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1 Introduction

Our main reference is the textbook by Peskin and Schroeder [1]. Further literature
will be given as we go along. See also the Web page of the course.

1.1 Motivation

Our world is fundamentally quantum mechanical. Classicality arises only approx-
iamtely, in a particular limit. Moreover, fields are part of our reality – e.g. the
electromagnetic field strength and potential ~E(~x, t), ~B(~x, t), Aµ(~x, t). Thus, the
fundamental description of our world needs a quantum theory of fields.

Clearly, the photon and its interactions will be part of this theory. It is less
obvious but nevertheless true that also the electron will also emerge as a quantum
of an appropriate field. In fact, all particles of the “Standard Model” are quanta of
fields as above. At energies below the Planck scaleMP = 1/

√
GN , even the graviton

falls into that scheme.1
Thus, quantum field theory or QFT is the fundamental theory of this world

(leaving aside conjectural theories or quantum gravity models, like for example string
theory). Quantum mechanics is its non-relativistic limit. QFT is also the most
precisely tested theory we have.

In addition, so-called effective fields are central in Condensed Matter Theory
(CMT), see e.g. Fig. 1.

Displacement field :

Figure 1: Examples of fields relevant in condensed matter.

Most dynamics of these fields is in the quantum regime, thus we once again need
a QFT description. As a result, QFT is the modern language not only of particle
physics but also of CMT, including related popular research areas like ultracold
atoms. The role of QFT is not diminished by the fact that, in these contexts, it rep-
resents only an effective description of what is fundamentally many-body quantum
mechanics.

1 We will try to always work in units where h̄ = c = 1. Moreover, in the modern research
literature one mostly uses the so-called reduced Planck mass MP = MP /

√
8π ' 2.4 × 1018 GeV.

The ‘bar’ over MP is often dropped, so one always needs to be careful which one is meant.
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1.2 Symmetries (Poincaré transformations)

As in all of physics, the symmetries of the system we study will be essential. Our
stage is space-time: R4 3 (t, ~x) = {xµ}. To describe its symmetries, let us first
recall the familiar symmetries of space by itself: R4 3 ~x = {xi} ; i = 1, 2, 3. They
are given by the group of translations and rotations:2

~x −→ ~x′ with x′
i

= Ri
j x

j + di. (1.1)

Let us recall how one determines which matrices R are allowed: The key condition
is that the length of vectors,

|~x|2 =
3∑
i=1

(xi)2 = xi xj δij , (1.2)

should not change. Here δij is the euclidean metric on R3. In other words, we
demand

x′i x′j δij = xi xj δij (1.3)

or
δij R

i
k x

k Rj
l x

l = δij x
i xj ∀x ∈ R3 (1.4)

or
δij R

i
k R

j
l = δkl ⇔ RR> = 1 ⇔ R ∈ O(3) . (1.5)

In summary, physical space is R3 with euclidean metric. Its symmetries are trans-
lations and rotations. The latter are defined as linear transformations leaving the
metric invariant.

The generalization to space-time and Poincare invariance is straightforward:

R3 3 {xi} −→ R4 3 {xµ} = (t, ~x) (1.6)

δij =

1 0 0
0 1 0
0 0 1


ij

−→ ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


µν

. (1.7)

Here overall sign of ηµν is pure convention. The relative sign between time part
and space part of η is instead deep physical reality. If you wish it is observational
data summarized in the fact that special relativity governs our world (as long as
general-relativistic effects are negligible).

The length-squared of a vector generalizes as

|~x|2 = xi xj δij −→ x2 = xµ xν ηµν = t2 − ~x 2 , (1.8)

where we recall that c = 1 throughout this course. If x characterizes the separation
of two points, then one refers to x2 > 0 and x2 < 0 as time-like and space-like
separation respectively. The symmetry group generalizes according to

R ∈ O(3) if δij R
i
k R

j
l = δkl −→ Λ ∈ O(1, 3) if ηµν Λµ

ρ Λν
σ = ηρσ . (1.9)

2 Actually, rotations and reflections, but it will be too painful to always mention the latter
explicitly.
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With this, Poincaré transformations are defined by

xµ −→ x′µ = Λµ
ν x

ν + dµ . (1.10)

In other words, the Poincare group is the group of pairs (Λ, d) with Λ ∈ O(1, 3), d ∈
R4 and the composition law

(Λ1, d1) · (Λ2, d2) = (Λ1 · Λ2, Λ1 · d2 + d1) . (1.11)

This will be our most important symmetry. We will call R4 with this symmetry
R1,3 or Minkowski space. The subgroup respecting the origin are known as the
Lorentz-transformations Λ. Clearly, rotations may be viewed as are a subgroup
of Lorentz transformations. In other words, we may call

Λ =

(
1 ~0>

~0 R

)
with R ∈ SO(3) (1.12)

a rotation in O(1, 3).
The subgroup of special Lorentz-transformations is defined by demanding

det(Λ) = 1 and Λ0
0 > 0 . (1.13)

The also form the identity component SO+(1, 3) ⊂ O(1, 3), i.e. those elements
which can be can be continuously connected to the identity.

For R1,1, Λ is obviously just a 2 × 2 Matrix. In this case it is easy to be very
explicit and convince oneself that

Λ =

(
cosh(α) sinh(α)
sinh(α) cosh(α)

)
∈ SO(1, 1) (1.14)

is the general group element. The corresponding transformation reads(
t
x

)
7→ Λ

(
t
x

)
=

(
t · cosh(α) + x · sinh(α)
x · cosh(α) + t · sinh(α)

)
. (1.15)

This is obviously a boost with β = v/c = v and cosh α = 1/
√

1− β2 as well as
sinh α = β/

√
1− β2.

1.3 Symmetries acting on fields

Consider some scalar field configuration, including its classical evolution in time.
Mathematically, this is given by a function

ϕ : R4 → R ; x 7→ ϕ(x) . (1.16)

For simplicity, let us first replace R4 by R (i.e. imagine a 1d world, without time).
Now, consider a field configuration localized near zero and apply a translation by d,
cf. Fig. 2. Note that we are taking the ‘active point of view’ concerning symmetries:
We are not considering coordinate transformation but instead an actual change of
the physical field configuration.
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0 x

φ(x)

0 x

φ(x)

d

Figure 2: Translation applied to a classical field configuration.

Concretely, we want to focus on a translation

x → x′ = x+ d (1.17)

and determine the corresponding transformation of a generic field configuration,

ϕ → ϕ′ . (1.18)

The defining property is
ϕ′(x′) = ϕ(x) , (1.19)

which is the same as

ϕ′(x+ d) = ϕ(x) or ϕ′(x) = ϕ(x− d) . (1.20)

This makes sense also intuitively: if ϕ had its maximum at x = 0, then ϕ′ has its
maximum at x = d. Thus, ϕ′ is defined by applying the inverse transformation to
the argument.

This story works completely analogously for the case we are really interested in:
Poincaré transformations in R1,3. For

(Λ, d) : ϕ 7→ ϕ′ (1.21)

we have:
ϕ′(x′) = ϕ(x) or ϕ′(Λx+ d) = ϕ(x) . (1.22)

Now we define y by x = Λ−1y and find

ϕ′(y + d) = ϕ(Λ−1y) . (1.23)

After a further change of variables, y = x − d (this x is unrelated to the x used
initially), we eventually find

ϕ′(x) = ϕ(Λ−1(x− d)) . (1.24)
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As before, the field transforms by applying the inverse transformation to the argu-
ment.

Next, let us look at the transformation of a vector built out of derivatives of
fields:

{∂µϕ} ≡
{ ∂

∂xµ
ϕ
}
≡
{ ∂

∂x0
ϕ(x0, ..., x3),

∂

∂x1
ϕ(x0, ..., x3), ..., ...

}
. (1.25)

We want to calculate
∂µϕ

′ =
∂

∂xµ
ϕ(Λ−1x) , (1.26)

where we have set d = 0 since it will not be essential for us. Introducing y = Λ−1x
we find

∂µϕ
′=

∂

∂xµ
ϕ(y(x)) =

∂yν

∂xµ
∂

∂yν
ϕ(y) =

∂

∂xµ
(
(Λ−1)νρx

ρ
)
∂ν(ϕ(y)) = (Λ−1)νµ (∂νϕ)(y) .

(1.27)
We would like to say that our vector transforms, in addition to the familiar Λ−1

acting on the argument, with an extra Λ acting on the vector index. But the index
contraction is not quite right.

To resolve this, let us make a small mathematical excursion into dual vector
spaces and the inverse metric:

Let xµ, µ = 0, ..., 3 be an element of R1,3 = V . Elements of V ∗ are denoted by
yµ, µ = 0, ..., 3 such that xy ≡ xµyµ. The metric η provides a natural map V → V ∗ :
xµ 7→ ηµνx

ν . This map and its inverse are often referred to as “lowering/raising
indices”. For raising an index, the inverse metric ηµν = diag(1,−1,−1,−1) is used:
xµ 7→ ηµνxν . We have ηµνηνρ = δµρ ≡ ηµρ.

Now, we already know that ηµνΛµ
ρΛ

ν
σ = ηρσ. Using matrix notation, this can be

rewritten as
ΛTηΛ = η and hence η−1ΛTη = Λ−1 . (1.28)

In index notation, this takes the form

(Λ−1)µν = ηµρ(ΛT ) σ
ρ ησν = ηµρΛσ

ρησν ≡ Λ µ
ν . (1.29)

Here, in the last expression, we introduced Λ µ
ν as a ‘Λ-matrix with lowered first and

raised second index.’ We have learned that this object is identical to the inverse
Λ-matrix.

Equation (1.27) now takes the form

∂µϕ
′(x) = Λ ν

µ ∂νϕ(Λ−1x) . (1.30)

Thus, the derivative of a field transforms (in addition to the usual transformation
through its argument) as an element of V ∗, i.e. analogously to xµ −→ Λ ν

µ xν . This
is in contrast to how an element of V transforms: xµ −→ Λµ

νx
ν .
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2 Free Scalar Field

2.1 Classical theory - Lagrangian formulation

As should be known from the corresponding classical physics course, electrodynamics
may be defined by the action

S =
1

4

∫
d4x FµνF

µν with Fµν = ∂µAν − ∂νAµ . (2.1)

While the quantisation of this theory, which is of overwhelming practical importance,
represents one of the main goals of our course, it is not a good starting point. The
reason is that our task is complicated by Aµ having 4 components and by the gauge
invariance under Aµ → Aµ + ∂µχ.

Hence, we will first study a toy model which is obtained roughly by replacing
the so-called vector field Aµ(x) with the scalar field ϕ(x). This theory is also
directly relevant to the real world as it describes (in slightly extended forms) the
Higgs particle as well as, for example, pions.

We formulate the theory in analogy to mechanics. In (1-dimensional) me-
chanics, the key dynamical variable q is characterised by the function

q : t 7→ q(t) . (2.2)

Its dynamics is governed by an action

S = S[q] =

∫
dt L (q, q̇) . (2.3)

In scalar field theory, the analogous objects are the field

ϕ : x 7→ ϕ(x) , x ∈ R4 (2.4)

and the action
S = S[ϕ] =

∫
dt L[ϕ(t, ~x ), ϕ̇(t, ~x )] . (2.5)

We assume that L is local in ~x, i.e.

L =

∫
d3x L(ϕ(x), ϕ̇(x), ~∇ϕ(x), ~∇ϕ̇(x), . . . ), (2.6)

with only finitely many higher derivatives appearing. (We recall that x is
equivalent to (t, ~x).) An equivalent formulation is

S =

∫
d4x L(ϕ, ϕ̇, ~∇ϕ, ~∇ϕ̇, ...) (2.7)

where, again, the ellipsis stands for only finitely many higher spatial derivatives
of ϕ or ϕ̇. We call this ‘locality’ because a ‘non-local’ expression like (ϕ(t, ~x) −
ϕ(t, ~x + ~δ)) would, if Taylor-expanded, involve infinitely many higher derivatives.
The quantity L is known as the lagrangian density, not to be confused with the
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lagrangian L. However, since in field theory L appears much more frequently than
L, everybody calls L simply the lagrangian, returning to the proper naming only
when both quantities are used together.

Concerning derivatives w.r.t. the time variable t, we also follow the example of
classical mechanics and demand that only the first derivative is present. One
could roughly say that we generalise the locality of S[q] of mechanics in t to locality
of S[ϕ] in x ∈ R1,3.

Next we define V (ϕ) ≡ −L(ϕ = const.) and assume that V has a minimum at
ϕ0. Without loss of generality, let ϕ0 = 0 & V (ϕ0) = 0 such that

V (ϕ) =
1

2
m2ϕ2 + . . . (2.8)

Here we have disregarded, for the moment, higher terms in the Taylor series since
our interest is in small fluctuations around the ground state φ = 0 (or equivalently
small excitations of the vacuum/ground state).

We now have
L = T − V , (2.9)

with T the kinetic part, which by definition vanishes for constant ϕ. Clearly, the
key quantity ϕ̇ must appear in T . To have a chance of implementing Poincaré
invariance, the whole vector ∂µϕ must then appear. Moreover, focussing again on
small excitations, we are most interested in the lowest terms in an expansion of T
in ∂µϕ.

It is a fairly obvious fact that (∂µϕ)(∂νϕ)ηµν is the lowest-order Poincare-
invariant expression suitable for Lkin. Thus, the unique (up to rescaling of ϕ),
lowest-order action reads

S =

∫
d4x L =

∫
d4x

(
1

2
(∂µϕ)(∂µϕ)− m2

2
ϕ2

)
. (2.10)

It is also a useful approximation to many more interesting systems.
To gain some intuition, separate time and space (ϕ(x) = ϕ(t, ~x)) and discretise

the latter: ∫
d3x −→

∑
~x

(2.11)

where ~x ∈ (3-dimensional, cubic lattice with spacing ∆). The Lagrangian

L =

∫
d3x

(
1

2
ϕ̇2 − 1

2
(∇ϕ)2 − m2

2
ϕ2

)
(2.12)

then turns into3

L =
∑
~x

{
1

2
ϕ̇(t, ~x)2

︸ ︷︷ ︸
Tclass. mech.

− 1

2

3∑
i=1

(
ϕ(t, ~x+ êi∆)− ϕ(t, ~x)

∆

)2

− m2

2
ϕ2

}
︸ ︷︷ ︸

Vclass. mech.

. (2.13)

3 We are deliberately dropping a factor ∆3 which would normally come with the sum, and which
then also affects the normalisation of the canonical momentum associated with ϕ. The reader is
invited to do this more carefully – for our purposes this naive discretisation is sufficient.
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Note the difference between the field-theoretic kinetic term T defined above and the
term Tclass. mech. which corresponds to the kinetic term of the analogous mechanical
system. This mechanical system has infinitely many degrees of freedom, but this can
be cured by considering a finite-volume box. Its dynamics is (due to our restriction
to quadratic order in ϕ) simply that of a set of coupled harmonic oscillators. It will
be easy to decouple them - see below.

Returning to the continuum, the equation of motion is easily derived as follows

0 = δS = δ

∫
d4x

(
1

2
(∂ϕ)2 − m2

2
ϕ2

)
=

∫
d4x

(
(∂µϕ)ηµν(∂νδϕ)−m2ϕ δϕ

)
=

∫
d4x

(
−(∂ν∂µϕ)ηµν −m2ϕ

)
δϕ .

