as
given in Fig. 19. We rename the relevant cycles (representatives of the corresponding cohomology
classes) as

a→ A1 , b→ B1 , c→ A2 , d→ B2 . (5.102)

It is clear that this carries over analogously to the 1-cycles of higher Riemann surfaces, giving
rise to the a basis {Aa, Ba} and an intersection structure

Aa · Ab = 0 , Ba ·Bb = 0 , Aa ·Bb = δab . (5.103)

An analogous basis can be chosen for the (in this case naturally isomorphic) vector spaceH1. Such
bases are called symplectic bases, on account of the antisymmetry of the only non-vanishing
intersection numbers or, on the form side, wedge products:∫

ωAa ∧ ωbB = δa
b . (5.104)

The crucial point for us is that this represents a generic feature of the so-called middle
homology or cohomology for manifolds where the dimensionalities of the relevant cycles/forms
are odd. This is true for Riemann surfaces, with which we started, but it is equally true for
complex 3-folds, our new case of interest.

Thus, now in the context of Calabi-Yaus, we choose a symplectic 3-cycle basis as above and
define the periods

za =

∫
Aa

Ω , Gb =

∫
Bb

Ω . (5.105)

The complex paramters za with a = 0, · · · , h2,1 are sufficient to fully parameterize the position
of Ω in H3(X). In fact, one of the parameters can be set to unity at the expense of a constant,

97



complex rescaling of Ω, which does not induce any physical (geometrical) change. Hence one
may think all the zs together as of ‘projective coordinates’. Alternatively, one can set z0 = 1 ,
with h2,1 parameters remaining.

Crucially, the remaining periods Gb are not independent - they are in general complicated
functions of the zs:

Gb = Gb(z0, · · · , zh2,1) . (5.106)

One combines all of them in the period vector

Π = (z0, · · · , zh2,1 ,G0(z), · · · ,Gh2,1(z)) . (5.107)

The explicit form of the (dependent) periods can be obtained from appropriate differential equa-
tions (the Picard-Fuchs equations) which can be formulated on the basis of certain topological
features of the Calabi-Yau. Crucially, they do not require the in general unavailable metric in-
formation. Thus, though with much work, the periods can in principle be explicitly obtained.

With this, we are ready to give the complex structure Kahler potential:

Kcs = − ln(i

∫
X

Ω ∧ Ω) = − ln(−iΠ†ΣΠ) = − ln(−izaGa(z) + izaGa(z)) , (5.108)

where

Σ =

(
0 1

−1 0

)
(5.109)

is the symplectic metric. See e.g. [79] for a nice summary and explanation of these and other,
related formulae.

Finally, one non-geometric modulus related to the dilaton is generally present. It is known
as the axio-dilaton (on account of the periodic scalar C0):

S = C0 + ie−φ = C0 +
i

gs
. (5.110)

With this, the full type-IIB moduli Kahler potential (corresponding to a so-called orientifold
projection with O3/O7 planes - the projection to N = 1 mentioned earlier) reads

K = KK(Tα, T
α
) +Kcs(z

a, za)− ln(−i(S − S)) . (5.111)

This defines a ‘ready-to-use’ 4d supergravity model, so far without any scalar potential. The
conventions are such that MP,4 = 1, as usual in supergravity lagrangians, and that fields mea-
suring distances or volume in compact space (in our case the T s) are doing so in string units, i.e.
powers of ls ≡ 2π

√
α′. In other words, the above is valid with ls = 1 concerning the Calabi-Yau

geometry and MP = 1 concerning 4d physics.

6 The flux landscape

The general idea will be to consider compactifications with non-zero internal components of the
RR and NS field strength tensors Fp and H3. This induces a non-zero superpotential depending
on the moduli of the supergravity models discussed above and leads to moduli stabilization.
Moreover, the number of available distinct models jumps from 108 to 10500 (or, in more general
geometries – roughly speaking including D-branes – even much higher).
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6.1 Compact geometries with p-form fluxes

Let us start with a few general comments on p-form gauge theories. Consider a (p−1)-form gauge
theory in d dimensions, with an action of type (we disregard purely numerical prefactors)∫

1

g2
Fp ∧ ∗Fp +

∫
(p−2)−brane

Ap−1 . (6.1)

One can easily show that a dual description is provided by a theory based on the (d− p)-form
field strength F̃d−p. The latter is defined as

F̃d−p =
1

g2
∗ Fp , (6.2)

which in turn leads to the definition of a dual gauge potential via

F̃d−p = dÃd−p−1 . (6.3)

In these new variables the action takes the form∫
1

g̃2
F̃d−p ∧ ∗F̃d−p +

∫
(d−p−2)−brane

Ãd−p−1 with g̃ =
1

g
. (6.4)

While the new kinetic term is just a rewriting of the old one, the charged objects coupling to the
dual potential are different. In fact, both types of charged objects are present in the full theory.
But the coupling of any one of them to the fields can only be explicitly given on one side of the
duality.13

The above is of course familiar from electrodynamics, where d = 4 and p = 4− p = 2, such
that the tilde is really necessary to distinguish the otherwise identical-looking dual descriptions.
The charged objects on both sides are 0-branes, i.e. particles.

Now let us consider the particularly simple case of F1 in d = 4, which is of course nothing
but a scalar (axion) field model, with A0 ≡ φ:∫

f 2(∂φ)2 + φ(xi) . (6.5)

The last term is the coupling to an instanton, a tunneling event localized at a point at a point
in spacetime. Clearly, such objects can not be included in an initial field configuration – one has
to sum over them and integrate over all the xi in the path integral.

In case this concept is unfamiliar, here is a brief excursion concerning instantons. The
‘classical’ setting is in fact that of a gauge theory coupled to a periodic pseudo-scalar or axion-
like-field or axion for short. For definiteness, say the gauge group is SU(2):

L =
1

2g2
trFµνF

µν +
φ

8π2
trF ∧ F . (6.6)

13The purely classical dualization above can also be performed at the quantum level, i.e. under the path integral.
The basic idea is to implement the original Bianchi idenity constraint dFp = 0 by a lagrange multiplier, i.e. by
adding a term dFP ∧ Ad−p−1 to the action. Then one can integrate out Fp, arriving at the dual action. In the
latter, the lagrange multiplier Ad−p−1 has become the new dynamical field.
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The term multiplying φ is a total derivative but there exist field configurations (which can not
be smoothly deformed to the vacuum) on which the integral gives 8π2n with n ∈ Z. Very roughly
speaking, the existence of such a field configuration is related to the fact that SU(2) ∼= S3 and
the possibility of identifying this group-theoretic S3 with the S3 of radial coordinates in R4.
In the euclidean path integral, one has to sum over all such ‘bumps of energy-density’ (to be
interpreted as local tunneling events, leading from vacuum to vacuum). One also has to integrate
over all their sizes 1/M and positions. The events are suppressed by their action – exp(−Si) –
and for large Si one uses the ‘dilute gas approximation’ (cf. Fig. 22). It should now be clear in
which sense our model of (6.5) corrsponds to instantons of an SU(2) (more generally SU(N))
gauge theory: The point at which the gauge-field-theoretic instanton is localized is identified with
xi and the F ∧ F term of the lump of field strength is replaced by an approximate δ-function.

Figure 22: Instantons as localized lumps of field strength (figure from [80]).

Still within our excursion about instantons, we recall that a model with a periodic scalar
like that of (6.5) can be derived by compactifying a 5d U(1) gauge theory to 4d. Interestingly,
this also has instantons, but of a very different type (cf. Fig. 23). We leave it as an excercise for
the reader to derive the correct coupling of this type of instanton to φ. This ends our instanton
excursion.