(2.14)

Hence, we obtain the Klein-Gordon-equation

(∂2 +m2)ϕ = 0 , (2.15)

where ∂2 ≡ ∂µ∂
µ. Its solutions are plane waves, e.g.

ϕ(x) = ϕ0 sin(kx) with k2 −m2 = 0 (2.16)

Here k = (k0, ~k) characterises the 4-momentum of the corresponding particle or
particles. Choosing k = (k0,~0) implies that the particles are at rest. The quantity
k0 = m will turn out to be the particle mass.

2.2 Classical theory - Hamiltonian formulation

In classical mechanics, the transition from Lagrange to Hamilton is accomplished
according to

L(qi, q̇i) −→ H(qi, pi) =
∑
i

piq̇i − L with pi =
∂L(qi, q̇i)

∂q̇i
(2.17)

In field theory on the lattice, as discussed above, we have

L(ϕ, ϕ̇) =
1

2

∑
~x

ϕ̇(~x)2 + . . . . (2.18)

Here ~x plays the role of the index i and we suppressed the terms without time-
derivatives for brevity. For the conjugate momentum

π(~x) ≡ ∂L

∂ϕ̇(~x)
= ϕ̇(~x) . (2.19)

This follows simply from

∂

∂ϕ̇(~x)

1

2

∑
~y

ϕ̇ (~y)2

 = ϕ̇ (~x) . (2.20)
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It is common to call the canonically conjugate field π rather than p since this is
a better match for the greek variable ϕ and also since p is frequently used for the
4-momentum of the particles, to which we will soon come.

The Hamiltonian then reads

⇒ H =
∑
~x

π (~x) ϕ̇ (~x)− L

=
∑
~x

{
π2 {~x)− 1

2
π2 (~x) +

1

2

3∑
i=1

(
ϕ (t, ~x+ êi∆)− ϕ (t, ~x)

∆

)2

+
m2

2
ϕ2

}

=
∑
~x

{
1

2
π2 (~x) +

1

2

3∑
i=1

(
ϕ (t, ~x+ êi∆)− ϕ (t, ~x)

∆

)2

+
m2

2
ϕ2

}
.

(2.21)
In continuum field theory, we clearly need to generalize ∂L/∂qi to the case of a

continuous index i. Thus, we need functional derivatives, which we briefly recall:
Let F : f 7→ R be a functional. The functional derivative δF/δf(x) is defined

by:

F [f + ε]− F [f ] =

∫
dx

δF [f ]

δf(x)
ε(x) +O(ε2) . (2.22)

We also use the natural generalization∑
i

πi q̇i −→
∫
d3x π(~x) ϕ̇(~x) (2.23)

The transition from Lagrange to Hamiltonian for continuous systems then reads

π(~x) =
δ

δϕ̇(~x)
L [ϕ, ϕ̇] , H [ϕ, π] =

∫
d3x π ϕ̇− L . (2.24)

From our definition of functional derivatives above, one easily shows that for a
functional of the form

F =

∫
dxA(f(x)) (2.25)

one has
δ F
δf(x)

= A′(f(x)) . (2.26)

Hence
π(~x) =

∂L
∂ϕ̇

(~x) = ϕ̇(~x) (2.27)

and
H [ϕ, π] =

1

2

∫
d3x

(
π2 +

(
~∇ϕ
)2

+m2ϕ2

)
︸ ︷︷ ︸

2H

=

∫
d3x H , (2.28)

with H the Hamiltonian density.
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2.3 Quantisation: real scalar

In our conventions with h̄ = 1, canonical quantisation proceeds by promoting ob-
servables to operators and postulating

[qi, pj] = iδij , [qi, qj] = [pi, pj] = 0 . (2.29)

We could apply this to the lattice version of our model, but there is no complication
in moving on directly the continuum case, where the analogous relations read

[ϕ(~x), π(~y)] = i δ3(~x− ~y) , [ϕ(~x), ϕ(~y)] = [π(~x), π(~y)] = 0 . (2.30)

With H given as in (2.28), the similarity to a set of harmonic oscillators is obvious.
The different oscillators are coupled to each other by the gradient term. The reason
is that ~∇ϕ(t, ~x) involves, through its defining limiting procedure, fields at different
points. The oscillators may be decoupled by a Fourier transformation,

ϕ(~x) =

∫
d3p

(2π)3
ei~p~xϕ̃(~p) , ϕ̃(~p) =

∫
d3x e−i~p~xϕ(~x) , (2.31)

with analogous relations between π(~x) and π̃(~p). The commutation relations for
ϕ̃, π̃ read:

[ϕ̃(~p), π̃(~q)] =

∫
d3x d3y e−i~p~xe−i~q~y [ϕ(~x), π(~y)] = i

∫
d3x e−i(~p+~q)~x = i(2π)3δ3(~p+ ~q)

[ϕ̃(~p), ϕ̃(~q)] = [π̃(~p), π̃(~q)] = 0 . (2.32)

Now, we express H through ϕ̃, π̃. We focus on the most interesting term, (~∇ϕ)2:∫
d3x (~∇ϕ)2 =

∫
d3x

∫
d3p

(2π)3
i~pk e

i~p~xϕ̃(~p)

∫
d3q

(2π)3
i~qk e

i~q~xϕ̃(~q) . (2.33)

The x-integration gives a δ-function, (2π)3δ3(~p+ ~q), allowing us to trivially perform
the q-integration and to obtain∫

d3p

(2π)3
~p 2ϕ̃(~p)ϕ̃ (−~p) . (2.34)

We note that the reality of our field, ϕ(~x) = ϕ(~x), implies the relation ϕ̃(~p) = ϕ̃(−~p)
for its Fourier transform. (Jumping ahead, we also note that an analogous logic
continues to hold for the operators: ϕ(~x)† = ϕ(~x) implies ϕ̃(~p)† = ϕ̃(−~p).) With
this, and after similar but simpler manipulations for the other terms of (2.28), we
eventually find

H =

∫
d3p

(2π)3

1

2

(
|π̃|2 + (~p 2 +m2)|ϕ̃|2

)
. (2.35)

Here |π̃|2 can be understood either literally or as π̃π̃†, depending on whether we are
before or after quantisation.

To further perfect the similarity to harmonic oscillators, let us introduce

ω~p ≡
√
~p2 +m2 , (2.36)
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such that
H =

∫
d3p

(2π)3

1

2

(
|π̃|2 + ω2

~p|ϕ̃|
2) . (2.37)

At this point, it may be useful to collect the relevant equations from quantum
mechanics. Using π for the canonical momentum to make the analogy to field theory
more obvious, we have the Hamiltonian and the commutation relations

H =
1

2

(
π2 + ω2q2

)
, [q, π] = i , (2.38)

the definition of creation and annihilation operators

a =
1

2

(
√

2ωq + i

√
2

ω
π

)
, a† =

1

2

(
√

2ωq − i
√

2

ω
π

)
, (2.39)

and finally the resulting new expression for the Hamiltonian as well as the new
commutation relations

H = ω

(
a†a+

1

2

)
,

[
a, a†

]
= 1 . (2.40)

Motivated by this, we may hope that (2.37) will simplify similarly to quantum
mechanics if we define

a~p =
1

2

(√
2ω~p ϕ̃(~p) + i

√
2

ω~p
π̃(~p)

)
. (2.41)

a†~p =
1

2

(√
2ω~p ϕ̃(−~p)− i

√
2

ω~p
π̃(−~p)

)
. (2.42)

As a side remark, please note that it is not completely obvious a priori that
such a simplification will occur. The reason is that our analogy to the oscillator
is not perfect: Unlike p, q our ϕ̃, π̃ are not real and they are not (quite) conjugate
variables: δ3(~p+ ~q) = δ3(~p− (−~q)), i.e. ϕ̃(~p) is conjugate to π̃(−~p). We could have
kept massaging our system into perfect agreement with a set of oscillators before
introduce a, a†, but we would not gain much new information. The ansatz above is
natural enough and it is simpler to directly check that it works.

Indeed, it is easy to derive that[
a~p, a

†
~q

]
= (2π)3δ3(~p− ~q) , [a~p, a~q] =

[
a†~p, a

†
~q

]
= 0 . (2.43)

Furthermore, one finds

ϕ̃(~p) =
1√
2ω~p

(a~p + a†−~p) , π̃(~p) = −i
√
ω~p
2

(a~p − a†−~p) (2.44)

and hence:

H =

∫
d3p

(2π)3

1

2

(
ω~p
2

(a~p − a†−~p)(a
†
~p − a−~p) +

ω2
~p

2ω~p
(a~p + a†−~p)(a

†
~p + a−~p)

)
. (2.45)
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Cross-terms like a~p a−~p cancel. Freely using the substitution ~p→ −~p, we derive

H =

∫
d3p

(2π)3

ω~p
2

(
a†~pa~p + a~pa

†
~p

)
=

∫
d3p

(2π)3
ω~p

(
a†~pa~p +

1

2
[a~p, a

†
~p]

)
.

(2.46)

The second term may be manipulated, in a slightly hand-wavy way, as follows:

(2π)3δ3(~0) ‘=’
∫

d3x ei
~0·~x ‘=’ Vol(R3) ≡ V . (2.47)

One then obtains
H =

∫
d3p

(2π)3
ω~pa

†
~pa~p + V

∫
d3p

(2π)3

1

2
ω~p . (2.48)

The volume-factor V can be derived more properly by using T 3 instead of R3, where
momenta become discrete and δ3(~p− ~q) becomes δ~p,~q. The integral multiplying V is
truly divergent and requires the introduction of a so-called UV-cutoff. This UV-
divergence is due to contributions of zero-point energies of harmonic oscillators
with arbitrarily high frequencies to the total vacuum energy density.

Of course, the vacuum energy represented by the last term in (2.48) is irrelevant
in the pure QFT context we are in at the moment. It can be absorbed in an overall
constant shift of H. However, if our QFT lives not in a fixed R3 but in a dynamical
space, i.e. if our QFT is coupled to gravity, then this vacuum energy can curve
space-time, inducing a cosmological constant. This is one of the aspects of the
so-called cosmological constant problem.

In non-trivial geometries (e.g. QED with conducting plates) the energies of the
low-lying modes can be manipulated by moving the plates. This leads to a finite
effect (force on the plates) independently of the still present divergence of |~p| → ∞.
This is known as the Casimir energy/effect, another situation where the vacuum
energy is manifestly physical. More details can be found in the problems and e.g. in
[2, 3].

We now leave the issue of the vacuum energy and return to our main line of
development. We may summarise what we have found by the relations

ϕ(~x) =

∫
d3p

(2π)3

1√
2ω~p

ei~p~x(a~p + a†−~p) (2.49)

π(~x) = −i
∫

d3p

(2π)3

√
ω~p
2
ei~p~x(a~p − a†−~p) (2.50)

with
[a~p, a

†
~q] = (2π)3δ3(~p− ~q) and H =

∫
d3p

(2π)3
ω~pa

†
~pa~p . (2.51)

At the moment, this is just an (operator) algebra with one distinguished operator
H. Physics starts if we also provide a Hilbert-space representation of this algebra.
To construct this representation, we postulate a vacuum state |0〉 such that

a~p |0〉 = 0 ∀~p . (2.52)
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So-called one-particle states are defined by a†~p |0〉 (for any ~p). It is easy to calculate
their energy:

Ha†~p |0〉 =

∫
d3k

(2π)3
ω~ka

†
~k
a~ka

†
~p |0〉 =

∫
d3k

(2π)3
ω~ka

†
~k
(2π)3δ(3)(~k − ~p) |0〉 = ω~pa

†
~p |0〉 .

(2.53)
We emphasise that this is an important result:

Ha†~p |0〉 = ω~pa
†
~p |0〉 . (2.54)

Indeed, ω~p =
√
~p2 +m2 is the special-relativistic energy of a particle with mass m

and momentum ~p, justifying our name ‘one particle state’.
Two-particle states are defined by a†~pa

†
~q |0〉 (for any ~p and any ~q). It is easy to

check that
Ha†~pa

†
~q |0〉 = (ω~p + ω~q)a

†
~pa
†
~q |0〉 . (2.55)

The calculation proceeds by commuting the annihilation operator a~k from H to the
right until it hits the vacuum. Each time it passes one of the creation operators, we
pick up a δ3 distribution, and hence an ω~k. The term in brackets is the energy of
two non-interacting particles.

This extends to any number of particles and the total space spanned by all those
states is called the Fock space.

Let us normalise the vacuum:∣∣∣ |0〉 ∣∣∣2 = 〈0|0〉 = 1 . (2.56)

One then finds (
a†~p |0〉

)
·
(
a†~q |0〉

)
= 〈0| a~pa†~q |0〉 = (2π)3δ(3)(~p− ~q) , (2.57)

i.e. one-particle states with different momenta are orthogonal, with so-called δ-
function normalisation. Analogous formulae for two- and more particle states are
easy to derive. States with different numbers of particles are always orthogonal,
independently of the momenta.

A convenient notation and normalisation convention is the following:

|~p〉 =
√

2ω~p a
†
~p |0〉

|~p~q〉 =
√

2ω~p
√

2ω~q a
†
~p a
†
~q |0〉

· · · .
(2.58)

It implies that
〈~p|~q〉 = 2ω~p (2π)3δ(3)(~p− ~q) . (2.59)

Note that many books absorb the factor
√

2ω~p into the definition of the a~p, such
that

√
2ω~p a~p → a~p. We will also do so after we understood the issue of Lorentz

covariance, to which this is related, better. At the moment, our present convention
for the creation and annihilation operators appears more natural since it follows
directly from the quantum-mechanical harmonic oscillator.
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2.4 Quantisation: complex scalar

Our real-scalar lagrangian immediately generalizes to the complex case,

L = ηµν(∂µφ)(∂νφ)−m2φφ = |∂φ|2 −m2|φ|2, (2.60)

where the second notation is slightly sloppy but very common. Note the different
normalisation conventions (the missing factor 1/2) compared to the real case.

With φ = (ϕ1 + iϕ2)/
√

2 we recover precisely twice the real-scalar lagrangian
analysed before. Thus, we could appeal to the last section and declare our new Fock
space simply to be the tensor product of two Fock spaces of the previous type. The
Hamiltonian would be the sum of two copies of the previous Hamiltonian, and we
would be done without any new calculations.