Figure 23: Effective instanton arising from a particle-antiparticle fluctuation wrapping the com-
pact space of an S1 compactification (figure from [80]).

As a side remark, the dual theory has field strength H3 = dB2 and couples to strings (which
are here unrelated to any fundamental string theory). What interests us here is flux quantization,
which is particularly easy to understand in this case. Indeed, if our spacetime has non-trivial
one-cycles, the gauge potential φ does not need to be globally well defined but it can (assuming
e.g. that x3 paramerizes an S1) obey

φ(xi) = φ(xi + 2πR) + 2πn , n ∈ Z . (6.7)
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The shift must be integer or else the instanton action would not be well-defined. Another way
to formulate the same condition is ∮

F1 = 2πn . (6.8)

Here n is either the number of fundamental strings wrapped by the loop or it is a discrete choice
one has to make when defining the theory on a spacetime with a fundamental 1-cycle.

The above is clearly analogous to the familiar statement∮
S2

F2 = 2πn (6.9)

for electrodynamics and an S2 enclosing n magnetic monopoles. But this case is not our interest
at present. What we care about is flux quantization,∮

cp

Fp ∈ 2π Z , (6.10)

which is simply a requirement of (quantum-mechanical) consistency of a p-form gauge theory
(and its dual). In the absence of charges, the flux can only be non-zero if a non-trivial p cycle
exists in the geometry.

Now let us compactify a 4d model with a 0-form gauge theory (an axion) to 3d on S1. The
compact geometry has a single compact 1-cycle. This allows a choice of boundary conditions
or, equivalently, 1-form fluxes on the S1. The freedom is precisely that of choosing n ∈ Z in
(6.7). Thus, one obtains an infinity of 3d models with different vacuum energy: Indeed, from
the 3d perspective, the gradient term (∂3φ)2 contributes to the cosmological constant. This
already represents a small flux landscape. Moreover, the theory possesses strings. Let us include
an infinite string in our compactification. This string is a point in the compact x3-direction and
hence still has two dimensions - one time and one spacelike, in the noncompact (2+1)-dimensional
spacetime. It is hence a domain-wall in the noncompact 2d space. Once can convince oneself that,
on the two sides of this wall, the flux on the S1 differs by one unit. Hence our flux landscape
is actually not just a collection of different theories, but it possesses a dynamics allowing one
to change between those: This dynamics is bubble nucleation (cf. Fig. 24). The surfaces of
the bubbles are the domain walls made of the higher-dimensional charged objects. This crucial
feature will survive in the full-fledged string theory landscape.

Figure 24: Bubble nucleation in a 4d-to-3d toy model with 1-form flux.

Clearly, an analogous situation may be considered if one compactifies, for example, a 6d
gauge theory to 4d on S2. The S2 may be given 2-form flux in the sense of (6.9), giving rise to
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a 4d landscape of vacua labelled by n. In this case, the flux quantization is literally based on
the same logic that forces the F2 integral around a magnetic monopole to be quantized. One
may also use the U(1) principle bundle approach to gauge theories to think of this in terms of
non-trvial fibrations of U(1) over S2, which are known to be labelled by an integer, our flux
number. The case of unit flux corresponds to the famous Hopf fibration (see e.g. [81,82]).

6.2 Bousso-Polchinski model

Now let us look for an effective field theory [83] for this apparently rather general mechanism of
creating ‘landscapes’ directly in 4d. Such an effective description arises naturally if consider the
(somewhat special) case of a (d− 1)-form gauge theory in d dimensions. Let us for concreteness
focus on a 3-form gauge theory in d = 4:

S ∼ −
∫

1

Λ4
F 2

4 +

∫
domain wall

A3 . (6.11)

Without sources, the equation of motion d ∗ F4 = 0 implies that F4 is constant, so there are no
propagating degrees of freedom. The only dynamics is that of domain walls, which have some
tension and hence move according to their own classical dynamics. Moreover, they couple to A3

and hence source F4.

With the domain wall comes a 1-form current, appearing in

1

Λ4
d ∗ F4 = j1 , (6.12)

which is localized at the wall. As is generally the case in p-form gauge theories, the integral of the
current counts the number of charged objects. In the most familar case of 4d electrodynamics,
the integral of the 3-form current over a spatial 3d volume counts the number of charged-particle
worldlines crossing that volume. Here, our 1-form current should integrate to unity on any line
that crosses the domain wall once. Concretely, consider a finite line, with beginning and end
point on opposite sides of the wall, such that

1 =

∫
Line

j1 =
1

Λ4

∫
Line

d ∗ F4 =
1

Λ4
(∗F4)

∣∣∣x2
x1
. (6.13)

From this, we see right away that the scalar ∗F4 jumps by Λ4 when crossing the wall. The dual
description, though even more exotic, is simpler:

S ∼ −
∫

Λ4 F 2
0 , (6.14)

without any meaningful ‘A−1’ or sources. The 0-form field strength is classically identified with
∗F4, it is constant in spacetime by its Bianchi identity, dF0 = 0, and it only takes discrete values.
This follows from the solution for F4 in the vicinity of a domain wall discussed above. It can also
be viewed as a degenerate version of flux quantization. The set of vacua following from the F0

description is displayed in Fig. 25.
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Figure 25: Flux discretuum of a 3-form gauge theory.

Now let us assume that our 4d theory possesses a large number of such 4-form fields,

S ∼ −
∫ N∑

i=1

Λ4
i F

2
i, 0 . (6.15)

This can arise, for example, if it originates from a compactification of a higher-dimensional p-
form gauge theory on a compact space with N (p + 1)-cycles. The flux on each of those cycles
then corresponds to the flux number n in one of the F0-models in (6.15). The two-field case is
illustrated in Fig. 26.

Figure 26: Flux discretuum of a 3-form gauge theory with two fields.

Each flux choice gives rise to a particular cosmological constant

λ(n) ≡ V (n) =
∑
i

Λ4
in

2
i . (6.16)

One may ask how many different flux choices lead to λ(n) < λ0. To simplify the discussion,
let us assume that all 4-form gauge couplings are equal: Λi = Λ. The number of flux choices is
then simply the number of lattice points n ∈ ZN inside a ball of radius

√
λ0/Λ

2. The lattice is
N -dimensional, so the desired number is

K(λ0) ∼ (
√
λ0/Λ

2)N . (6.17)

If
√
λ0 > Λ2, this grows exponentially fast with N . In particular, the number of points leading

to
λ ∈ [λ0, λ0 + δλ] (6.18)

103



will, for moderately large N (say N = O(100), as suggested by the number of 3-cycles of the
quintic), still be extremely large. This remains true even if δλ is very small:

δK(λ0, δλ) ∼ (
√
λ0/Λ

2)N−1(δλ/
√
λ0Λ2) . (6.19)

Note that we do not have to be afraid that regularities in the distribution of λ-values could lead
to intervals into which λ never falls: Such possible regularities will be destroyed if we make all
Λi different, as expected in a more realistic situation.

So far, we have a model with many solutions. These solutions give rise to a discretuum a
cosmological constants, which becomes extremely dense in the region λ & Λ4 (where Λ sets the
typical scale for the couplings Λi). Now, by adding a negative cosmological constant λAdS < 0,
such that

S ∼ −

(∫ N∑
i=1

Λ4
i F

2
i, 0 + λAdS

)
, (6.20)

we can shift this dense discretuum downward. In this model, we are statistically guaranteed that
vacua with an extremely small cosmological constant exists. Clearly, due to the possible bubble
nucleation processes these vacuum will only be metastable, but they can be very long-lived. We
will play with numbers later on to see how small λ(n) can really become.

6.3 The type-IIB flux landscape (GKP)

The key idea or observation is that, in type IIB Calabi-Yau compactifications, the 3-form fluxes
of H3 and F3 can play roughly the role of the multiple fluxes of the Bousso-Polchinski model
discussed above. The details are, however, more complicated and in part qualitatively different,
mainly due to the central role of supersymmetry.

We start with the intuitve observation that a non-zero flux on a compact cycle (say a 1-cycle)
clearly has an energetic effect. Indeed, let us for simplicity assume that the compact space is
S1
A × S1

B and one unit of 1-form flux sits on the B-cycle. Then∫
dyB F1 = 1 and hence F1 ∼ 1/RB . (6.21)

This gives rise to a contribution to the action

S ⊃ −
∫
d4x

∫
dyA dyB F1 ∧ ∗F1 ∼ −

∫
d4x (RARB) · 1

R2
B

∼ −
∫
d4x

RA

RB

. (6.22)

We learn that a flux on a cycle prevents this cycle from shrinking. More generally, if there are
fluxes of various values on various cycles of a compact space, then these fluxes tend to stabilize
the shape of the manifold in a certain way. Specifically, the ratio between the volumes of two
cycles gets stabilized roughly according to the ratio of the flux numbers on these cycles.

Concretely, we expect that 3-form fluxes will stabilize (give mass to) the complex structure
moduli, which a we know govern the ratios of 3-cycle volumes. But this is not possible in a 4d
supergravity model without superpotential since for W = 0 no scalar potential is induced.
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To make the right guess for the form of the expected flux-induced W , it is useful to observe
that (already in 10d) one can use the complex scalar field

S = C0 + ie−φ (6.23)

and the complex 3-form flux
G3 = F3 − S H3 . (6.24)

The kinetic terms of the two 3-form fields take the simpler form (suppressing constant prefactors)

S ⊃
∫
d10xG3 ∧ ∗G3 . (6.25)

With this, one may guess the mathematically natural expression for the superpotential in-
duced by 3-form fluxes:

W =

∫
X

G3 ∧ Ω3 . (6.26)

This is known as (the type IIB version of) the Gukov-Vafa-Witten superpotential [84]. The
latter has first been postulated and mathematically justified (in an abstract way) for M-theory
compactifications to 3d on Calabi-Yau 4-folds:

WGVW =

∫
X4

G4 ∧ Ω4 . (6.27)

In the famous paper for Giddings, Kachru and Polchinski (GKP) [63] (see also [85]), this super-
potential was used and justified explicitly by comparing the 4d scalar potentials derived in from
4d N = 1 supergravity and directly from 10d.

Now one can make this fully explicit by normalizing the 3-form fields such that flux quanti-
zation takes the form

1

2πα′

∫
F3 ∈ 2πZ ,

1

2πα′

∫
H3 ∈ 2πZ (6.28)

for integrals over integer cycles. Equivalently, one may decompose the fluxes in a symplectic
integer form basis,

F3 = −(2π)2α′(faωAa + fb3/2+bω
b
B) , H3 = −(2π)2α′(haωAa + hb3/2+bω

b
B) , (6.29)

where the entries of the coefficients vectors f and h now have to be integer. With this the
superpotential, given in its simplest and mathematically natural form above, can be worked out
explicitly:

W =

∫
X

G3 ∧ Ω3 = (2π)2α′ (f − Sh) · Π(z) . (6.30)

The scalar potential potential reads, as usual,

V = eK
(
Ki(DiW )(DW ) +Kαβ(DαW )(DβW )− 3|W |2

)
. (6.31)

Here we have, for simplicity and since they all appear in W = W (S, z), combined the axio-dilaton
S and the complex structure moduli z1, · · · , zh2,1 in one vector:

zi = {S, z1, · · · , zh2,1} . (6.32)
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We have furthermore redefined

Kc.s − ln(−i(S + S)) → Kc.s , (6.33)

absorbing the axio-dilaton Kahler potential into the complex-structure Kahler potential.

Since W is independent of the T s and since the Kahler modulus Kahler potential is of no-scale
type, e.g. in the simplest case

KK = −2 ln(V) = −2 ln((T + T )3/2) = −3 ln(T + T ) , (6.34)

the last two terms in (6.31) exactly cancel (see problems):

V = eK Ki(DiW )(DW ) . (6.35)

Moreover, the equations for unbroken SUSY (the F -term conditions)

DiW = 0 for i = 1, · · · , b3/2 , (6.36)

represent b3/2 equations for equally many complex variables. They will in general possess a
solution (or a finite set of solutions). This fixes all zi to specific values. One may view these
fields, which now have a large mass in this positive definite potential, as being integrated out.
The result is a model depending just on T (or, more generally, all Kahler moduli) in which

V = V (T, T ) ≡ 0 . (6.37)

Since

F
T

= DTW = KTTKTW =

(
3

(T + T )2

)−1
(−3)

(T + T )
W = −(T + T )W 6= 0 , (6.38)

supersymmetry is broken. The scale at which it is broken (e.g. the gravitino mass eK/2W ) is not
fixed since T is not fixed. One calls this a no-scale model.

One of the key points of [63] (known as ‘GKP’) is that they established this vanishing poten-
tial not only (as we just did) indirectly, via 4d SUGRA arguments, but by explicitly providing the
10d geometry. The term ‘explicitly’ is here interpreted as follows: One assumes that a Calabi-Yau
metric is given (this is of course not explicit but rests on the famous existence theorem). Then,
given in addition certain fluxes and other sources in the Calabi-Yau (e.g. O3-planes and D3
branes), one is able to write down differential equations determining the actual metric, including
backreaction from fluxes. This metric corresponds to a flux compactification to 4d Minkowski
space. In fact, there is a family of such solutions, corresponding to the flat direction characterized
by the ‘no-scale modulus’ T above.

6.4 Kahler modulus stabilization and SUSY breaking (KKLT)

As in the previous section, we focus on the simplest case h1,1 = 1, such that

K = −3 ln(T + T ) and W = W0 = const. (6.39)
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The complex structure moduli have been integrated out and the corresponding flux choice (to-
gether with the VEVs of the zi which it prescribes) has fixed W0. At leading order, we have
V ≡ 0 and SUSY breaking with m3/2 ∼ eK/2W0.

Various (quantum) corrections will generically lift the flatness of V , breaking the no-scale
structure. This can be α′ corrections (corresponding to higher-dimension operators in 10d), loop-
corrections, non-perturbative instanton effects or non-perturbative effects from (SUSY) gauge
theory confinement (also known as gaugino condensation). The last two of these four qualitatively
different effects lead to technically similar results. In particular, W is corrected according to

W0 → W0 + Ae−2πT/N , (6.40)

by either instantons (in this case N = 1) or by gaugino condensation (here N is the dimen-
sion of the fundamental representation of the gauge group SU(N)). This type of corrections is
one of basic ingredients of the KKLT-scenario for (complete) moduli stabilization and SUSY
breaking [86] which we will describe in the rest of this section.

We will not introduce the technology necessary to describe the case of gaugino condensation.
Suffice it to say that, if a stack of N D7 branes is wrapped on a 4-cycle with volume ∼ReT ,
the 4d theory contains a corresponding N = 1 super-Yang-Mills theory. The latter exhibits
confinement, as familiar from the non-SUSY QCD sector of the Standard Model. In our case,
confinement is characterized by a non-zero Wnon−pert. ∼ Λ3. Here Λ is the confinement scale
and its relation to Wnon−pert. follows on dimensional grounds. Using also the fact that the 4d
gauge coupling squared is ∼ 1/ReT by the standard logic of Kaluza-Klein reduction from 8d
to 4d, one may run from high to low energy scales and determine at which scale the gauge
coupling reaches O(1) values. This fixes Λ in terms of ReT , and by holomorphicity leads to
Wnon−pert. ∼ exp(−2πT/N), where N comes in through the beta-function.