Nevertheless, it is also useful to quantise this system without giving up the
complex notation. Before doing so, let us go through the classical analysis. Our
previous derivation of the equations of motion generalizes, in the case of several
independent fields ϕi, to

δS = 0 ⇒ ∂L
∂ϕi
− ∂µ

∂L
∂(∂µϕi)

= 0 , ∀i . (2.61)

Treating φ, φ as independent variables, this implies

−m2φ−�φ = 0 , −m2φ−�φ = 0 (2.62)

where � = ∂µ∂
µ and the second equation either follows from the first by complex

conjugation or by variation of S w.r.t. φ. The conjugate momenta take the form

π =
∂L
∂φ̇

= φ̇ π =
∂L
∂φ̇

= φ̇ . (2.63)

We thus get

H = πφ̇+ πφ̇− L = |π|2 +
∣∣∣~∇φ∣∣∣2 +m2|φ|2 . (2.64)

Quantisation proceeds in the standard way, by imposing that

[φ(~x), π(~y)] =
[
φ†(~x), π†(~y)

]
= iδ(3)(~x− ~y) (2.65)

and all other commutators vanish. Before, we were successful with the ansatz

ϕ(~x) =

∫
d3p

(2π)3

1√
2ω~p

ei~p~x(a~p + a†−~p) =

∫
d3p

(2π)3

1√
2ω~p

(
a†~p e

−i~p~x + a~p e
i~p~x
)
. (2.66)

In this ansatz the reality of ϕ(~x) is encoded in (a†~p) = (a~p)
†. This suggest the new

ansatz
φ(~x) =

∫
d3p

(2π)3

1√
2ω~p

(
a†~pe
−i~p~x + b~pe

i~p~x
)
, (2.67)

where b~p is a set of independent operators. With this ansatz one finds commutation
relations for φ, π, φ†, π†, that are the commutation relations of two sets of harmonic
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oscillators described by a†~p, a~p and b
†
~p, b~p (see problem sheet). Note that we now write

φ† rather than φ since we have moved to the quantum theory. The Hamiltonian reads

H =

∫
d3p

(2π)3
ω~p

(
a†~pa~p + b†~pb~p

)
(2.68)

and the Fock space is now built with two types of particles, created by a†~p and by b†~p.
These will turn out to be particles and anti-particles. Also, we immediately see that
our system has a symmetry: φ → eiαφ. We will see that this gives us a conserved
charge.

3 Noether’s theorem

3.1 Formulation and derivation in field theory

With every continuous symmetry of the action comes a conserved current density
(and a conserved charge). This is very similar to Noether’s theorem in mechanics.
The crucial novelty is the current.

To derive the theorem, we assume that, infinitesimally, our continuous symmetry
transformation takes the form

ϕ(x)→ ϕ′(x) = ϕ(x) + εχ(x) . (3.1)

We denote this change of ϕ by δεϕ ≡ ϕ′ − ϕ. The induced change of L reads

δεL ≡ L′ − L = L(ϕ′, ∂ϕ′)− L(ϕ, ∂ϕ) . (3.2)

The fact that our transformation is a symmetry implies that L changes only by a
total derivative,

δεL = ε∂µF
µ(ϕ, ∂ϕ, ∂∂ϕ, x) , (3.3)

where F is some appropriately chosen vector field. Note that, as emphasised in the
expression above, F can in general depend on higher derivatives of ϕ than what
appears in the lagrangian, and it can also explicitly depend on x. This can occur
even though L usually does not have an explicit x-dependence.

The statement that (3.3) defines a symmetry is very similar to the familiar
situation in classical mechanics. Still, it may be useful to check this claim also in
our case: We assume that ϕ satisfies the equation of motion and check that, under
the above conditions, ϕ′ does so too. For this, we need to check that δS ′ = 0 for
any variation δϕ of ϕ′ in a bounded region. Indeed,

δS ′ = δS + δ(δεS) = δ(δεS) =

∫
d4x δ(δεL) =

∫
d4x ε∂µδF

µ(x) = 0 (3.4)

where the last equality follows by Gauss law since δϕ and hence δF vanish outside
a bounded region. Note that we did not demand that δεS = 0 or that δεϕ should
vanish outside a bounded region.
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A simple calculation now leads to the statement of the theorem. First,

ε∂µF
µ = δεL =

∂L
∂ϕ

δεϕ+
∂L

∂(∂µϕ)
δε∂µϕ

=
∂L
∂ϕ

δεϕ+ ∂µ

(
∂L

∂(∂µϕ)
δεϕ

)
−
(
∂µ

∂L
∂(∂µϕ)

)
δεϕ .

(3.5)

Using the equation of motion

∂L
∂ϕ
− ∂µ

∂L
∂(∂µϕ)

= 0 (3.6)

and δεϕ = εχ one finds

ε∂µF
µ = ∂µ

(
∂L

∂(∂µϕ)
εχ

)
. (3.7)

Thus, the current

jµ ≡ ∂L
∂(∂µϕ)

χ− F µ (3.8)

is conserved, ∂µjµ = 0.

Σ

Σ

t

t1

1

2

2

t

x

x

1

2

Figure 3: Charge conservation.

For many field configurations the following integral can be defined:

Q(t) ≡
∫

d3x j0(t, ~x) . (3.9)

We call it the conserved charge since (cf. Fig. 3)

Q(t2)−Q(t1) =

∫
Σ2

dfµ j
µ −

∫
Σ1

dfµ j
µ =

∫
Vol

dV ∂µj
µ = 0 . (3.10)

Here the first equality holds because the normal vectors pick out the time-component
of j, and the second follows from Gauß’ law.

As an exercise, the readers may try to derive Q̇ = 0 directly, i.e. without
introducing a finite interval δt = t2 − t1. Moreover, they may apply our derivation
to obtain the familiar Noether theorem of mechanics.
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3.2 Energy-Momentum-Conservation

The symmetry transformation underlying energy-momentum-conservation is

xµ → x′
µ

= xµ − εµ , (3.11)

i.e. a translation by a small amount which we chose as −ε. Actually, there are four
symmetries, corresponding to the fact that out ε is a 4-vector.

From this the transformation behavior of the field and the Lagrangian follows:

ϕ′(x) = ϕ(x+ ε) ⇒ δεϕ = ϕ(x+ ε)− ϕ(x) ' εν∂νϕ

L′(x) = L(x+ ε) ⇒ δεL = L(x+ ε)− L(x) ' εµ∂µL (3.12)
= εν∂µ(δµνL) = εν∂µ(F µ

ν) .

Here we have defined
F µ

ν ≡ δµνL . (3.13)

The last expression in (3.12) should be understood as a linear superposition of four
contributions of the type ε ∂µF µ. Each of the four contributions has a different
infinitesimal parameter ε and a different current. They are labelled by the ν =
0, 1, 2, 3 :

εν∂µ(F µ
ν) =

∑
ν

εν∂µ(F µ
ν) . (3.14)

Similarly, the last expression in the first line of (3.12) is to be read as a linear
superposition of four contributions of the type εχ(x). Thus, we identify the different
χ’s as

χν = ∂νϕ . (3.15)

We can now apply our general formula, getting four conserved currents labelled
by ν:

jµν =
∂L

∂(∂µϕ)
χν − F µ

ν =
∂L

∂(∂µϕ)
∂νϕ− δµνL . (3.16)

This set of currents is also known as the energy-momentum-tensor and often
written as

T µν =
∂L

∂(∂µϕ)
∂νϕ− ηµνL . (3.17)

It is conserved by construction: ∂µT µν = 0.
The name is justified because the conserved charge associated with the current

T µ0 is the energy: ∫
d3xT 00 =

∫
d3x

(
∂L
∂ϕ̇

ϕ̇− L
)

= H ≡ P 0 . (3.18)

As usual in special relativity, the energy is identical to P 0, the first component of
the 4-vector {P µ} of the energy-momentum of our field configuration. Similarly, the
other conserved charges are the momenta, such that together

P ν =

∫
d3xT 0ν . (3.19)
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We emphasise that P is a 4-vector in spite of its apparently non-covariant defini-
tion. This can be understood if one observes that (cf. our general discussion of the
conserved charge) the vector P ν does not change if the space-like hyperplane used
in its definition is rotated. Hence, the definition can be made covariant:

P ν =

∫
d3xT 0ν =

∫
Σ

dfµ T
µν =

∫
Σ′

dfµ T
µν . (3.20)

The spatial components of P explicitly read

P i =

∫
d3xT 0i =

∫
d3x

∂L
∂ϕ̇

∂iϕ = −
∫

d3x π∇iϕ . (3.21)

Our expressions are valid classically as well as after quantisation. We may rewrite
π and ϕ in terms a and a∗ and then switch to â and â†. Here we use the hat-symbol
to emphasise the operator-nature. One explicitly finds

P̂ i =

∫
d3q

(2π)3
qiâ†~q â~q as well as P̂ µ |p〉 = pµ |p〉 . (3.22)

We note that â†~q â~q is the particle number operator, which makes the above
expression for the momenta very intuitive.

The same analysis applied to the complex scalar gives

P̂ µ =

∫
d3q

(2π)3
qµ(â†~q â~q + b̂†~q b̂~q) . (3.23)

Here we also used that
q0 =

√
~q 2 +m2 = ω~q . (3.24)

With this, our particle-interpretation of the Fock-space is fully justified: We see that
â†~q (or in the complex case â†~q and b̂

†
~q) create particles/antiparticles with appropriate

4-momentum in the sense of Noether’s theorem and of special relativity.
Let us end with a comments concerning the energy-momentum-tensor: From its

definition, our T µν (also known as the ‘canonical’ energy-momentum tensor) does
not necessarily have to be symmetric. It happens to be symmetric for the scalar
field, where

T µν = ∂µϕ∂νϕ− ηµνL . (3.25)
But this fails already for quantum electrodynamics (QED). However, T µν can always
be made symmetric by adding an independently conserved current, which also does
not modify the resulting P ν .

Moreover, in general relativity, one uses the definition

T µν(x) =
−2√
− det(g)

δS

δgµν(x)
, (3.26)

where det(g) stands for the determinant of the matrix gρσ. The action S is
formulated using a general metric gµν instead of the Minkowski metric ηµν =
diag(1,−1,−1,−1). This directly gives the symmetric form of T µν . The energy-
momentum tensor plays a crucial role in general relativity since

S[g] = S[η]− 1

2

∫
d4xhµνT

µν + · · · (with gµν = ηµν + hµν) (3.27)

characterises the coupling of a QFT to gravity.
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3.3 U(1)-symmetry and charge of a complex scalar

Let us consider the already familiar Lagrangian

L = |∂µφ|2 −m2|φ|2 . (3.28)

It is invariant under a U(1)-symmetry group of phase rotations, with infinitesimal
version

φ→ φ′ = eiεφ = φ+ iεφ+ . . .

φ→ φ
′
= e−iεφ = φ− iεφ+ . . . .

(3.29)

As before, we treat φ, φ as independent fields during the calculation. A rough
justification of this convenient and mathematically correct approach is as follows:
Consider a Lagrangian with two fields rather than just one field:

L = ηµν(∂µφ)(∂νψ) + · · · φ, ψ ∈ C . (3.30)

Do all manipulations in this setting and impose the constraint ψ = φ (the ‘projection
on the real subspace’) only at the very end.

In the one-field case, our formula for the Noether current was

jµ =
∂L

∂(∂µϕ)
χ− F µ . (3.31)

This has the obvious multi-field generalization

jµ =
∑
i

∂L
∂(∂µϕi)

χi − F µ , (3.32)

where i labels the different fields.
In our case, L = L′ such that F µ = 0. Moreover, {ϕi} = {φ, φ}. Then our

multi-field formula gives

jµ =
∂L

∂(∂µφ)
χ+

∂L
∂(∂µφ)

χ with χ = iφ, χ = −iφ

= (∂µφ)iφ+ (∂µφ)(−i)φ = −i(φ
↔
∂µφ) .

(3.33)

Here, in the last expression, we used the common shorthand notation A
↔
∂B ≡ A∂B−

(∂A)B. The conserved charge is then given by

Q =

∫
d3x j 0 = −i

∫
d3xφ†

↔
∂0 φ =

∫
d3p

(2π)3
(a†~p a~p − b

†
~p b~p) . (3.34)

We see that we can think of the states created by a†/ b† as particles/antiparticles,
having the same mass but opposite charge.
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4 Heisenberg picture, causality, covariance

4.1 Heisenberg picture

So far, we have worked in the Schrödinger picture and the field operators ϕ̂(~x), π̂(~x).
In this picture they have no time dependence. Instead, the dynamics is encoded in
our states |0〉 ,

√
2ω~p a

†
~p |0〉 = |p〉 , etc. These evolve in time in the standard fashion:

|p〉 ≡ |pt=0〉 ≡ |p0〉 −→ |pt〉 = exp(−iHt) |p0〉 . (4.1)

We see that the relations between states and field operators which we used so far
are, in fact, relations at t = 0.

This is clearly not natural for a Poincaré-invariant theory since the time depen-
dence sits in the states while the ~x-dependence sits in the observables. To remedy
this, let us convert from the

Schrödinger-picture: O fix and |ψt〉 = e−iHt |ψ0〉
to the

Heisenberg-picture: Ot evolves and |ψ〉 fix.
Here O denotes a generic operator. Its time dependence in the Heisenberg picture
follows from the physical requirement

〈ψt|O|ψt〉 = 〈ψ|Ot|ψ〉 . (4.2)

This implies
Ot = eiHtO e−iHt . (4.3)

For us, the most interesting operator is:

ϕ(x) = ϕ(t, ~x) = eiHt

(∫
d3p

(2π)3
√

2ω~p

(
a~p e

i~p~x + a†~p e
−i~p~x

))
e−iHt . (4.4)

This simplifies if we commute eiHt through a, a†, using

H a~p = a~p(H − ω~p) and H a†~p = a†~p(H + ω~p) . (4.5)

To derive the second relation, consider |ψ〉 such that H |ψ〉 = E |ψ〉. From our
understanding of the Fock space, we see immediately that

H a†~p |ψ〉 = (E + ω~p) a
†
~p |ψ〉 = a†~p (H + ω~p) |ψ〉 . (4.6)

The first relation follows from hermitian conjugation.
Next, since an exponential of an operator is defined as its Taylor series, we have

eiHt a~p = a~p e
i(H−ω~p)t and eiHt a†~p = a†~p e

i(H+ω~p)t . (4.7)

If we also use that p = {p0, ~p} = {ω~p, ~p} and p x = p0x0 − ~p · ~x, we arrive at the
covariant expression (we will understand the covariance of the integration measure
soon)

ϕ(x) =

∫
d3p

(2π)3
√

2p0

(
a~p e

−ipx + a†~p e
+ipx

)
. (4.8)
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We note that, defining π(x) = π(t, ~x) analogously, one finds

π(x) = ϕ̇(x) and
(
�+m2

)
ϕ(x) = 0 , (4.9)

i.e. the classical relations between canonically conjugate variables and the classical
equation of motion hold for Heisenberg-picture field operators.

4.2 Causality

The key statement is that measurements of ϕ at x and y do not interfere if x and y
are space-like separated, i.e.

[ϕ(x), ϕ(y)] = 0 for (x− y)2 < 0 . (4.10)

Before deriving this, we note that equal time commutation relations [ϕ(~x), ϕ(~y)] = 0
(in the Schrödinger picture) do not immediately imply causality. However, if we
knew that our theory where Poincare-invariant, then causality would follow.

To see this, note first that our causality statement is invariant under SO+(1, 3).
The latter is defined as SO(1, 3) subject to the constraint Λ0

0 > 0. Using SO+(1, 3)
we can transform any space-like vector z (z2 < 0) into any other space-like vector
of the same length, z′2 = z2. In particular, if we know that (4.10) holds for x− y =
(0, ~x− ~y), then it holds for any x− y with (x− y)2 < 0.