Since have already introduced some of the ideas relevant for instanton effects, we will describe
the instanton case in slightly more detail. For this, it is useful to recall how an instanton correction
in a 5d-to-4d compactification of a gauge theory is related to the possibility of wrapping a closed
electron worldline on a 1-cycle (in this case the unique 1-cycle S1) of the compact space. This
was illustrated in Fig. 23, where the reader was invited to think of a particular type of e+e−

fluctuation of the vacuum. But this time-dependent picture is not necessary – the simplest and
dominant effect corresponds to just wrapping the worldline on the minimal volume cycle (at
fixed 4d space-time point xµ), subsequently integrating over t.

This type of instanton has an obvious analogue in compactifications of higher-form gauge
theories. The interesting case is that where the compact space possesses cycles the dimensions of
which correspond to the dimensionsionality of the available charged objects. Our case of interest
is type IIB with its 4-form C4 and the corresponding D3 branes. We think of the electron worldline
above as of a 0-brane and, once it is wrapped in euclidean signature to describe tunneling, as
of an E0 brane. Analogously, we can think of a D3 brane (now often called an E3 brane) as
being wrapped at fixed xµ on the minimal volume 4-cycle of our Calabi-Yau. This is the origin
of the instanton correction we are after, cf. Fig. 27. Such instantons are called stringy or exotic
or D-brane instantons.
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Figure 27: An E3-brane instanton, corresponding to a euclidean D3 brane wrapped on a 4-cycle
of a CY over one of the points of the non-compact space-time R4.

At the quantitative level, we recall that our complex Kahler modulus is T = τ + ic, where

τ ∼ R4
CY ∼

∫
4−cycle

√
gCY . (6.41)

The last expression is, up to the proper normalization by the tension prefactor, the action of the
wrapped brane. Furthermore, the wrapped brane couples to C4 through∫

4−cycle
C4 ∼ c , (6.42)

which is just the 4d axionic scalar in T . Thus, a single instanton contributes to the 4d partition
function as

∼ e−2πτ e−2πic , (6.43)

where the first factor is the tunneling suppression by the euclidean brane action. The second
factor comes from the part of the D3-brane action displayed in the previous line. It can equiv-
alently be viewed purely in 4d as the coupling of the 0-form gauge field c to its 0-dimensional
charged object, the instanton.

Summing over all numbers of instantons and anti-instantons (which come with e+2πic) leads
to an exponentiation:

L4d ⊃ exp
[
∼ e−2πτ cos(2πc)

]
. (6.44)

The term in the exponent is the instanton correction to the 4d effective action and it is pre-
cisely analogous to the possibly more familiar gauge theory case. Here, one gets corrections
∼ e−8π/g2 cos(2πφ), where g is for example the strong gauge coupling and φ the QCD axion,
famously obtaining a cosine-potential from this effect.

In SUSY, such instanton corrections can enter the 4d effective action only through either K
or W :

W0 → W0 + Ae−2πT or K → K +Be−2πT + c.c. . (6.45)

Which of the two happens depends on the geometry of the wrapped brane and will not be
discussed here. For KKLT, we require that a correction to W arises. We also note that the τ and
c dependences are such that they combine in a holomorphic function of T (as required by SUSY),
with the proper periodicity in Im(T ). Conversely, as shown in the problems, the evaluation of
the scalar potential on the basis of W from (6.45) leads to a term of the type of (6.44).
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We can now finally proceed with the analysis of the 4d effective theory, defined by

K = −3 ln(T + T ) and W = W0 + Ae−aT . (6.46)

It is a straightforward exercise to derive the scalar potential V (τ, c), integrate out c (by simply
finding the minimum in c), and thus obtain

V = V (τ) . (6.47)

The qualitative behavior of this potential at W0 � 1 is displayed in Fig. 28. It is easy to derive
by analysing the standard supergravity formula for V in the regimes e−aT � W0 and e−aT � W0

(see problems). One checks that V grows at small τ and approaches zero from below at large τ .
This is sufficient to conclude that the qualitative picture is that of Fig. 28.

Figure 28: Qualitative behaviour of the scalar potential arising after the inclusion of instanton
or gaugino condensation effects in W .

Moreover, is is easy to prove in general that the supergravity scalar potential has an ex-
tremum at supersymmetric points, where the F -terms and hence the first, positive-definite term
in the supergravity potential formula vanish,

DW = −e−T − 3

T + T

(
W0 + e−T

)
= 0 . (6.48)

In our case this extremum is always a minimum. Here we have set A = a = 1 for simplicity.
Assuming c = 0, this vanishing-F -term condition is solved (implicitly in τ) if

W0 = −
(

1 +
2

3
τ

)
e−τ (6.49)

holds. The conclusion that W0 must be real and negative is a mere consequence of our simplifying
assumption c = 0. For a general phase of W0 (and A), we would simply have found a non-zero
value of c at the minimum. This is not important for us.

What is important is the conclusion that W0 must be exponentially small for parametric
control, i.e. to have RCY � 1. Of course, making W0 small should not be a problem since it
depends on the flux choice – it can hence be finely tuned in the landscape. In fact, to be sure that
nothing goes wrong one needs to know that the statistical distribution of W0 in the complex-
W0-plane for random flux choices has no special feature near the origin. This crucial fact, more
precisely the flatness of the distribution of |W0|2 values near zero, has been established with
some level of rigour in [87].
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Thus, we have uncovered a landscape of supersymmetric vacua with a negative cosmological
constant, so-called SUSY AdS vacua. (Note that, in the ‘first step of KKLT’ leading to these
solutions the broken supersymmetry of GKP is restored in the minimum). But to describe
the real world we need a positive (even though very tiny) cosmological constant and broken
supersymmetry. Moreover, turning at least a small fraction of the SUSY-AdS vacua above into
dS vacua is essential for eternal inflation, the presently leading mechanism for populating the
landscape cosmologically (see below).

Let us first give a much simplified, ‘macroscopic’ description of how dS vacua may arise on
the basis of the above. Let us assume that some further details of the model, such as branes
with their gauge theories and charged matter fields, introduce extra light degrees of freedom and
corresponding corrections to K and W :

K → K(TT ) + δK(X,X, T, T ) , W → W (T ) + δW (X) . (6.50)

Now, let us choose δK and δW in analogy to the one-fiel O’Raifeartaigh-type model discussed
in Sect. 2.7:

δK ∼ XX − (XX)2 , δW = αX . (6.51)

This will lead to DXW 6= 0 in the vacuum. Moreover, one chooses parameters such that, in this
SUSY breaking vacuum X = 0 and its fluctuations have a very large mass. Then the upshot of
the whole construction is that the scalar potential V is supplemented by a so-called uplifting
term

V → V + δV with δV = eKKXX |DXW |2 . (6.52)

At this generic level of analysis the uplifting term δV could have any T dependence, given
our free choice of the T dependence of δK. In concrete string constructions, for which the above
is a toy model, δV will always be decaying at large volume, cf. Fig. 29. This can be understood
if one imagines that (as is mostly the case) δK and δW are due to some local effect in the CY.
Then, going to large volume, the SUSY-breaking and uplifting effects stay the same in string
units, but the Planck mass diverges. Hence, in standard supergravity conventions with MP = 1,
δV will decay with growing T .