However, we do not yet know that our theory (after quantization) is still Poincare.
But deriving causality is straightforward without any such assumptions:

[ϕ(x), ϕ(y)] =

∫
d3p

(2π)3
√

2p0

∫
d3q

(2π)3
√

2q0

{[
a~p, a

†
~q

]
e−ipx+iqy +

[
a†~p, a~q

]
e+ipx−iqy

}
=

∫
d3p

(2π)32p0
e−ip(x−y) −

∫
d3p

(2π)32p0
e+ip(x−y) (4.11)

=

∫
d4p

(2π)3
δ
(
p2 −m2

) ∣∣∣∣
p0>0

e−ip(x−y) −
∫

d4p

(2π)3
δ
(
p2 −m2

) ∣∣∣∣
p0>0

e+ip(x−y) .

Here we used the relation

δ
(
x2 − a2

)
=

1

2|a|
[δ(x+ a) + δ(x− a)] . (4.12)

4.3 Covariance

We recall from the previous subsection that, if x0 = y0, the claim [ϕ(x), ϕ(y)] = 0
immediately follows from canonical quantization. It then holds also for generic x−y
with (x− y)2 < 0 by Lorentz/Poincaré covariance of the theory. However, we have
broken this symmetry in its manifest form during quantization and have not yet
established how it reappears at the quantum level. We now understand that this is
an important task.

In quantum mechanics, Ĥ and ~̂P generate translations in t and ~x, respectively.
In QFT, we aim at a Poincare-invariant formulation and it is natural to combine
both transformations as

eiP̂
µδµ = eiĤδ0 e−i

~̂P ~δ , (4.13)
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acting on states |ψ〉. Note the different signs in the exponents on the right.4
In addition to translations, we have to consider Lorentz-rotations,

Λµ
ν =

(
eiε

ρσMρσ
)µ

ν = δµν + iερσ (Mρσ)µν + · · · . (4.14)

Here we introduced a set of 6 independent matrices Mρσ and 6 infinitesimal param-
eters ερσ, in complete analogy to the 3 generators of SO(3) familiar from mechanics
and quantum mechanics. By definition, Mρσ = −Mσρ and ερσ = −εσρ, so they are
indeed 6 rather than 16. In close analogy to SO(3), the matrix (Mρσ)µν is antisym-
metric with ±1 at the positions ρσ and σρ. We leave the details to the problems.

We recall that we have constructed P̂ using Noether’s theorem: We identified
the conserved current associated with small translations, then the conserved charge,
then promoted it to an operator. Clearly, with slightly more work the same can be
done for the infinitesimal Lorentz transformations generated byMρσ. One eventually
arrives at an explicit formula for operator-valued matrices M̂ρσ in terms of creation
and annihilation operators. This is worked out in many textbooks but we will not
need the explicit expression at the moment. What we need is the understanding
that finite translations and Lorentz-transformations can be realised using operators

T̂ = eiδ
µP̂µ and Λ̂ = eiε

ρσM̂ρσ . (4.15)

In quantum mechanics, after having realised our symmetry group by unitary
operators acting on the Hilbert space, we just need to check that they commute
with Ĥ and we are done. Here, things are slightly different since, of course, boosts
Λ̂ do not commute with Ĥ (they change the energy of states). We may, however,
require invariance of observables in the following sense:5

First, measure the field value at some position x ∈ R1,3 in a state |ψ〉

〈ψ|ϕ(x)|ψ〉 . (4.16)

Now, ‘rotate’ the state by Λ and measure the field in the rotated position x′µ =
Λµ

ν x
ν . You should get the same result:

〈ψ|ϕ(x)|ψ〉 = 〈ψ|Λ̂† ϕ(Λx) Λ̂|ψ〉 . (4.17)

For this to hold, one must demand that operators transform as

Λ̂ϕ(x) Λ̂† = ϕ(Λx) . (4.18)

4In quantum mechanics, it is easy to convince oneself that exp
(
−i ~̂P~δ

)
shifts the wave function

by ~δ. Moreover, exp
(
−iĤδ0

)
|ψ〉t = |ψ〉t+δ0 , which corresponds to a shift of the time-dependent

wave function |ψ〉t by −δ0. Thus, exp
(
iĤδ0

)
shifts the wave function by δ0. So both exponentials

together indeed realize a shift by the 4-vector (δ0, ~δ).
5 One may also save the standard quantum mechanical argument, with minimal extra work:

While a generic boost generator, let’s call it B, does not commute with H, it satisfies [iH,B] +
∂B/∂t = 0 due to its explicit time dependence. Hence dB/dt = 0 in the Heisenberg picture.
Moreover, one can use this to show that if some state obeys the Schrödinger equation, then so does
the boosted state. This justifies calling the boost a symmetry. (I owe this comment to Antonino
Di Piazza.)
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This can be checked explicitly by expressing M̂ρσ in terms of a, a†, but we will not
do for reasons of time.

It is instructive to check explicitly the consistency with the group law and to
compare with the somewhat different relations for classical fields:

We start with operators and apply a first transformation:

Λ̂1 ϕ(x) Λ̂†1 = ϕ(Λ1x) . (4.19)

A second transformation gives

Λ̂2

(
Λ̂1 ϕ(x) Λ̂†1

)
Λ̂†2 = Λ̂2 (ϕ(Λ1x)) Λ̂†2 = ϕ(Λ2 Λ1x) . (4.20)

We see that, as it should be, the transformation by Λ̂2Λ̂1 as an operator corresponds
to a transformation of the argument by Λ2Λ1.

Let us contrast this with classical fields, characterised by functions on R1,3. A
first transformation reads

(Λ1ϕ) (x) = ϕ(Λ−1
1 x) . (4.21)

Here the symbol Λ1 in Λ1ϕ denotes a linear operator on the vector space of functions.
(We do not give it a hat to avoid confusion with the quantum case.) A second
transformation now gives

(Λ2 (Λ1ϕ))(x) = (Λ1ϕ) (Λ−1
2 x) = ϕ(Λ−1

1 Λ−1
2 x) = ϕ((Λ2Λ1)−1x) (4.22)

This is again consistent with the group law, in spite of the difference concerning the
action on the argument.

Finally we would like to have covariance of our Fock-space basis, in the sense
that

Λ̂ |p〉 = |p′〉 if p′
µ

= Λµ
ν p

ν . (4.23)

Due to the normalization ambiguity (our states are only δ-function-normalized and
the prefactor of δ3(~p − ~q) is, in principle, arbitrary) we cannot be a priori be sure
about the prefactor in this relation. One can of course work this out explicitly
using a, a†. We will instead only do a consistency check, demonstrating that our
normalization convention fits the transformation rule in (4.23):

We demand that
〈p′|q′〉 ≡ 〈p|Λ̂† Λ̂|q〉 = 〈p|q〉 , (4.24)

where p′ = Λ p, q′ = Λ q. This is equivalent to

2p′0(2π)3 δ3(~p′ − ~q′) = 2p0(2π)3 δ3(~p− ~q) . (4.25)

To demonstrate this, we first observe that both sides are non-zero only at the same
point. So we just need to check the normalisation, which we can do e.g. by inte-
grating with an arbitrary smooth function in ~p. We chose the integration measure∫

d3p

2p0
=

∫
d4p δ(p2 −m2)

∣∣∣∣
p0>0

. (4.26)
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Applied to the l.h. side (and dropping the (2π)3 factor on both sides) this gives∫
d3p

2p0
2p′0 δ

3(~p′ − ~q′) =

∫
d4p δ(p2 −m2)

∣∣∣∣
p0>0

2p′0 δ
3(~p′ − ~q′)

=

∫
d4p′ δ(p′

2 −m2)

∣∣∣∣
p0>0

2p′0 δ
3(~p′ − ~q′)

=

∫
d3p′

2p′0
2p′0 δ

3(~p′ − ~q′) = 1 .

(4.27)

Here in the second step we used that p2 = p′2 and detΛ = 1.
On the r.h. side, on simply has∫

d3p

2p0 2p0 δ
3(~p− ~q) = 1 , (4.28)

so we are done. For more details see e.g. the books by Itzykson/Zuber (Sec. 3.1.2)
and by Weinberg (Vol. 1, Sec. 2).

5 Perturbation theory: first steps in a naive, lea-
ding-order approach

5.1 S-Matrix

Until now, the potential part of our scalar-field lagrangian contained only the mass
term:

V (ϕ) =
m2

2
ϕ2 . (5.1)

This restriction may be justified by noting that the mass term is the leading non-
trivial term in the Taylor expansion around ϕ = 0. (The constant term is unobserv-
able unless we include gravity and the linear term can be removed by a redefinition
ϕ→ ϕ+ const.)

The resulting theory is ‘free’, which is clear since our Fock space basis was also
an energy-eigenstate basis. As a result, neither particle number nor the momenta
of particles were changed by the dynamics. In other words: No particle-scattering
or decays.

As a next step, it is natural to ask for higher-order terms in the Taylor expansion
of V . To simplify the analysis, we will for the moment impose the discrete symmetry
ϕ→ −ϕ. In that case the next term in the Taylor expansion is

λ

4!
ϕ4 . (5.2)

Adding this term to the potential, our Lagrangian becomes

L =
1

2
(∂ϕ)2 − 1

2
m2ϕ2 − λ

4!
ϕ4 . (5.3)
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We split Lagrangian and Hamiltonian density as

L = L0 + Lint , Lint = − λ
4!
ϕ4

H = H0 +Hint , Hint =
λ

4!
ϕ4 ,

(5.4)

where L0 and H0 are the free Lagrangian and Hamiltonian density. Notice the
different signs of the interaction term in Lagrangian and Hamiltionian.

Had we not imposed the Z2 symmetry ϕ→ −ϕ, the next term would have been

Vint =
λ

3!
ϕ3 . (5.5)

One argument that is often brought forward against such a ‘ϕ3-theory’ is that the
potential is unbound from below for ϕ→ −∞. However, this is not really a problem
as we are only interested in perturbation theory around ϕ = 0. For this it is sufficient
that this so-called vacuum is long-lived – it does not have to be absolutely stable.
The true reason for starting with ϕ4-theory lies in its simplicity.

In the following discussion we are going to use the interaction picture. As you
recall from quantum mechanics, this picture is derived from the Schrödinger picture
analogously to Heisenberg picture. The only difference is that one transfers only the
free part of the time-evolution from states to operators:

Schrödinger picture → Interaction picture
Operator O → OI

t = eiH0tO e−iH0t (5.6)
State |ψt〉 = e−iHt |ψ〉 →

∣∣ψIt 〉 = eiH0t e−iHt |ψ〉 . (5.7)

One may interpret the last expression as describing the evolution of the interaction
picture state between 0 and t′:∣∣ψIt′〉 = eiH0t′e−iHt

′ ∣∣ψI0〉 . (5.8)

It is immediate to conclude what the evolution between t and 0 is:∣∣ψI0〉 = eiHt
′
e−iH0t

∣∣ψIt 〉 . (5.9)

From this, one reads off the evolution from an arbitrary time t to a different arbitrary
time t′. It is conveniently written as∣∣ψIt′〉 = U(t′, t)

∣∣ψIt 〉 with U(t′, t) = eiH0t′e−iH(t′−t)e−iH0t , (5.10)

where U(t′, t) is the unitary time evolution operator of the interaction picture. You
may be already familiar with this from time-dependent perturbation theory in quan-
tum mechanics.

Let us split the time evolution from t to t′ into n small steps ∆ = (t′ − t)/n.
Then U(t′, t) becomes

U(t′, t) = U(t′, t′ −∆) · U(t′ −∆, t′ − 2∆) . . . U(t+ ∆, t) . (5.11)
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Then look at one individual step:

U(t+ ∆, t) = eiH0(t+∆)e−iH∆e−iH0t = eiH0teiH0∆e−iH∆e−iH0t

' eiH0te−iHint∆e−iH0t = e−iH
I
int(t)∆ .

(5.12)

Here in going from the first to the second line we dropped all commutator terms in
the Baker-Campbell-Hausdorff formula as they are of second order in ∆:

eiH0∆e−iH∆ = ei(H0−H)∆+O(∆2) ≈ e−iHint∆ . (5.13)

In the last expression in (13), we introduced the symbol HI
int(t) for the interaction

Hamiltonian Hint transformed to the interaction picture:

HI
int(t) = eiH0tHinte

−iH0t . (5.14)

Now, combining all the time steps, we have

U(t′, t) ' e−iH
I
int(t

′−∆)∆ · e−iHI
int(t

′−2∆)∆ · · · e−iHI
int(t)∆

' Te−iH
I
int(t

′−∆)∆ · e−iHI
int(t

′−2∆)∆ · · · e−iHI
int(t)∆

' Te−iH
I
int(t

′−∆)∆−iHI
int(t

′−2∆)∆+ ··· −iHI
int(t)∆

= T exp

(
−i
∫ t′

t

dτ HI
int(τ)

)
,

(5.15)

where the last expression assumes the limit n→∞ and our formula hence becomes
exact. Crucially, in the second line we introduced the so-called time-ordering
operator T , which has the general definition

Tϕ(t1)ϕ(t2) =

{
ϕ(t1)ϕ(t2) if t1 ≥ t2
ϕ(t2)ϕ(t1) if t2 > t1

, (5.16)

with obvious extension to more than two operators. In words: Any string of op-
erators with time-arguments to the right of T has to be reordered such that the
times increase from right to left. In fact, as should be clear from this definition,
T is not an operator – the name "time-ordering symbol" would be more accurate.
The symbol T simply gives a more detailed specification concerning the operator
expression written to its right. The key role of T in (5.15) was that it allowed us to
combine the exponents in the step from 2nd to 3rd line. The reason is that under
the T symbol the order in which operators are written is clearly irrelevant.

Explicitly, we now have

HI
int(t) = eiH0t

Hint︷ ︸︸ ︷∫
d3x

λ

4!
(ϕ(~x))4︸ ︷︷ ︸
Hint

e−iH0t =

∫
d3x

λ

4!

(
ϕI(x)

)4
. (5.17)

Here we first wrote the Hamiltonian as an integral of the Hamilton density and
then introduced the interaction-picture field ϕI . Notice that this is precisely the
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Heisenberg-picture field of the free theory. We will thus be able to apply some of
the results from our discussion of the free theory.

Before calculating the scattering or S-matrix, we want to motivate scattering in-
tuitively. For a pair of particles with four-momenta p1, p2, scattered into a state with
momenta p′1, p′2, we consider the situation in Fig. 4. Since the interaction

∫
d3xϕ4

includes terms of type a†~p′1a
†
~p′2
a~p1a~p2 we expect it to induce 2-to-2-scattering at

leading order: 2 particles are annihilated – 2 particles with different momenta are
created. With higher orders in λ and hence a higher power of ϕ, in general, we
could have 2-to-n-scattering (n > 2). The very definition of scattering requires
the particles to be separated at early and late times (t and t′). Separation requires
localization, such that we will need wave packets rather than plane waves.

p

p

p'

p'

1 1

2 2

t t'
t

Figure 4: Incoming and outgoing momentum in 2-to-2 scattering. The two particles
are separated in the initial and final state.

Now, if the participating particles do not interact at early and late times (as just
explained), and since the free single-particle states are time-independent (as we are
in the interaction picture), it appears logical to define the scattering matrix as the
following limit of the time-evolution operator:

S = lim
t→−∞
t′→∞

U(t′, t) = T exp

(
−i
∫ ∞
−∞

dtHI
int(t)

)
= T exp

(
i

∫
d4xLIint(x)

)
. (5.18)

One also defines the S-matrix element

Sfi = 〈p′1p′2|T exp

(
i

∫
d4xLIint

)
|p1p2〉 , (5.19)

where f and i denote the final and initial state, respectively. In some problems it is
also useful to define the transition matrix or T-matrix

S = 1 + iT Sfi = δfi + iTfi . (5.20)

Our S-matrix definition was formally precisely that from quantum mechanics,
e.g. for scattering off a localized potential. The required limit exists, roughly speak-
ing, because at early/late times HI

int does not affect the incoming/outgoing states,
so the integration range remains finite for the S-matrix-elements between relevant
states. In our context, unfortunately, this definition is strictly speaking wrong.
The reason is that our particles are never ‘far away’ from the scattering potential.
Instead, once we look at an interacting theory with λ 6= 0, also a single, incoming
particle is affected by the interaction – the limit above does not make sense. We
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could try to give it a meaning by adiabatically switching off λ at early and late times.
But one would still have to be very careful about the effect this ‘switching off’ has on
an incoming state. Doing all of this properly, which amounts to understanding how
to describe single particles in the interacting theory, is known as LSZ formalism
and will be treated below. For now, we only note that our naive definition of S is
completely fine for many ‘leading-order’ applications. And it gives one a lot of easy
and correct intuition for how scattering in quantum field theory works. A better
definition of S will be supplied later.

Before proceeding, it will be convenient to change the normalization of a, a†
according to

(a~p)new =
√

2ω~p (a~p)old with ω~p = p0 . (5.21)

With these conventions, covariance is emphasized rather than the analogy to har-
monic oscillators, which was important to us only at the beginning. With our new
a, a† we have [

a~p, a
†
~q

]
= 2p0(2π)3δ3(~p− ~q) , |p〉 = a†~p |0〉 (5.22)

and
ϕI(x) =

∫
d3p

(2π)32p0

(
a~pe
−ipx + a†~pe

ipx
)
. (5.23)

Please remember to use these new, ‘Lorentz-covariant’ relations in all that follows.
Also, recall that the interaction picture fields ϕI are the same as the Heisenberg-
picture fields of the free theory.

We note in passing that we do not need to rethink the quantization of our theory
just because we introduced an interaction lagrangian. The reason is that the latter
did not include time derivatives and hence did not affect the relation between the
canonical momentum π coming with the field φ.

Returning to our main line of thought and following our definitions, one straight-
forwardly finds that, at leading order in λ,

iTfi = 〈0| a~p′1a~p′2

(
−i λ

4!

)∫
d4x (ϕI(x))4a†~p1a

†
~p2
|0〉 . (5.24)

The simplicity of this formula is the reward for our lengthy developments which were
aimed at expressing everything (especially U and hence S) in terms of free fields
ϕI . These are related to a, a† in the familiar way, such that one straightforwardly
derives

iTfi = −iλ(2π)4δ4(p1 + p2 − p′1 − p′2) . (5.25)

The δ-distribution enforcing momentum conservation always arises in this con-
text. Hence, it is common to separate it by defining the invariant matrix element
Mfi trough

iTfi = i(2π)4δ4(p1 + p2 − p′1 − p′2)Mfi . (5.26)

This implies
Sfi = δfi + i(2π)4δ4(p1 + p2 − p′1 − p′2)Mfi. (5.27)

In this language, we have hence found that the invariant matrix element for 2-to-2-
scattering in λϕ4-theory reads

iMfi = −iλ. (5.28)
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One represents this graphically by 4 lines meeting at the interaction point. This
is then our first Feynman rule:

= −iλ . (5.29)

For 2-to-2-scattering in λϕ3-theory, one obtains a slightly more complicated result,

∝ λ2 . (5.30)

We will discuss this later and supplement it by an appropriate factor for the line
between the two 3-vertices.

We note that, because of the factor δ4 (pin − pout), our S-matrix element (corre-
sponding to a quantum-mechanical amplitude) is either zero or infinite, depending
on whether momentum conservation holds. Hence, in the next section we will have
to do some more work, deriving from the singular matrix elements a finite quantity:
the scattering cross section.

5.2 Scattering cross section

Consider a so-called fixed target experiment (cf. Fig. 5): A beam, which com-
prises NB particles of type B, spread over a transverse area F , is directed at a target.
The latter is a single particle of type A.

Target

F

Type B Type A

Figure 5: Setup for our idealised fixed-target experiment.

The scattering cross section σ for this experiment is defined by the relations

Nevents
NB

=
σ

F
or, equivalently, σ =

Nevents
(NB/F )

. (5.31)

Here NB/F is the (integrated) transverse beam density.6
We require localized states and hence consider wave packets:

|f~p〉 :=

∫
dk̃f~p(~k)|k〉, dk̃ ≡ d3k

(2π)32k0
. (5.32)

6 As you probably recall from the experimental particle physics lectures, in practice one often
works with slightly different quantities: One considers a continuous beam, but asks for quantities
per unit of time. Thus, one talks about the luminosity, NB/(FT ) ≡ L. Then the rate R =
Nevents/T is given by R = Lσ.
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Here f~p(~k) as a function of ~k is peaked near ~k = ~p, e.g. f~p(~k) ∼ exp

(
−α
∣∣∣~k − ~p∣∣∣2).

We choose the following normalization:

〈f~p|f~p〉 =

∫
dk̃dk̃′f~p(~k)f~p(~k

′)〈k|k′〉 =

∫
dk̃
∣∣∣f~p(~k)

∣∣∣2 ≡ 1 . (5.33)

Next, we check that |f~p〉 is indeed localized in R3 for an appropriate choice of
f~p. Using the by now rather familiar expression for ϕI(x) in terms of a and a† one
can readily check that

a†~k = −i
∫

d3x e−ikx
↔
∂0ϕ

I(x)

∣∣∣∣
x0=0

. (5.34)

This gives

|f~p〉 =

∫
dk̃f~p(~k)a†~k|0〉 =

∫
d3x

{∫
dk̃ei

~k~x
(
k0ϕ

I(~x)− iϕ̇I(~x)
)
f~p(~k)

}
|0〉 . (5.35)

The r.h. side is the sum of two terms which are proportional to the following two
expressions: ∫

d3xϕI(~x)

(∫
dk̃ei

~k~xf~p(~k)k0

)
|0〉∫

d3xϕ̇I(~x)

(∫
dk̃ei

~k~xf~p(~k)

)
|0〉 .

(5.36)

Now recall that f~p(k) (and hence also k0 f~p(k)) is a smooth function, localized in ~k
near the origin. Hence the Fourier transforms of both functions will be localized in
~x near ~x = 0. Thus, we see that |f~p〉 is created by the operators ϕI(x0 = 0, ~x) and
ϕ̇I(x0 = 0, ~x) acting on the vacuum in a localized region near ~x = 0.

Thus, the state

|i〉 =

∫
dk̃Adk̃Bf~pA(~kA)f~pB(~kB)|kAkB〉 (5.37)

corresponds, at t = 0, to two wave packets localised near ~x = 0. The (approximate)
momenta are pA, pB and the localisation is characterised by the functions f . Figure 6
depicts the situation slightly before t = 0, assuming that ~pB is non-zero while ~pA
vanishes.

AB
at rest

beam axis

Figure 6: Two wave packets with different momenta before the moment of collision.

Next, we need to account for the transverse spread of incoming particles. In
other words, we must allow for a non-zero impact parameter ~b, cf. Fig. 7. As in
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quantum mechanics, the operator P̂ generates shifts. Thus, an incoming particle
with ~b 6= 0 is given by

e−i
~̂P~b

∫
dk̃Bf~pB(~kB)|kB〉 . (5.38)

Since ~̂P |kB〉 = ~kB|kB〉, our initial state for given ~b is

|ib〉 =

∫
dk̃Adk̃Bf~pA(~kA)f~pB(~kB)e−i

~kB~b |kAkB〉 . (5.39)

A

B
~b

B

B
x

1

x

2

x

3

�
b3 = 0

�

Figure 7: Same as Fig. 6, but now allowing for a non-zero impact parameter.

Starting with |ib〉 at t = −∞, when A and B are certainly far apart, we evolve in
time through the time region where the particles can make contact and to t = +∞.
Then we project on the the desired final state |p1p2〉. As we learned before, this
corresponding amplitude is given characterised by

|〈p1p2|S|ib〉|2 . (5.40)

Summing over a set of particles with different ~b gives

Nevents =
∑
~b

|〈p1p2|S|ib〉|2. (5.41)

For a homogeneous, transverse distribution of NB particles in an area F we can
approximate this sum by an integral:

Nevents =
NB

F

∫
F

d2b|〈p1p2|S|ib〉|2 . (5.42)

According to our definition of the cross section, one furthermore has

σ(~p1, ~p2) =
Nevents
(NB/F )

=

∫
F

d2b|〈p1p2|S|ib〉|2 . (5.43)

Clearly, this is too naive as we cannot ask for a specific point of final-state
momenta (~p1, ~p2) ∈ R6. This also clashes with the finite precision of any realistic
detector. Instead, let us define σ for a finite region of phase-space Vf ⊂ R6, i.e. write

σ(Vf ) =

∫
Vf

dp̃1dp̃2 σ(~p1, ~p2) . (5.44)
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The correctness of the proposed measure dp̃1dp̃2 follows immediately by considering
the free theory (S = 1) and integration over the whole phase space: Assuming for
simplicity that the two particles are distinguishable, one expects

1 =

∫
dp̃1dp̃2 |〈p1p2|f~pAf~pB〉|

2 =

∫
dp̃1dp̃2 |f~pA(~p1)|2|f~pB(~p2)|2 . (5.45)

This does indeed hold because of our previously chosen normalisation of f .
All of the above generalises to n final-state particles. Also, we actually want the

so-called differential cross sections, i.e. (5.44) before integration. This reads

dσ =
n∏
j=1

dp̃j

∫
F

d2b |〈p1...pn|S|ib〉|2 . (5.46)

Now we employ the definition Sf i = δf i+i(2π)4δ4(pf−pi)Mf i and the expression
for |ib〉 given above. Noting that only theMf i term contributes unless f=i, we find

dσ =
n∏
j=1

dp̃j

∫
d2b

∫
dk̃Adk̃Bf~pA(~kA)f~pB(~kB)

∫
dk̃′Adk̃′Bf ~pA(~k′A)f ~pB(~k′B)

ei
~b(~k′B−~kB)|Mf i|

2(2π)8δ4(pf − ki)δ4(pf − k′i) ,

(5.47)

where pf =
∑n

j=1 pj , ki = kA + kB and k′i = k′A + k′B. What now follows is
a straightforward but slightly painful evaluation of the lengthy expression above.
First, we note that ∫

d2b ei
~b(~k′B−~kB) = (2π)2δ2 (k′B⊥ − kB⊥) . (5.48)

This allows us to evaluate the transverse parts of the k′A/B integrations as follows:∫
d3k′Ad3k′Bδ

4
(
pf − k′i

)
δ2 (k′B⊥ − kB⊥) · · ·

=

∫
d
(
k3′
A

)
d
(
k3′
B

)
δ
(
p0
f − k

0′
i
)
δ
(
p3
f − k

3′
i
)
· · · .

(5.49)

After these integrations, one has obviously enforced the equality k′B⊥ = kB⊥ .
Less obviously, one also has implemented k′A⊥ = kA⊥. This follows from
δ2 (pf⊥ − k′A⊥ − k′B⊥) together with δ2 (pf⊥ − kA⊥ − kB⊥), the latter being hidden
in the ellipsis.

Next, one performs the k3′
B integration, giving∫
d
(
k3′
A

)
δ
(
p0
f − k

0′
A − k0′

B

)
· · · . (5.50)

such that now also the relation k3′
B = p3

f − k
3′
A holds. The result may be written as∫

d
(
k3′
A

)
δ

(
p0
f −

√
m2
A + (~k′A)2 −

√
m2
B + (~k′B)2

)
· · · , (5.51)
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where (~k′A)2 = (kA⊥)2 + (k3′
A)2 and (~k′B)2 = (kB⊥)2 + (p3

f −k
3′
A)2. Performing this last

integration gives∣∣∣∣∣∣ k3′
A√

m2
A + (~k′A)2

− k3′
B√

m2
B + (~k′B)2

∣∣∣∣∣∣
−1

· · · =

∣∣∣∣k3′
A

k0′
A

− k3′
B

k0′
B

∣∣∣∣−1

· · · =
1

|vA − vB|
· · · .

(5.52)
Let us furthermore note that, initially, we talked about a fixed-target experiment.
This corresponds to vA = 0. However, nothing in our analysis depended on this
assumption, so we may as well keep vA general.

Now, we have completely carried out the k′A,B integrations, implementing the
four relations

k′A⊥ = kA⊥ , k′B⊥ = kB⊥ , k3′
B + k3′

A = p3
f , k0′

B + k0′
A = p0

f . (5.53)

The last one may also be written as√
m2
B + (kB⊥)2 + (k3′

B)2 +
√
m2
A + (kA⊥)2 + (k3′

A)2 = p0
f . (5.54)

Thus, of the four relations in (5.53), we can view the last two as fixing the two
variables k3′

A ,k3′
B . Moreover, two analogous relations hold for k3

A , k3
B. This follows

from the so far unused delta-function δ4(pf−kA−kB). We have hence enforced that
~kA = ~k′A and ~kB = ~k′B.

Altogether, we now have

dσ =
∏
j

dp̃j

∫
dk̃A dk̃B

∣∣∣f~pA (~kA)∣∣∣2∣∣∣f~pB (~kB)∣∣∣2|Mfi|2
(2π)4δ4(pf − kA − kB)

4k0
Ak

0
B|vA − vB|

.

(5.55)
At this point we may view the two |f |2 as effective δ-functions ensuring
~kA = ~pA, ~kB = ~pB. This gives

dσ =
|Mfi|2

4 p0
Ap

0
B|vA − vB|

(2π)4δ4(pf − pi)
n∏
j

d3pj
(2π)3 2p0

j

. (5.56)

The first factor may be rewritten as

|Mfi|2

4 p0
Ap

0
B|vA − vB|

=
|Mfi|2

2w (s,m2
A,m

2
B)
, (5.57)

where

w(x, y, z) =
√
x2 + y2 + z2 − 2xy − 2xz − 2yz and s = (pA + pB)2 . (5.58)

We leave the demonstration to the problems. Clearly, this rewriting implies that the
factor is invariant under boosts along the x3 direction. We note that

√
s is known as

the center-of-mass energy. The remainder of (5.56) is the so-called n-particle
phase space.
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The highly relativistic case will be the most relevant for us. Thus, let:

p0
A = mA; ~pA = 0; mA,mB �

√
s . (5.59)

This implies
|vA − vB| = |vB| = c = 1 (5.60)

and
4 p0

Ap
0
B = 2(pA + pB)2 = 2s . (5.61)

In the first equality it has been used that p2
A ≈ p2

B ≈ 0, which follows directly
from (5.59) and the fact that pB is approximately light-like. Thus, in the highly
relativistic case we have:

dσ =
1

2s
|Mfi|2 dX(n) ; dX(n) = (2π)4δ4(pf − pi) dp̃1 . . . dp̃n . (5.62)

5.3 2-particle phase-space and a simple example

Consider specifically 2-to-2 scattering in λϕ4-theory and focus on the phase space:∫
dX(2) =

∫
(2π)4 δ4(p1 + p2 − pA − pB)

d3p1

(2π)3 2p0
1

d3p2

(2π)3 2p0
2

. (5.63)

The d3p1-integration may be trivially performed, giving∫
d3p2

(2π)2 4p0
1p

0
2

δ
(
p0

1 + p0
2 −
√
s
)

=

∫
d3p2

(2π)2 4|~p2|2
δ
(
2|~p2| −

√
s
)
. (5.64)

In the second step, we used ~p1 = −~p2, which corresponds to choosing the center-of-
mass frame. In addition, we assumed p2

2 = (p0
2)2 − ~p 2

2 = m2 ' 0, justified by the
highly relativistic limit.