Figure 29: Uplifting to a KKLT dS vacuum.

One may expect that in the huge string theory landscape many options for such an uplift
exist. Yet, it turns out not to be easy to construct an uplift of the above O’Raifeartaigh type
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explicitly. Thus, the most explicit uplift has a somewhat different structure: It is the anti-D3-
brane uplift originally suggested by KKLT, which arguably remains the most explicit (though
nevertheless not uncontroversial14) possibility. We turn to this construction, which requires some
more technology, next. As we will see, even though different in detail, the KKLT uplift behaves
qualitatively as explained using the O‘Raifeartaigh toy model above.

6.5 The anti-D3-brane uplift of KKLT

As we explained earlier, a so-called orientifold projection reduces the supersymmetry of a type
II CY compactification from N = 2 to N = 1. Let us consider the example of an O3-plane
projection, which can locally be thought of as the geometric action

(z1, z2, z3) → (−z2,−z2,−z3) , (6.53)

to be combined with a world-sheet orientation change.

Locally, this projection introduces a singularity at {zi} = 0, at which (due to the orientation
change) a so-called O3-plane is localized. This is a negative-tension object which also has opposite
C4-charge15 compared to a D3-brane. In a consistent compactification, an O3-plane always has
to come with a certain number of D3 branes for total charge neutrality (tadpole cancellation).
Concretely, the D3 charge of an O3-plane is -1/4. The fractionality is not a problem since the
compact CY after orientifolding will usually have a large number, divisible by 4, of O3-planes.
For example, it is easy to check that T 6/Z2, with the Z2 acting as above, has 64 O3-planes.

Now, given a consistent CY with a number of O3-planes and a corresponding number of
D3-branes, it is possible to replace some or all of the D3-branes by 3-form fluxes. This possibility
arises since, through the CS-term, 3-form fluxes contribute to the total D3 tadpole. This takes
us to the realm of flux compactifications à la GKP and, if we also allow for the non-perturbative
effects ∼ e−aT introduced above, we will find ourselves in an N = 1 SUSY setting with O3-
planes, D3-branes and fluxes. The O3-planes, the D3-branes and the fluxes all break SUSY to
the same N = 1 sub-algebra of the original N = 2 SUSY of the pure CY model.

Next, we can think of breaking SUSY by adding a D3 and anti-D3 (for short: D3) brane pair.
The D3 breaks N = 2 to the opposite N = 1 subalgebra, such that 4d SUSY is now completely
broken. D3 tadpole cancellation is not violated since we added two oppositely charged objects.
However, brane and anti-brane attract each other both gravitationally and through C4, so they
will quickly find each other and annihilate, releasing twice the energy density of the D3-brane
tension. Our ‘uplift’ is thus very short-lived and not practically useful.

However, we could avoid having any D3-branes by cancelling the tadpole of the O3-planes
by flux alone. If we now add a D3-brane and increase the flux appropriately to ensure tadpole
cancellation, we appear to have the desired uplift. Now, the D3 still breaks SUSY relative to
flux and O3-planes but there is no D3 which it could attract and annihilate.

14There even exists the opinion that no uplift to a dS minimum can ever be constructed for fundamental
reasons, challenging most ideas about how string theory might be relevant to the real world. We will return to
this subject [88,89].

15This is often referred to as D3-charge.
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Unortunately, this is not yet good enough since this uplift (by twice the D3-brane tension,
which is string-scale) is much too strong. Indeed, given that the non-perturbative effects and
hence the depth of the original AdS minimum are exponentially small, the situation will be as
in Fig. 30: The uplift is much too strong and no local dS minimum can be generated.

Figure 30: Too high an uplift.

Fortunately, the key to a resolution of this problem is already contained in the seminal work
of GKP [63] discussed above. They show explicitly (based on earlier work) that the metric on a
CY orientifold threaded by 3-form-flux is not of product type but warped:

ds2 = Ω2(y)ηµνdx
µdxν + gmn(y)dymdyn . (6.54)

Here xµ (with µ = 0, · · · , 3) and ym (with m = 1 · · · 6) parameterize the non-compact R4 and
compact X6 part of our total space respectively. This space is, topologically and as a differentiable
manifold, still of product type, R4 ×X6. However, the metric manifold built on this basis does
not share this product structure. As we can see from the warped metric ansatz in (6.54), this
breaking of the product structure is perfectly consistent with 4d Poincare invariance as long as
y enters in the prefactor of the non-compact metric but x does not enter in the prefactor of the
compact part of the metric. One refers to Ω(y) as the warp factor.

Moreover, GKP show that given certain (very common16) features of the CY and a particular
flux choice, the compact manifold develops a strongly warped region. This region is also known
as a Klebanov-Strassler throat [90] and is graphically often represented as in Fig. 31. To
understand that the compact geometry is strongly deformed at strong warping, one also needs
to know that [63,90]

gmn(y) = Ω−2g̃mn(y) , (6.55)

where g̃ is the Calabi-Yau metric. But this is not essential for us. What is essential is energetic
effect of the warping on the SUSY-breaking D3 brane placed in the Calabi-Yau orientifold.

To understand this central aspect, recall the Schwarzschild black hole metric

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dω2 , (6.56)

16The feature we need is a so-called conifold singularity. The latter develops when a a certain type of 3-cycle
shrinks to zero volume (i.e. z → 0 if the z is the modulus parameterizing the corresponding period). This is in
fact a generic type of 3-cycle of a CY, so such a situation arises frequently. Conversely, the conifold singularity
can be made smooth (‘deformed’) by ‘blowing up’ a 3-cycle. For more details see e.g. [91].
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Figure 31: Calabi Yau with warped throat. The Calabi-Yau is basically undeformed in the region
of small warping (Ω ' 1) and strongly deformed in the Ω � 1 domain (where the D3 brane is
localized).

where dω2 is the metric on the unit sphere. Clearly, f(r) bears similarity to our Ω2(y). As is well
known, the vanishing of f(r) as one approaches the horizon is responsible for the redshift effect
and the force that pulls any massive object into the black hole. The same happens in our case:
The D3 brane represents a SUSY-breaking local energy density in the warped Calabi-Yau and
this brane is pulled towards strong warping (where Ω � 1). Once there, its energetic effect as
seen from the unwarped ‘bulk’ of the Calabi-Yau is greatly reduced. In other words, the anti-
brane naturally sits at the bottom of the warped throat and uplifts the total potential energy of
the compactification only by

Ω4
min ×O(1) (6.57)

in string units. The fourth power of Ω arises since, as known from black hole physics, f 1/2 is the
redshift factor and, in our context, we are redshifting an energy density, i.e. an object of mass
dimension four.

As shown in GKP,
Ωmin ∼ exp(−2πK/3Mgs) , (6.58)

where K and M are flux numbers associated with 3-cycles of the KS-throat geometry and gs is
the string coupling constant. The latter is governed by the modulus S stabilized by fluxes. Thus,
one apparently has enough freedom to choose fluxes in such a way that Ωmin is exponentially
small.17

Before moving on, it should be mentioned that a debate about the metastability of the
anti-brane at the bottom of the throat has been going on for a number of years (see [95–
100] and refs. therein). Indeed, as should be clear form the above the D3 breaks SUSY (in
the absence of any D3 brane) against the fluxes in the throat. It can annihilate against these
fluxes only at the price of overcoming an energy barrier, making the uplifted configuration at
best metastable [94]. However, the backreaction of fluxes to the presence of the anti-brane is
poorly understood and a barrier-free decay or outright instability has been claimed. Yet, in my
understanding, metastability as described in [94] has remained plausible [96, 98]. On the other
hand, a better, fully-backreacted understanding of the geometry with the anti-brane included
would be highly desirable but remains challenging.

Let us now assume that the above D3 uplift does indeed provide metastable SUSY breaking
and estimate its magnitude. For simplicity, we disregard factors of gs such that the tension of 3-
brane in either the 10d string or Einstein frame is O(1)× l−4

s ∼ O(1). Here we also, as before, use

17See [92,93] for recent, in part critical comments related to this point.
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conventions in which all dimensionful quantities in 10d are measured in units of the string scale
or the inverse string scale. If there were no warping then, compactifying, the D3 brane tension
(more precisely twice this number - see above) induces a 4d energy density ∼ O(1). Note that
we are still using string units and our 4d Planck mass is M2

P ∼ V (i.e. we are in a ‘Brans-Dicke
frame’). Next, we Weyl rescale the 4d metric to go to the 4d Einstein frame. This amounts to
using 4d Planck units (i.e. setting the Planck mass to unity) in the 4d effective action. Since, in
this process, dimensionless ratios of physical observables do not change, we have

ρEistein
D3

(M4
P )Einstein

∼
ρBrans−Dicke

D3

(M4
P )Brans−Dicke

∼ 1

V2
or ρEistein

D3
∼ 1

V2
∼ 1

τ 3
. (6.59)

Most naively, one would now like to include warping by multiplying with the fourth power of
the redshift factor Ω4

min [86]. This is correct in principle, but at a quantitative level a further fine
point has to be taken into account [101]: Indeed, the expression (6.58) is valid in the strongly
warped region near the tip of a Klebanov-Strassler throat. It represents correctly the dependence
of the warping on the relevant discrete flux choice. Yet, if the the Calabi-Yau volume is taken
to infinity, then it is clear that eventually the fluxes become so diluted that their backreaction
on the geometry is negligible and Ω ∼ 1, even at the lowest point of the throat. This can be
quantified [101] and leads to the more precise warping suppression

Ω4
min → Ω4

minτ , (6.60)

valid only as long as Ω4
minτ � 1.

Combining everything, one arrives at

VKKLT = eK
(
KTT |DTW |2 − 3|W |2

)
+ Vup(τ) , (6.61)

with

K = −3 ln(T + T ) , W = W0 + Ae−aT and Vup(τ) = c
Ω4
min

τ 2
. (6.62)

Here A, a and c are numerical O(1) factors and W0 and Ωmin can be chosen extremely small
by an appropriate flux choice. It is easy to convince oneself numerically or analytically that an
uplifted situation with a metastable dS or Minkowski vacuum as in Fig. 29 can be achived on
the basis of the above potential. The reader is invited to verify this. They key non-trivial point is
that the AdS minimum is very steep (based on the exponential behavior of the non-perturbative
superpotential ∼ e−aT ) while the uplift has a relatively flat, power-like τ dependence. Hence, the
local minimum survives the uplift to a value above zero.18

18We note in passing that a new round of criticism and defense of this construction has appeared relatively
recently, related mainly to the question whether the non-perturbative effect (in this case gaugino condensate)
and the subsequent uplift can also be understood directly in 10d [102–107]. At this point it appears that, yet
again, the success of the KKLT construction remains plausible [105]. An interesting novel criticism raised in [107]
concerns the achievable size of the bulk CY and the question whether this size is large enough for semiclassical
control.
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6.6 The Large Volume Scenario

A very promising alternative to the KKLT proposal for Kahler moduli stabilization in an AdS
vacuum (before uplift) is provided by the Large Volume Scenario or LVS [108]. It has the disad-
vantage of being slightly more involved than KKLT but the advantage that the stabilized value
of the volume VLV S may be exponentially large – a feature not available in KKLT due to the
parametric behavior VKKLT ∼ ln(1/|W0|).

In the simplest realization, two Kahler moduli Tb and Ts (with the indices standing for ‘big’
and ‘small’) are required. The volume is assumed to take the form

V(τb, τs) ∼ τ
3/2
b − cτ 3/2

s , (6.63)

with 2τi = Ti + T i and KK = −2 lnV , as usual.

...to be extended...

6.7 Vacuum Statistics and the realizability fine tunings

Let us now assume that one of the moduli stabilization and uplifting procedures discussed in the
literature (the two main examples being KKLT and LVS) or some variant thereof works. This
implies the existence of a landscape of 4d EFTs with a certain random distribution of operator
coefficients, including in particular the cosmological constant λ and the Higgs mass parameter
m2
H . Two non-trivial questions can then be asked. First, is it clear that the landscape contains a

vacuum with the apparently highly fine-tuned values of λ and m2
H we observe? Second, can we

understand why we find ourselves in an world described by such a very special vacuum?

In this section, we want to discuss, at least briefly, the first (and simpler) of these two
questions. We focus on λ and on KKLT. In this case, a partial answer can be given using a
fundamental technical result of [87] (see also [45,109,110]). In this paper the focus is entirely on
the flux stablization of complex structure moduli (and the axio-dilaton), i.e., Kahler moduli are
ignored. The setting is (for our purposes) that of type IIB Calabi-Yau orientifolds with O3/O7-
planes.19 In this setting, the tadpole constraint on the flux vector (f, h) can be calculated (for
details see below) such that one knows precisely in which subset of the space of integer vectors
this object takes its values. Each such value corresponds to a point in complex-structure moduli
space at which the geometry (the variables zi and S) is then stabilized. If the dimension of the
moduli space and hence of the vector (f, h) is large, solving for the zi on the basis of a given flux
value is practically impossible. But, assuming that the set of relevant flux choices is large, it is
possible to talk about the resulting (approximately) statistical distribution of vacua in moduli
space. In fact, in the strict mathematical limit of a large tadpole (taking the restriction on the
length of (f, h) to infinity), this becomes a precise mathematical question.

They key answer given in [87] concerns the distribution of a particular quantity, eK/2W . It
was shown that, under mild assumptions, the distribution of this number in the complex plane is
flat near zero, cf. Fig. 32. We now want to include Kahler moduli (for simplicity a single Kahler

19In fact, the proper framework is the non-perturbative generalization of this setting, known as F-theory. See
below.
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modulus) assuming that, for a large subset of these vacua, instanton or gaugino condensate
effects are present. This leads to

W0 → W0 + Ae−aT , (6.64)

eventually giving rise to full moduli stabilization in AdS with

λAdS ∼ −eK |W0|2 . (6.65)

The flat distribution of the complex number eK/2W0 now implies a flat distribution of λAdS,
reaching up to zero from below (cf. the l.h. side of Fig. 33). After an uplift of the type described
in Sect. 6.4 or 6.5, a dense distribution of λ values including the zero-point is obtained (cf. the
r.h. side of Fig. 33).

Figure 32: The distribution of eK/2W0 in the complex plane has no special feature near the origin.

Figure 33: Distribution of the cosmological constant before and after uplift.

It is crucial in this logic that both the value of W0 and the uplift energy can be extremely
small. In the first case, the reason the tuning in the flux discretuum, as described above. In
the second case it is the exponential warping suppression. Thus, a value of λ very close to zero
can arise after a shallow AdS vacuum is uplifted by a small amount. The restriction to shallow
AdS vacua and small uplifts is crucial for calculational control purposes: Specifically, small W0

implies a relatively large volume and hence a suppression of various higher-order (α′ and string
loop) corrections.