Next, we switch to spherical coordinates:

d3p2 = dΩ |~p2|2 d|~p2| ; dΩ = dϕ sin θ dθ , (5.65)

and perform the d|~p2| integration only. In other words, we keep our result differential
concerning the angular distribution:∫

d|~p2| δ
(
2|~p2| −

√
s
) dΩ

16π2
=

dΩ

32π2
. (5.66)

Combining this with the invariant matrix element squared and the prefactor 1/2s,
we obtain the differential cross section

dσ

dΩ
=
|Mfi|2

64π2s
=

λ2

64π2s
. (5.67)

We see that no direction is preferred, which is expected since our particles carry no
spin and also our interaction term involves no directional information (e.g. deriva-
tives acting on the fields etc.). Moreover, the factor λ2/s could have been argued
without any calculations: The scattering amplitude is proportional to λ and there-
fore λ has to appear quadratically in the differential cross section. Cross sections
have units of [Length]2 corresponding to [Energy]−2. Hence, we have to divide λ2 by
the energy scale squared: s. A possible mass dependence is irrelevant as m �

√
s

by assumption. The numerical coefficient, however, required the detailed analysis
just performed.
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6 LSZ-Formalism

This goes back to the 1955 paper by Lehmann, Symanzik, and Zimmermann. Our
presentation is similar to that by Peskin and Schröder [1] which in turn is similar
to Weinberg’s approach [4]. But it differs from many other books and the reader is
invited to compare the discussions of this non-trivial subject by different authors.

The general idea is to establish a relation between S-matrix-elements and corre-
lation functions (also known as Green’s functions). Concretely:

out〈p
′
1 . . . p

′
n|p1 . . . pm〉in︸ ︷︷ ︸

needed for cross section
←→

〈0|Tϕ(x1) . . . ϕ(xn+m) |0〉 .︸ ︷︷ ︸
easily calculable in pert. theory

This will improve our naive discussion of the last chapter not only by providing a
systematic treatment extendible to higher orders in perturbation theory. Even more
importantly, it will correct our simplifying assumption that incoming and outgoing
particles can be identified with Fock space basis states. The relation will turn out
to be more complicated.

6.1 Spectral density and Z-factors

In the following we will use the Heisenberg picture. So it will be convenient to
write the corresponding objects, the time-dependent field operators and the time-
independent states, without any index:

ϕ(x) = eiHt ϕS(~x ) e−iHt ; H = H0 +Hint ; |ψ〉 = |ψS(t = 0)〉 . (6.1)

The index S stands for Schrödinger picture.
Consider the correlation function:

〈0|ϕ(x)ϕ(y) |0〉 . (6.2)

This may be interpreted as the amplitude for a particle to propagate from ~y at time
y0 to ~x at time x0. For a free field ϕ0 with mass m0 we have:

〈0|ϕ0(x)ϕ0(y) |0〉 =

∫
dp̃ dq̃ 〈0| â~p â†~q |0〉 e

−ipx+iqy

=

∫
d3p

(2π)3 2p0
e−ip(x−y) =

∫
d4p

(2π)3
e−ip(x−y)δ(p2 −m2

0) Θ(p0)

≡ D(x− y,m2
0) ,

(6.3)
where Θ denotes the Heaviside step function.

Now we consider the general case, where we can write

〈0|ϕ(x)ϕ(y) |0〉 =
∑
α

〈0|ϕ(x) |α〉 〈α|ϕ(y) |0〉 . (6.4)

Here the sum includes all states, also multi-particle states. The parameter α is in
part continuous. It labels different (discrete) types of intermediate states but also
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the continuous parameters associated with each such state, e.g. the total momentum
of a state with a fixed number of particles. The ‘sum’ is hence not a proper discrete
sum but should rather be understood symbolically.

By using the two relations

ϕ(x) = eip̂xϕ(0) e−ip̂x , e−ip̂x |α〉 = e−ipαx |α〉 (6.5)

we obtain

〈0|ϕ(x)ϕ(y) |0〉 =
∑
α

e−ipα(x−y)|〈0|ϕ(0) |α〉|2

=

∫
d4q
∑
α

e−iq(x−y)|〈0|ϕ(0) |α〉|2δ4(q − pα)

=

∫
d4q

(2π)3
e−iq(x−y)ρ(q) .

(6.6)

In the last line we used the definition

ρ(q) ≡ (2π)3
∑
α

δ4(q − pα)|〈0|ϕ(0) |α〉|2 . (6.7)

Note that ρ(q) is manifestly SO+(1, 3)-invariant and vanishes for q0 < 0. This allows
us to introduce the spectral density σ(q2) as follows:

ρ(q) ≡ Θ(q0)σ(q2) . (6.8)

The spectral density σ quantifies the contribution of the intermediate states |α〉 with
p2
α = q2 to the correlation function we started from.
Further rewriting yields:

〈0|ϕ(x)ϕ(y) |0〉 =

∞∫
0

d(M2)

∫
d4q

(2π)3
e−iq(x−y)δ(q2 −M2) Θ(q0)σ(M2)

=

∞∫
0

d(M2)D(x− y,M2)σ(M2) .

(6.9)

It can be seen easily that by choosing σ(q2) = δ(q2 −m2
0) we obtain the result (6.3)

of the free-field case.
More generally, the spectral density approximately takes the form displayed in

Fig. 8. Note that we assume that the vacuum does not contribute as an intermediate
state, 〈0|ϕ(x) |0〉. This can always be ensured by a redefinition ϕ→ ϕ+const. Thus,
we may write

σ(q2) = Z δ(q2 − m2︸︷︷︸
6=m2

0

) + . . . (6.10)

where the Z is a so far unknown normalization factor. We get further non-zero
contributions, indicated by the ellipsis, for q2 > M2

t . Here, as shown in the figure,
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Figure 8: Qualitative behaviour of the spectral density. The peaks just below (2m)2

correspond to multi-particle bound states or resonances. They start at the so-called
multi-particle-threshold M2

t .

the multi-particle threshold M2
t lies in general below 2m2.The reason is that 2-

particle bound states have a mass that is smaller than then the minimal mass 2m2

of two particles separated by a large distance.
Given this understanding, we now split the formal sum

∑
α

into a single-particle

part (involving the integration over the momentum) and a separate multi-particle
contribution (denoted by an ellipsis):∑

α

|α〉 〈α| =
∫

dp̃ |p〉 〈p|+ . . . . (6.11)

We then obtain

〈0|ϕ(x)ϕ(y) |0〉 =

∫
dp̃ 〈0|ϕ(x) |p〉 〈p|ϕ(y) |0〉+ . . .

=

∫
dp̃ e−ip(x−y) |〈0|ϕ(0) |p〉|2︸ ︷︷ ︸

≡Z

+ . . .

=D(x− y,m2)Z + . . . .

(6.12)

In the last step we used the fact that Z does not depend on p. This is clear since
one may write |p〉 = Λ̂ |p′〉 and 〈0| = 〈0| Λ̂†, noting also that Λ̂†ϕ(0)Λ̂ = ϕ(0). Here
we assumed that Lorentz covariance, as introduced in the free-field case, continues
to hold in the interacting theory.

Altogether, we have shown that

〈0|ϕ(x)ϕ(y) |0〉 = Z D(x− y,m2) +

∞∫
M2
t

d(M2)σ(M2)D(x− y,M2)

︸ ︷︷ ︸
multi-particle contribution

. (6.13)

Subtracting the same equation with x↔ y yields

〈0|[ϕ(x), ϕ(y)]|0〉 = Z ∆(x− y, m2) +

∞∫
M2
t

d(M2)σ(M2) ∆(x− y,M2) , (6.14)
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with
∆(x− y,M2) ≡ 〈0|[ϕ0(x), ϕ0(y)]|0〉 . (6.15)

Here the free theory, obviously, is taken to have mass M .

Now we apply ∂
∂y0

∣∣∣∣
y0=x0

to (6.15). Since ϕ̇ = π, we find

[
ϕ0(x0, ~x), π0(x0, ~y)

]
= i δ3 (~x− ~y) (6.16)

on the r.h. side. This implies

∂

∂y0
∆(x− y,M2)

∣∣∣∣
y0=x0

= i δ3 (~x− ~y) . (6.17)

Next, we apply ∂
∂y0

∣∣∣∣
y0=x0

to (6.14) and observe that (6.16) also holds for interacting

fields by the very definition of our quantization procedure:[
ϕ(x0, ~x), π(x0, ~y)

]
= i δ3 (~x− ~y) . (6.18)

Thus, we obtain

1 = Z +

∞∫
M2
t

d(M2)σ(M2) . (6.19)

This implies that Z ≤ 1 and Z = 1 precisely for the free theory. The size of 1− Z
accounts for the overlap of ϕ(0) |0〉 with multi-particle states.

Finally, we may use (6.13) to build the expression Tϕ(x)ϕ(y) rather than
[ϕ(x), ϕ(y)] of (6.14). The result is

〈0|Tϕ(x)ϕ(y)|0〉 = Z DF (x− y, m2) +

∞∫
M2
t

d(M2)σ(M2)DF (x− y, M2) (6.20)

The Feynman propagator

DF (x− y, m2
0) ≡ 〈0|Tϕ0(x)ϕ0(y)|0〉 , (6.21)

which appears on the r.h. side, will be of particular interest to us in the following
sections.

6.2 LSZ reduction formula

Now we will relate time-ordered correlation functions to scattering amplitudes. We
start by considering the Fourier transform∫

d4x eipx 〈0|Tϕ(x)ϕ(z1) . . . ϕ(zn)|0〉 (6.22)

=

 T−∫
−∞

dx0 +

T+∫
T−

dx0 +

∞∫
T+

dx0

 (∫
d3x eipx 〈0|Tϕ(x)ϕ(z1) . . . ϕ(zn)|0〉

)
≡ (I) + (II) + (III) ,
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which we split into three terms, as defined above. We will view this expression as
a function of the complex variable p0. Our interest will be in its pole structure
in p0. In particular, we claim that there is a pole at p0 =

√
~p2 +m2 = ω~p and we

determine its residue. First, we focus on integration region III and hence on the
third term:

∞∫
T+

dx0 (. . .) =

∞∫
T+

dx0

∫
d3x eipx

∑
α

〈0|ϕ(x) |α〉〈α|Tϕ(z1) . . . ϕ(zn) |0〉 (6.23)

=
∑
α

∞∫
T+

dx0

∫
d3x eix

0(p0−q0α)−i~x(~p− ~qα) 〈0|ϕ(0) |α〉〈α|Tϕ(z1) . . . ϕ(zn) |0〉 .

A pole in p0 will arise if the oscillating exponent vanishes, i.e. if p0 − q0
α = 0.

Thus, a pole at p0 = ω~p can only come from 1-particle-states. Indeed, the d3x
integration enforces ~qα = ~p, such that the 4-vector qα must obey q2

α = m2. As a
result, we may replace

∑
α |α〉〈α| →

∫
dq̃α |qα〉〈qα|.

We now defined the symbol ∼ to mean ‘equal up to finite terms’ or, in other
words, ‘the coefficients of the poles agree’. With this, the previous equation may be
continued as

. . . ∼
∞∫

T+

dx0

∫
d3x

∫
dq̃α e

ix0(p0−q0α)−i~x(~p− ~qα) 〈0|ϕ(0) |q〉〈q|Tϕ(z1) . . . ϕ(zn) |0〉

∼
√
Z

2ω~p

∞∫
T+

dx0 eix
0(p0−ω~p) 〈p|Tϕ(z1) . . . ϕ(zn)|0〉

(6.24)
We evaluate this integral assuming that p0 has a small, positive imaginary part.

This is legitimate since we are treating the whole expression as an analytic function
of p0 and we only care about the residue of the pole at p0 = ω~p. The result is

∼
√
Z

2ω~p
· 1

i(p0 − ω~p)

(
0− eix

0(p0−ω~p)

∣∣∣∣
x0=T+

)
〈p|Tϕ(z1) . . . ϕ(zn)|0〉 . (6.25)

Now the pole is manifest and the remaining exponent can be dropped since it equals
unity at the pole. Moreover, we have p2 −m2 = (p0 + ω~p)(p

0 − ω~p) ' 2ω~p(p
0 − ω~p),

such that we eventually find

∼
i
√
Z

p2 −m2
〈p|Tϕ(z1) . . . ϕ(zn)|0〉 . (6.26)

This is our final, maximally simplified expression displaying the desired pole-
structure at p0 = ω~p.

41



Now we focus on integration region I. It is easy to write the analogue of (6.23):

T−∫
−∞

dx0 (. . .) =

T−∫
−∞

dx0

∫
d3x eipx

∑
α

〈0|Tϕ(z1) . . . ϕ(zn) |α〉〈α|ϕ(x) |0〉 (6.27)

=
∑
α

T−∫
−∞

dx0

∫
d3x eix

0(p0+q0α)−i~x(~p+ ~qα) 〈0|Tϕ(z1) . . . ϕ(zn) |α〉〈α|ϕ(0) |0〉 .

We see that the change 〈0|ϕ(x)|α〉 → 〈α|ϕ(x)|0〉 has lead to a sign flip of qα in
the exponent. Now the coefficient of x0 in the exponent is always positive. The
exponential oscillates at p0 → ω~p, so no pole arises.

Finally, integration region II is finite, hence its contribution is analytic in p0, so
no pole arises here either.

We have arrived at an important preliminary result: We managed to trade
ϕ(x) in (6.22) for an outgoing particle 〈p| in (6.26).

A completely analogous calculation can be performed for a negative sign of the
exponent in the Fourier transformation:∫

d4x e−−−ipx 〈0|Tϕ(x)ϕ(z1) . . . ϕ(zn)|0〉 ∼ i
√
Z

p2 −m2
〈0|Tϕ(z1) . . . ϕ(zn)|p〉 . (6.28)

It allows us to trade ϕ(x) for an incoming particle.
Finally we need to be able to do several such manipulations at once, e.g.∫

d4x1

∫
d4x2 e

ip1x1+ip2x2 〈0|Tϕ(x1)ϕ(x2)ϕ(z1) . . . ϕ(zn)|0〉

∼
i
√
Z

p2
1 −m2

1

· i
√
Z

p2
2 −m2

2

〈p1p2|Tϕ(z1) . . . ϕ(zn)|0〉 .
(6.29)

There are now many fields and many integration regions. For illustration, let us
display only two fields and focus on the integration region where both x0

i are large.
Then our derivation will go through if one may treat the fields separately, roughly
as follows:

〈0|Tϕ(x1)ϕ(x2) · · ·|0〉 =
∑
α,β

〈0|ϕ(x1)|α〉 〈0|ϕ(x2)|β〉 〈α, β|· · ·|0〉 (6.30)

This will hold if ~x1, ~x2 are always far apart in the region where x0
1, x

0
2 →∞. For

a double Fourier-transform in x1, x2 this is certainly not true. Hence we need wave
packets:∫

d4x eipx →
∫

d4x

∫
dk̃ f~p(~k)eikx︸ ︷︷ ︸

function of ~x which is localized near zero at x0
and correspondingly in other regions of space at other times.

(6.31)

Thus, the overall structure of the derivation is as follows: Convolute
〈0|Tϕ(z1) . . . ϕ(zn)|0〉 with appropriate wave packets. Show that the result is some
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t

x

y1

y2 x2

x1

Figure 9: Visualization of wave packets governing the integration with different field
operators. For example, at late times ϕ(x2) only contributes for ~x2 in the appropriate
shaded region.

linear combination of poles. The residues are the desired matrix elements. Take the
limit f~p(~k)→ δ(~k − ~p) at the end. Justifying this last limit rigorously is non-trivial
but if it works, one obtains the following LSZ-Reduction Formula:

n∏
l=1

∫
d4x eiplxl

m∏
j=1

∫
d4y e−ikjyj 〈0|Tϕ(x1) . . . ϕ(xn)ϕ(y1) . . . ϕ(ym)|0〉

∼
n∏
l=1

i
√
Z

p2
l −m2

l

m∏
j=1

i
√
Z

k2
j −m2

j
out 〈p1 . . . pn|k1 . . . km〉in︸ ︷︷ ︸

≡ Sfi

(6.32)

Crucially, the notation |k1k2〉in characterizes a state in the Heisenberg picture of the
fully interaction theory which describes two incoming wave-packets of particles |k1〉,
|k2〉 (separated in ~x) at x0 → −∞. An analogous definition applies to out 〈p1 . . . pn|.

We will calculate the Sfi by Fourier-transforming time-ordered correlation func-
tions and extracting the relevant residue.

6.3 Calculating time-ordered correlation functions

As explained, we are interested in calculating

〈0|Tϕ(x1) · · ·ϕ(xn) |0〉 (6.33)

for any n. Let us focus n = 2 and for notational simplicity set x1 = x′, x2 = x. Our
argument will go through identically for n > 2.

Let us assume x′0 > x0 without loss of generality and suppress ~x, ~x′, simply to
keep notation at a minimum:

〈0|Tϕ(x′)ϕ(x) |0〉 = 〈0|ϕ(x′)ϕ(x) |0〉 = 〈0|ϕ(t′)ϕ(t) |0〉 . (6.34)
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We may transit from the Heisenberg to the interaction picture as follows:

〈0|ϕ(t′)ϕ(t) |0〉 = 〈0| eiHt′ϕ(0)e−iH(t′−t)ϕ(0)e−iHt |0〉

= 〈0| eiHt′e−iH0t′︸ ︷︷ ︸
U(0, t′)

eiH0t′ϕ(0)e−iH0t′︸ ︷︷ ︸
ϕI(t

′)

eiH0t′e−iH(t′−t)e−iH0t︸ ︷︷ ︸
U(t′, t)

eiH0tϕ(0)e−iH0t︸ ︷︷ ︸
ϕI(t)

eiH0te−iHt︸ ︷︷ ︸
U(t, 0)

|0〉

= 〈0|U(0, t′)ϕI(t
′)U(t′, t)ϕI(t)U(t, 0) |0〉

= 〈0|U(0,∞)U(∞, t′)ϕI(t′)U(t′, t)ϕI(t)U(t,−∞)U(−∞, 0) |0〉 .
(6.35)

Here U(t,−∞) is understood as U(t, T ), the unitary operator evolving states in the
interaction picture, in the limit T → −∞.

This last limit only makes sense if interactions are adiabatically switched off at
t→ ±∞. This can be realised by replacing the Hamiltonian according to

H0 +Hint → H0 + f(t)Hint , (6.36)

with a smooth function f(t) that vanishes at small and large times. Note that
quantum-mechanical time evolution is still unitary – quantum mechanics allows for
such fundamentally time-dependent Hamiltonians.

By adiabaticity, the interacting vacuum now evolves into the free vacuum in the
limit t → ±∞. This free vacuum is denoted by |0〉0. It is by definition the state
annihilated by all a~p. The a~p are related to ϕI exactly as in the free theory.7

With this we can conclude that

U(t,−∞)U(−∞, 0) |0〉 = U(t,−∞) |0〉0 0〈0|U(−∞, 0) |0〉 , (6.37)

and furthermore

〈0|Tϕ(t′)ϕ(t) |0〉 = 0〈0|U(∞, t′)ϕI(t′)U(t′, t)ϕI(t)U(t,−∞) |0〉0
(〈0|U(0,∞) |0〉0 0〈0|U(−∞, 0 |0〉)−1 . (6.38)

Here by unitarity the denominator is a product of two phases. Obviously, for phases
the inverse is identical to the complex conjugate, (· · ·)−1 = (· · ·). Hence the denom-
inator becomes

〈0|U(0,∞) |0〉00〈0|U(−∞, 0) |0〉 = 0〈0|U(∞, 0) |0〉 〈0|U(0,−∞) |0〉0
= 0〈0|U(∞,−∞) |0〉0 .

(6.39)

The next step is to remember the formula for U(t, t′) obtained in 5.15 and apply it
to both numerator and denominator of the previous expression. For the numerator,
we may write the time ordering symbol in front of the whole expression:

0〈0|T exp

(
−i
∫ ∞
t′

HI
int dτ

)
ϕI(t

′)

exp

(
−i
∫ t′

t

HI
int dτ

)
ϕI(t) exp

(
−i
∫ t

−∞
HI
int dτ

)
|0〉0 .

(6.40)

7 Recall that the index I stands for ‘interaction picture’, not for ‘interacting’.
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Since under the time ordering symbol the order of operators does not matter – they
will be ordered by T anyway – we can combine the three exponents into one. For
the denominator, we simply apply 5.15 – no further manipulations are needed.

With these results and generalizing to n ≥ 2 we finally get

〈0|Tϕ(x1) · · ·ϕ(xn) |0〉

=
0〈0|TϕI(x1) · · ·ϕI(xn) exp

(
−i
∫∞
−∞ dτ Hint(ϕI(τ, ~x))

)
|0〉0

0〈0|T exp
(
−i
∫∞
−∞ dτ Hint(ϕI(τ, ~x))

)
|0〉0

.
(6.41)

We may now take the limit f(t)→ 1 and return to our Poincare invariant theory.
Our last formula represents enormous progress: We can now evaluate time-

ordered correlation functions of the interacting theory using just free-field com-
mutation relations.

7 Wick-Theorem and Feynman Rules

7.1 Time ordering and normal ordering

As we have just seen, we need to work out expressions like

I 〈0|TϕI(x1) · · ·ϕI(xn) exp

(
i

∫
d4xLint(ϕI(x))

)
|0〉I . (7.1)

Here we used−i
∫

dτ Hint = i
∫

d4xLint to give our expression a manifestly covariant
form.

We now want to study these expressions in more detail. As this whole section
will mostly treat free fields, we drop the index I for ‘interaction picture’ and simply
write

ϕI → ϕ |0〉0 → |0〉 . (7.2)

Since Lint is a polynomial in ϕ, we can expand the exponential and reduce our
last expression to a sum of free-field correlation functions

〈0|Tϕ(x1) · · ·ϕ(xm) |0〉 . (7.3)

Here m ≥ n and, we emphasize this again, ϕ are now free or, equivalently,
interaction-picture fields. We have already assigned a name to the case m = 2,

〈0|Tϕ(x)ϕ(y) |0〉 = DF (x− y) = Feynman propagator , (7.4)

and we could easily evaluate it since we know 〈0|ϕ(x)ϕ(y) |0〉.
To be able to generalize to the multi-field case, it is useful to split the field in a

creation part ϕc and an annihilation part ϕa

ϕ(x) =

∫
dk̃
(
a~ke
−ikx + a†~ke

ikx
)

= ϕa(x) + ϕc(x) . (7.5)
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Next we define the normal-ordered form of any operator:

:
(
a~k1a

†
~k2
a†~k3
a~k4 · · · a

†
~kn

)
: ,≡ a†~k2

a†~k3
· · · a†~kna~k1a~k4 · · · . (7.6)

The double-dots on both sides of the expression say that it is normal-ordered. The
latter is defined simply by placing all creation operators to the left of all annihilation
operators. Since ϕ is a linear combination of a, a† this definition extends to any
product of ϕ. In particular one gets

: ϕa(x)ϕc(y) : = ϕc(y)ϕa(x) (7.7)

Note the following two facts: First, for any operator Ô that is a polynomial or
series in a, a† without a constant term, we find

〈0| : Ô : |0〉 = 0 . (7.8)

Second, our prescription for dropping the vacuum energy amounts to saying:

H0 = :
1

2

∫
d3x

(
π2 + (~∇ϕ)2 +m2ϕ2

)
: (7.9)

The product of two fields, ϕ(x)ϕ(y), and the corresponding normal-ordered ex-
pression, : ϕ(x)ϕ(y) :, differ only by a number. (To be precise, by this we mean it is
a number multiplied by the identity operator.) This is clear since the commutator
of two creation/annihilation operators is just a number:

ϕ(x)ϕ(y) = (ϕax + ϕcx)(ϕ
a
y + ϕcy) = ϕaxϕ

a
y + ϕcyϕ

a
x + ϕcxϕ

a
y + ϕcxϕ

c
y +

[
ϕax, ϕ

c
y

]︸ ︷︷ ︸
"number"

= : ϕ(x)ϕ(y) : +"number" .
(7.10)

Sandwiching this in the vacuum state, we find

〈0|ϕ(x)ϕ(y) |0〉 = "number" (7.11)

and hence
ϕ(x)ϕ(y) = : ϕ(x)ϕ(y) : + 〈0|ϕ(x)ϕ(y) |0〉 . (7.12)

We can repeat this whole derivation starting from the time-ordered product of two
fields. The result is

Tϕ(x)ϕ(y) = : ϕ(x)ϕ(y) : + 〈0|Tϕ(x)ϕ(y) |0〉 (7.13)

Finally, we introduce the convenient notation

〈0|Tϕ(x)ϕ(y) |0〉 = ϕ(x)ϕ(y) , (7.14)

calling this a contraction. We may then write

Tϕ(x)ϕ(y) = : ϕ(x)ϕ(y) : +ϕ(x)ϕ(y) (7.15)
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7.2 Wick theorem

The statement of the Wick theorem is very simple:

Tϕ(x1) · · ·ϕ(xn) = : ϕ(x1) · · ·ϕ(xn) : + all contractions of : ϕ(x1) · · ·ϕ(xn) : .
(7.16)

Here, on the r.h. side, we have to sum over all terms that arise by contracting one or
more pairs of fields in the original expression. Contracting two fields means removing
them from the product and instead multiplying by the vacuum expectation value of
the corresponding time-ordered product.

To work out an example, it is convenient to introduce the shorthand notation
ϕi ≡ ϕ(xi). With this, we have

Tϕ1ϕ2ϕ3ϕ4 = : ϕ1ϕ2ϕ3ϕ4 :

+ (: ϕ1ϕ2ϕ3ϕ4 : + 5 analogous terms)

+ (: ϕ1ϕ2ϕ3ϕ4 : + : ϕ1ϕ2ϕ3ϕ4 : + : ϕ1ϕ2ϕ3ϕ4 :) .

(7.17)

The normal ordering in the last term can be dropped since, due to the contractions,
we are just dealing with numbers. Moreover, we can identify the doubly contracted
terms with products of two Feynman propagators:

(: ϕ1ϕ2ϕ3ϕ4 : + : ϕ1ϕ2ϕ3ϕ4 : + : ϕ1ϕ2ϕ3ϕ4 :)

= DF (x1 − x2)DF (x3 − x4) +DF (x1 − x4)DF (x2 − x3)

+DF (x1 − x3)DF (x2 − x4) .

(7.18)

The relevance of the Wick theorem now becomes apparent: After taking the vacuum
expectation value 〈0| ... |0〉, only the total contraction survives. Hence, the vacuum
expectation value is given entirely in terms of Feynman propagators DF .

The proof proceeds by induction: Note first that the case n = 1 and the case
n = 2 has been proven in Sect. 7.1.

We now perform the step from n to n+1. Without loss of generality, the (n+1)st
field can be taken to have the largest time argument: x0 ≥ x0

i ∀i. We then have

Tϕϕ1 · · ·ϕn = ϕTϕ1 · · ·ϕn = ϕ : ϕ1 · · ·ϕn : +ϕ (all contractions) , (7.19)

where in the last equality we made use of the Wick theorem for n. The claim follows
if we succeed in proving the following Lemma:
Lemma: Let x0 ≥ x0

i ∀i. Then

ϕ : ϕ1 · · ·ϕn : = : ϕϕ1 · · ·ϕn : + : ϕϕ1 · · ·ϕn : + : ϕϕ1ϕ2 · · ·ϕn :

+ ...+ : ϕϕ1 · · ·ϕn :
(7.20)

The proof is straightforward. First write

ϕ : ϕ1 · · ·ϕn : = ϕc : ϕ1 · · ·ϕn : +ϕa : ϕ1 · · ·ϕn :

= ϕc : ϕ1 · · ·ϕn : + : ϕ1 · · ·ϕn : ϕa + [ϕa, : ϕ1 · · ·ϕn :]

= : ϕϕ1 · · ·ϕn : +[ϕa, : ϕ1 · · ·ϕn :] ,

(7.21)
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Now we empoy the derivation property of the commutator,

[A,B1 · · ·Bn] = [A,B1]B2 · · ·Bn +B1[A,B2]B3 · · ·Bn + ...+B1 · · ·Bn−1[A,Bn] ,
(7.22)

and the following simple identity:

[ϕa, ϕi] = [ϕa, ϕci ] = 〈0|ϕaϕci |0〉 = 〈0|ϕϕi |0〉 = 〈0|Tϕϕi |0〉 = ϕϕi . (7.23)

Here in the penultimate equality we used x0 ≥ x0
i ∀i ∈ {1, ..., n}. With this, the

lemma follows immediately, which also completes our proof of the Wick theorem.

7.3 The Feynman propagator

We want to demonstrate that the Feynman propagator, as defined earlier, is given
by the following integral:

DF (x− y) =

∫
d4p

(2π)4

i

p2 −m2 + iε
exp{−ip(x− y)}

∣∣∣∣
ε→0

. (7.24)

To prove this, let us first assume x0 > y0 and perform the p0 integration. For this
purpose, it is convenient to write the denominator as:(

p0 −
(
p0
)

1

)
·
(
p0 −

(
p0
)

2

)
(7.25)

where (p0)1,2 = ±
√
~p2 +m2 − iε = ±

(√
~p2 +m2 − iε′

)
. We want to view the

p0-integration as a contour integration in the complex p0-plane and close the
integration-contour such that the integrand is suppressed on the added piece. Since
for p0 → −i∞, we have −ip0(x0− y0)→ −∞, we close the contour in the lower half
plane, cf. Fig. 10. Now the integral is performed by simply picking up the residue.
Comparing the result with our previous expression for 〈0|ϕ(x)ϕ(y) |0〉 completes the
demonstration. An analogous calculation can be done for x0 < y0, where one has to
close the contour in the upper half plane.