Of course, it is important to quantify how dense the discretuum is and hence how finely
spaced a districution of λ values in Fig. 33 one can hope for. For this, we need to discuss tadpole
cancellation for the C4 potential. By this we mean that the coefficient of the action term linear
in C4 (the ‘tadpole’) should be zero. The intuition behind this is best explained by an analogy
to electrodynamics:

Imagine our space were not R3 but compact, say S3. Then by Gauss’ law a static solution
of the Maxwell equations

d ∗ F2 = d ∗ dA1 = j3 (6.66)
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clearly requires that the total number of sources add up to zero,∫
S3

j3 = 0 . (6.67)

Even more intuitively, the number of electrons and positrons must be the same since there can
not be more ‘beginnings’ than ‘ends’ of electric field lines on a compact manifold.

In our case, the Chern-Simons lagrangian∫
C4 ∧ F3 ∧H3 ≡

∫
C4 ∧ jflux6 (6.68)

implies that part of the sources for C4 are provided by the 3-form flux. Moreover, the type IIB
equations of motion also imply that G3 is imaginary self-dual,

∗G3 = iG3 , (6.69)

which in turn implies that
∫
CY

jflux6 can not get different-sign contributions from different regions
of the CY. The contribution of the fluxes to the C4 source or the so-called ‘D3 tadpole’ can be
written as ∫

CY

jflux6 =

∫
F3 ∧H3 ∼ (h, f)2 , (6.70)

with an appropriately defined (symplectic) product on the space of flux vectors (h, f).

This flux vector contribution to the D3 tadpole has to be cancelled by other charged objects.
We are discussing this before the uplift, so D3 branes are not at our disposal. D3 branes contribute
with the same sign as (supersymmetric) 3-form fluxes. The available options are then only O3-
planes or O7-planes. The first contribute in an obvious way since they are charged oppositely
w.r.t. D3 branes. By contrast, the O7-brane contribtuion is indirect and involves an integral over
the curvature of the O7-plane, which can be viewed as a curved, co-dimension-2 object in the 6d
CY. We are not going to spell this out explicitly, but only report the results of a more general
analysis:

Type IIB compactifications in the perturbative regime find their non-perturbative completion
in so-called F-theory models [111] (for reviews see [1, 112, 113]). Their detailed discussion goes
beyond the scope of this subsection. Suffice it to say that these are based on the geometry of an
elliptically-fibred (roughly torus-fibred) CY 4-fold. The fibre torus encodes the information that
corresponds, in type IIB language, to the variation of the axio-dilaton S. In fact, S is identified
with the complex-structure parameter of the fibre torus.

In this more general F-theory setting, the tadpole contribution of the O7-planes above is
encoded in the 4-fold geometry, more precisely in the Euler-number χ4 of the 4-fold. But this is
much more general - contributions arise also from 7-branes other than the standard D7-branes
of perturbative type IIB string theory. In our context, the crucial constraint then becomes

NTΣN ≤ L ≡ χ4

24
with N =

(
h
f

)
and Σ ≡

(
0 1

1 0

)
. (6.71)

The key geometric input is the availability of 4-folds with Euler characteristics up to χ4 ∼ 106

(see e.g. [114]), leading to L ∼ 105. The number of vacua can then be estimated as [87]

Nvac ∼
LK

K!
, (6.72)
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where K is the number of 3-cycles of the CY. This number is crucial in the present context
since it determines the dimension of the flux vector N to be d = 2K. Thus, the estimate of Nvac
above can roughly be understood as the volume of a 2K-dimensional ball of radius

√
L. This is a

natural expectation since we are dealing with a lattice with unit spacing on which the flux vector
can end. Of this lattice only a certain subset, specified by the inequality in (6.71), is available.
The details are slightly more complicated since the metric Σ is not positive definite, such that the
‘radius’

√
L does not specify a ball but the interior of a hyperboloid (the non-compact directions

of which are, however, cut off by physical arguments and do not lead to a divergence of Nvac).

In the end, using the (far from maximal) numbers L = 104 for the 4-fold Euler number and
K = 300 for the number of 3-cycles of the corresponding Calabi-Yau orientifold, one arrives at

Nvac ∼ (eL/K)K ∼ 100300 = 10600 . (6.73)

Even after appropriate reductions for the geometric constraints implied by the gaugino conden-
sate / instanton effect and by the warped throat required for the uplift, this is still more than
sufficient to realize the desired fine tuning for the cosmological constant ∼ 10−120 (in Planck
units). In fact, most naively (ignoring the reduction by geometric constraints) one expects that
of the 10600 vacua about 10480 have a cosmological constant of the order of 10−120.

At this point, a comment concerning a more recent development in the context of vacuum
counting has to be made. It concerns the number of several hundred 3-cycles which we used and
which is typical for a CY 3-fold. Clearly, an O7-orientifold of a CY 3-fold has more moduli due to
the freedom of deforming the 4 D7 branes that originally lie on top of each O7 plane. Even more
generally, similar situations can be analysed in the F-theory context, where more types of co-
dimension-2 objects than just O7-branes and D7-planes are available. In this context, the 3-fold
complex structure and D7-brane deformation moduli are unified as complex-structure moduli of
the elliptically fibred CY 4-fold. In this F-theory setting, ‘the geometry with most flux vacua’
has recently been identified [115]. The tadpole is similar to what was discussed above, but the
relevant number of 4-fold complex structure moduli is h3,1 = 303, 148. This leads to O(10272,000)
flux vacua – far beyond what can be expected on the basis of just 3-fold complex structure
moduli.

Assuming that Higgs-like scalars with a flat (flux-related) mass-squared distribution going
through zero are available, one can discuss the fine tuning of the Higgs mass parameter analo-
gously to the tuning of the cosmological constant above. Up to model building constraints, the
reduction in the number of vacua by this requirement is by a factor of (100 GeV)2/(1018GeV )2 ∼
10−32. Thus, we would apparently still be left with ∼ 10450 vacua with accidentally small cos-
mological constant and a light Higgs.

Needless to say, the problem of tuning the Higgs mass small is alleviated if also have low-
scale (or at least relatively low-scale) SUSY. Such models with low-scale SUSY are also available
in the landscape, in the simplest case by tuning W0, which determines m3/2, to be sufficiently
small. An interesting question is now whether we are more likely to find ourselves in a world with
purly fine-tuned light Higgs or with a light Higgs mostly due to SUSY (possibly with some extra
tuning in addition). One part of the answer can be given by asking how many of the respective
vacua are available. In other words, is it ‘cheaper’ to directly tune for a small Higgs mass or to
tune for a low SUSY breaking scale. The second option looks advantageous since there are also
model-building possibilities to lower the SUSY-breaking scale. Yet another option would be to
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look for models with technicolor-like structure, lowering the Higgs mass in a non-SUSY-related
dynamical way.

Yet, vacuum counting alone is not sufficient to settle the interesting questions above. Indeed,
it is possible that many more vacua with low-scale SUSY rather than with purely fine-tuned
non-SUSY light Higgs are available. But this would become irrelevant if cosmological dynamics
prefers inflation to always end in vacua with high-scale SUSY-breaking. Thus, we need to turn
to the dynamics which might be responsible for populating the landscape.

7 Eternal Inflation and the Measure Problem

7.1 From slow-roll inflation to the eternal regime

The present course does, of course, assume General Relativity as a prerequisite. Since most
relativity courses include some cosmology, it appears logical to assume that the reader will also
be familiar with the most basic cosmology-related formulae. We only summarize the results to
set our notation:

The cosmological principle, with excellent support from data, postulates that space is ho-
mogeneous and isotropic on large scales. Together, these two features imply spacetime can be
represented as a 1-parameter family of spatial homogeneous hypersurfaces Ht (with t ∈ R) which
are threaded orthogonally by ‘observer curves’. Each of those is parameterized by the oberserver
eigentime t. In terms of the metric, this means

ds2 = −dt2 + a2(t) gij dx
idxj , (7.1)

where a is the scale factor and gij is metric on a maximally symmetric 3d space, i.e. the a sphere,
a plane or 3d hyperboloid.

If matter comes in the form of a perfect fluid with

Tµν = ρ uµuν + p (gµν + uµuν) , (7.2)

with density ρ and pressure p, then the Einstein equations and the coninuity equation reduce to

3M2
P (H2 + 3k2/a2) = ρ (7.3)

ρ̇+ 3H (ρ+ p) = 0 , with the Hubble parameter H = ȧ/a . (7.4)

Here k = +1, 0,−1 distinguishes the three cases of positive, zero and negative spatial curvature.

A case of particular interest is that of a scalar φ with potential V (φ). Using the standard
result ρ = T + V and p = T − V (with T = φ̇2/2), one then immediately sees that (7.4) takes
the form

φ̈+ 3Hφ̇+ V ′ = 0 . (7.5)

Standard slow-roll inflation arises in the regime where the potential V is sufficiently flat.
This is conventionally quantified by requiring smallness of the two slow-roll parameters (MP = 1
here and below):

ε ≡ 1

2

(
V ′

V

)2

� 1 and η ≡ V ′′

V
� 1 . (7.6)
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Indeed, in this regime φ̈ can be neglected in the equation of motion for φ and ρ is dominated by
the potential energy. Thus, cosmology is described by

3Hφ̇ = −V ′ with H2 = V/3 and a = exp(Ht) . (7.7)

This represents a so-called quasi-de-Sitter situation, exact de-Sitter expansion corresponding to
an exactly constant (rather than slowly changing) H in the last equation of (7.7).

In standard cosmology one assumes that this situation lasts long enough to explain the
flatness and homogeneity of our present-day universe. But eventually it ends since φ rolls into a
region where the slow-roll conditions cease to hold, φ oscillates about its minimum and eventually
decays to Standard Model particles, reheating the universe (cf. Fig. 34).

Figure 34: Slow-roll inflation ending in field oscillations and reheating.

Crucially, while in the slow-roll regime, φ does not only roll classically but is, at the same
time, subject to quantum fluctuations. To understand this qualitatively, it is useful to consider
the simplified case of pure de Sitter with a an exactly massless scalar ((V = const. and hence
H = const.). It is then easy to determine the inward-going geodesics in the relevant metric (k = 0
for simplicity)

ds2 = −dt2 + e2Htdx2 . (7.8)

One finds that, above some maximal radius r0 (with r2 ≡ dx2), they never reach the origin. In
other words, there exists a cosmological horizon, of the order of the so-called de sitter radius 1/H.
Each spatial slice falls into many s-called de Sitter patches, which are causally disconnected. As
the universe evolves, the exponential expansion roughly doubles the number of those once in a
Hubble time (which is also 1/H).

7.2 Slow-roll inflation in the landscape

A very nice and pedagogical review is [116]. More references will be given below.

Consider a scalar field theory with a potential V and several local minima (vacua). Each of
them has a different cosmological constants λ = V (φmin). If at least one of those minima has
λ > 0 and if the probability T for tunneling out of this minimum (per volume and time) is
smaller than the fourth power of its expansion rate,

T . H4(λ) , where 3M2
PH

2(λ) = λ , (7.9)

this already gives rise to eternal inflation, cf. the schematic (Penrose-type) diagram in Fig. 35.
Condition (7.9) may roughly be understood as follows: The density (in 4-volume) of nucleation
points of bubbles of other vacua is small on the typical scale H of the underlying dS space. There
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Figure 35: Nucleation and speed-of-light expansion of bubbles in a ‘background’ dS vacuum. The
‘cutoff surface’ will be discussed later.

is then no danger that the loss of volume to other vacua wins over the volume growth due to de
Sitter expansion.

In the generic case there are of course more than one dS vacuum. There is then both down
and up-tunneling (even though the latter is strongly suppressed), cf. Fig 36. Thus, the whole
landscape gets populated once eternal inflation is running. The non-dS vacua are called ‘terminal’
since there is no way back from them to the dS part of the landscape. The only possible future
of an observer in one of them is a big crunch or an eternal, stable Minkowski space.

Figure 36: Down and up-tunneling in the landscape.

In string theory, the scalar manifold on which our potential with the various minima lives
is, in the simplest case, the moduli space of a certain Calabi-Yau (or Calabi-Yau orientifold). To
be precise, one has to allow for gluing the moduli spaces of many different compact geometries,
with the geometric transitions between them (in many cases well understood, in other cases
conjectural) also being realised by tunneling.

As an important side-remark, let us note that the picture of a smooth potential over the mod-
uli space is an oversimplification. The potential comes from fluxes (discrete expectation values
of p-form field strengths) and does indeed have smooth minima. But the transition between two
different minima usually involves passing a domain wall (which microscopically corresponds to a
D-brane). In other words, the ‘saddles’ connecting different minima in the ‘potential landscape
picture’ we started with are far from being smooth. But this is not essential for what follows.
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7.3 The measure problem

Accepting the above landscape picture and eternal inflation as the process populating it, the
measure problem is easy to state, at least at an intuitive level: We live in one of the vacua, but
we do not know in which one. We would like to make a statistical prediction (given that we know
certain features of our vacuum, but not all). Let us say the new observable which we are going
to measure tomorrow can take the values A or B. The most naive way to make a statistical
prediction would be to say that the ratio of probabilities is

pA/pB = NA/NB . (7.10)

Here NA/B are the numbers of observers in the multivers who have measured all that we have
measured so far and who will, in the next measurement, find A or B respectively. But in eternal
inflation, by definition, both numbers are infinite and their ratio is not well-defined. What is
worse, if one cuts off the infinity in the future (e.g. by restricting attention to measurements
before some maximal time tmax, with a limiting procedure tmax →∞ in the end), the prediction
becomes dependent on the precise type of cutoff. In the case of a maximal time, this is due to
the absence of a unique global time variable in the geometry of Fig. 35.

A word concerning our place in the above eternal inflation picture might be useful. Naively
one might think that we live in one of the many bubbles, and ours just happens to have very small
λ. This is roughly true, but important details are missing. First, given how small our λ is, we
naturally expect the previous vacuum’s λ to be much larger. But a corresponding tunneling event
would have endowed our vacuum with a large and negative spatial curvature. Our cosmological
evolution would have been governed by the FRW equation

3M2
PH

2 = ρ− 3M2
Pk/a

2 with k = −1 (7.11)

and with initital conditions where the curvature term (the 2nd term on the r.h. side) would be at
least comparable to the matter term (ρ, which includes matter, radiation and λ) from the start.
In such a situation, there can be either λ domination or curvature domination succeeded by λ
domination, but no extended radiation or matter dominated epoch, as in our world. The reason
is simply that, with expansion, matter and radiation densities decay faster than curvature.

The way out is to postulate that our local minimum has the peculiar feature of an inflationary
plateau (it does not actually have to be a plateau - any sufficiently flat potential region would do)
where cosmological inflation took place, diluting the curvature contribution (see Fig. 37). Thus,
observers of ‘our kind’ actually always appear shortly after the tunneling transition. Nevertheless,
in a given bubble of ‘our vacuum’ their number is infinite, as are our reheating and structure
formation surface (see Fig. 38). These surfaces (including presumably the surface of death of
all stars and hence of all civilzations) follow the straight bubble wall surface all the way up to
infinity (both left and right, assuming there is no bubble collision). One may say that the interior
of any bubble is an open (infinite) FRW universe.
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