7.4 Feynman rules

Feynman rules are prescriptions associating certain graphic elements with math-
ematical expressions. They allow for systematically drawing pictures (Feynman
diagrams) and using them to write down formulae for terms in the perturbative
expansion of correlation functions. We will develop this using examples:

Suppressing the ‘0’ for ‘vacuum’ for brevity, consider e.g.〈
Tϕ1ϕ2ϕ3ϕ4 exp

(
i

∫
d4xLint(ϕ)

)〉
and work it out order-by-order in λ. At O(λ0) one finds:

〈Tϕ1 · · ·ϕ4〉 = ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4 + ϕ1ϕ2ϕ3ϕ4

=

2

1

4

3

+

2

1

4

3

+

2

1

4

3

,
(7.26)
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Re(p0)

Im(p0)

(p0)1

(p0)2

Figure 10: Pole structure and contour integration for Feynman propagator.

where 1 2 ≡ DF (x1, x2).

Furthermore, at O(λ1) one obtains〈
Tϕ1 · · ·ϕ4

(
−iλ

4!

∫
d4xϕ(x)4

)〉
=− iλ

4!

∫
d4xϕ1ϕϕ2ϕϕ3ϕϕ4ϕ · 4!

+ ...terms in which ϕϕ appears once

+ ...terms in which ϕϕϕϕ appear

= ∼

2

1

4

3

︸ ︷︷ ︸
1st line

+∼

2

1

4

3

+ ∼

2

1

4

3

+ ...

︸ ︷︷ ︸
2nd line

+∼ · (Results of 7.26)

︸ ︷︷ ︸
3rd line

.

(7.27)

Note that we have put proportionality signs in front of the diagrams since, as
will become clear in a moment, there are non-trivial numerical prefactors with which
the mathematical expressions for each diagram have to be weighted.

49



Let us now continue at O(λ2):〈
Tϕ1 · · ·ϕ4

1

2!

(
−iλ

4!

∫
d4xϕ(x)4

)(
−iλ

4!

∫
d4y ϕ(y)4

)〉
=

1

2!

(
−iλ

4!

)2 ∫
d4x

∫
d4y ϕ1ϕxϕ2ϕxϕxϕyϕxϕyϕyϕ3ϕyϕ4 ·#

+ other full contractions that give other Feynman diagrams

=

2

1

4

3

x y + · · · .

(7.28)

Here # is a number, contributing to the numerical prefactor mentioned above. The
naive expectation is: One factor 4! from reshuffling ϕx, another factor 4! from
reshuffling ϕy and finally 2! from ϕx ↔ ϕy. But the result of the explicit calcula-
tion (obtained by explicitly making all different contractions and adding them) is
actually slightly different in this particular case. Note that the dots stand for all
other Feynman diagrams (i.e. truly different pictures) which can be built from 6
propagators and two vertices. Examples are:

· · ·+

2

1

4

3

+

2

1

4

3

+ · · · (7.29)

Having considered all these examples, it is straightforward to write down the
general prescriptions for drawing Feynman diagrams:

• Each end of each propagator attaches either to an external point or to a vertex.
• Each external point accepts one and each vertex accepts four ends of a propagator.

Together with these prescriptions come the explicit rules for associating mathe-
matical expressions and the elementary building blocks (lines and vertices) for our
Feynman diagrams. They are called Feynman rules read, in λϕ4 theory:

x y = DF (x− y)

= (−iλ)

∫
d4x .

(7.30)

Now for the numerical prefactors: Generally, the prefactor will be unity. In other
words, by drawing a Feynman diagram and blindly applying the Feynman rules
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above one gets the correct mathematical expression for the corresponding term in
the λ-expansion of the correlation function in question.

The reason for this convenient result are our appropriately chosen conventions:
The 1/4!’s coming with ϕ4 compensate the number of combinatorial possibilities as-
sociated with exchanging the corresponding fields. Also, the factor 1/2 coming with
the free lagrangian was crucial in obtaining our formula for the Feynman propaga-
tor - without any extra prefactor. Finally, the possible exchanges of different terms
Lint arising at higher order in the Taylor expansion of the exponential function are
compensated the 1/n!’s of the Taylor series.

Unfortunately, many diagrams are non-generic, in the sense of having symmetries
and hence non-trivial prefactors, so called symmetry factors. To see an example,
consider the following Feynman diagram:

2

1

4

3

. (7.31)

Write down the fields (ϕ1ϕ3ϕ2ϕϕ4ϕϕϕ), apply Wick’s theorem and count the num-
ber possible contractions giving the desired picture. Multiply by the 1/4! coming
with the vertex:

ϕ1ϕ3︸ ︷︷ ︸
1

ϕ2ϕ︸︷︷︸
4

ϕ4ϕ︸︷︷︸
3

ϕϕ︸︷︷︸
1

⇒ 4 · 3
4!

=
1

2
. (7.32)

Thus, this diagram has a symmetry factor of 1/2. One can see where the symme-
try factor comes from in this particular case: Our diagram does not change if the
two downward-pointing ends of the vertex are swapped. More generally, the sym-
metry factor is 1/N where N is the order of the automorphism group of the
diagram. We also note that programs for creating diagrams and the corresponding
mathematical expressions exist, an example being "FeynArts".

In summary, we have so far found:

〈0|Tϕ1 . . . ϕn · eiSint|0〉 =
∑

all contractions
ϕ1 . . . ϕn · exp

{
−iλ

∫
ϕ4

}

=
{Sum over all Feynman diagrams

(including symmetry factors)

} (7.33)

In addition, for any diagram one can ‘split off’ the so called ‘vacuum bubbles’, i.e.
diagrams without external lines. This is illustrated in the following four examples:

2

1

4

3

→

2

1

4

3

(7.34)
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2

1

4

3

→

2

1

4

3

(7.35)

2

1

4

3

→


 ·


2

1

4

3
 (7.36)

2

1

4

3

→




·


2

1

4

3


(7.37)

There is a very plausible (and easy-to-prove, cf. [1]) claim coming with these pic-
tures:{

sum over all
Feynman diagrams

(with certain external lines)

}
=

{
sum over all

Feynman diagrams
without vacuum bubbles

}
·
{1 + sum over all
vacuum bubbles

}
(7.38)

Clearly, also have
〈T exp (iSint)〉 =

{1 + sum over all
vacuum bubbles

}
(7.39)

Thus we finally obtain

H 〈0|Tϕ
H
1 . . . ϕ

H
n |0〉H =

〈0|Tϕ1 . . . ϕn e
iSint|0〉

〈0|TeiSint|0〉
=

{
sum over all

Feynman diagrams
without vacuum bubbles

}
. (7.40)

Note that the vacuum on the l.h. side of the equality is the interacting vacuum of
the Heisenberg picture. On the right, we only have free fields and the free vacuum.

7.5 Feynman Rules in Momentum Space

According to LSZ, scattering amplitudes are determined by residues of poles of
Fourier-transformed, time-ordered correlation functions. We thus have to translate
our Feynman rules to momentum space. With

G(x1, . . . , xn) ≡
〈
TϕH1 . . . ϕ

H
n

〉
(7.41)
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let us define

G̃(p1 . . . , pn) ≡
∫

d4x1 e
−ip1x1 . . .

∫
d4xn e

+ipnxn G(x1, . . . , xn). (7.42)

Here we have chosen a convention by which the minus sign in the exponent is
associated to incoming particles while the plus sign in the exponent is associated to
outgoing particles. This is consistent with our discussion of LSZ.

We not that the letter G is used because our time-ordered correlation functions
are often also called Green’s functions. This is justified since in particular the
free 2-point function G(x, y) is one of the inverses of the Klein-Gordon operator,
cf. problems.

Recall that

x y ≡ DF (x− y) =

∫
d4p

(2π)3

i

p2 −m2
0 + iε

e−ip(x−y)

≡ −i λ
∫

d4x

(7.43)

and consider some (in general complicated) real-space correlation function built
from these two elements:

x1

x2

xn

xn-1“a
ny
th
in
g”

... ...

+ other
diagramsG(x1 ... xn ) =

Clearly, in G̃ the momentum-integration-variable p of every external line
(cf. (7.43)) is fixed to the appropriate external momentum introduced with the
Fourier transformation. This is due to the d4xi integration followed by d4p integra-
tion.

Next, each d4x integration of a vertex enforces momentum conservation at that
vertex:

p2 ↗

p1 ↘

↘ p4

↗ p3

x ∝ −iλ
∫

d4x e−ip1x−ip2x+ip3x+ip4x (7.44)
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= −iλ (2π)4 δ4(p1 + p2 − p3 − p4) .

Now, since each propagator end is either attached to a vertex or external, all e±ipx
factors from the DF ’s are ‘used up’ by the last two calculational steps. They have
disappeared from the overall expression.

Moreover, the momentum conservation δ functions at the vertices “kills” many of
the d4p integrations. But all those propagator momenta which are not fixed by the
δ4-function from external or vertex d4x integrations are still integrated over. The
measure is

∫
d4p /(2π)4. They are called “loop momenta”, for reasons to become

clear momentarily in the following examples:

Example 1:

p1 → → p2 =

∫
d4x1 e

−ip1x1
∫

d4x2 e
+ip2x2 DF (x2 − x1)

=
i

p2
1 −m2

0 + iε
(2π)4 δ4(p1 − p2) .

(7.45)

Example 2:

q
→

p1 → → p2

=

∫
d4x1 e

−ip1x1
∫

d4x2 e
+ip2x2

∫
d4x DF (x2 − x)DF (x− x1)DF (x− x)

=

(
i

p2
1 −m2

0 + iε

)2

(2π)4 δ4(p2 − p1) (−iλ)

∫
d4q

(2π)4

i

q2 −m2
0 + iε

(7.46)

Two simple but key step in the calculation are δ4(p2 + q − p1 − q) = δ4(p2 − p1)

and DF (x − x) =
∫

i d4q
q2−m2

0+iε
. We see that a non-fixed propagator momentum does

indeed arise because the diagram contains a loop.

Example 3:
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p2 ↗

p1 ↘

↘ p4

↗ p3

=

∫
d4x1 e

−ip1x1
∫

d4x2 e
−ip2x2

∫
d4x3 e

+ip3x3

∫
d4x4 e

+ip4x4

· (−iλ)

∫
d4xDF (x− x1)DF (x− x2)DF (x3 − x)DF (x4 − x)

=

(
i

p2
1 −m2

0 + iε

)(
i

p2
2 −m2

0 + iε

)(
i

p2
3 −m2

0 + iε

)(
i

p2
4 −m2

0 + iε

)

· (2π)4 δ4(p3 + p4 − p1 − p2) (−iλ)

(7.47)

Example 4:

←
q − p1 − p2

q
→

p2 ↗

p1 ↘

↘ p4

↗ p3

=

(
i

p2
1 −m2

0 + iε

)(
i

p2
2 −m2

0 + iε

)(
i

p2
3 −m2

0 + iε

)(
i

p2
4 −m2

0 + iε

)

· (2π)4 δ4(p3 + p4 − p1 − p2) (−iλ)2

·
∫

d4q

(2π)4

i

q2 −m2
0 + iε

i

(q − p1 − p2)2 −m2
0 + iε︸ ︷︷ ︸

“loop integral”

· {symm. factor}

(7.48)

As already in Example 2, we again find a so-called loop integral as part of our
expression – this time a slightly more complicated one.

From the examples above, we see that momentum-space correlation functions
can, analogously to real-space correlation functions, be evaluated as sums of Feyn-
man diagrams. The corresponding momentum-space Feynman rules rules
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are:

→
p

=
i

p2 −m2
0 + iε (7.49)

=− iλ . (7.50)

Additionally, the following prescriptions apply:
• Assign momenta at each vertex such that momentum conservation is ensured.
• Multiply by an overall factor of (2π)4δ4(pf − pi).
• Multiply by

∫
d4p /(2π)4 for each closed loop, with p the momentum ‘running in

the loop’.

7.6 Calculating the Z-Factor and the Physical Mass

Recall the spectral representation of our time-ordered correlation function of Heisen-
berg fields in the interacting vacuum:

H〈0|TϕH(x)ϕH(y)|0〉H = Z DF (x− y, m2) +

∞∫
M2
t

d(M2)σ(M2)DF (x− y, M2) .

(7.51)
We perform a Fourier-transform, drop the overall δ-function and give the result in
the following diagrammatic representation:

p p =
iZ

p2 −m2 + iε
+

∞∫
M2
t

dM2 σ(M2)
i

p2 −m2 + iε
(7.52)

Here, by definition, p p denotes all momentum-space Feynman diagrams

with two external lines, without vacuum bubbles and without an overall δ-function.
Note that in expressions like (7.52), we may drop the iε since it is only relevant if we
integrate p0 and have to decide how to treat the poles on the integration contour.

Let us now write down the explicit Feynman-diagrams for the full 2-point func-
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tion or full propagator in momentum space that we just defined:

(7.53)

=

︸ ︷︷ ︸
λ0

+

︸ ︷︷ ︸
λ1

+ + +

︸ ︷︷ ︸
λ2

+ . . .

Moreover, let us introduce the notation for those diagrams which

do not fall apart upon cutting any internal line. With this definition, the previous
series of diagrams can be written as

= + + + . . . (7.54)

We note that often it is also useful to consider certain diagrams or sums of diagrams
without the external lines. For example, the diagrams which do not fall apart upon
cutting an internals line, and with the external lines removed, may be denoted by
double-shading and by dropping the dots which were used to denote the external

field positions. One then has . Such diagrams clearly do not fall apart

when any single line is cut. Hence, they are called one-particle irreducible (1PI)
diagrams.

While the concept of 1PI diagrams is useful for any number of extrernal lines
(sometimes also call ‘legs’), here we are interested in the 1PI 2-point function. This
is also known as the self-energy and denoted by −iΠ(p2). From what has been
said, it is clear that the following relation holds:

=
i

p2 −m2
0

(
−iΠ(p2)

) i

p2 −m2
0

(7.55)

57



It follows that

=
i

p2 −m2
0

+
i

p2 −m2
0

(
−iΠ(p2)

) i

p2 −m2
0

+
i

p2 −m2
0

(
−iΠ(p2)

) i

p2 −m2
0

(
−iΠ(p2)

) i

p2 −m2
0

+ . . .

=
i

p2 −m2
0

(
1

1− (−iΠ(p2))) (i/(p2 −m2
0)

)
=

i

p2 −m2
0 − Π(p2)

.

(7.56)

Combining this result with the spectral representation gives

i

p2 −m2
0 − Π(p2)

=
iZ

p2 −m2
+

∫ ∞
M2
t

dM2 σ(M)2 i

p2 −M2︸ ︷︷ ︸
no poles at p2 ≈ m2

. (7.57)

The position of the pole and the residue have to match between the l.h. side and
the first term on the r.h. side. Matching the poles implies

p2 −m2
0 − Π(p2) = 0 at p2 = m2 (7.58)

and hence
m2 = m2

0 + Π(m2) . (7.59)

Matching residues means

p2 −m2

p2 −m2
0 − Π(p2)

−→ Z as p2 → m2 . (7.60)

Taylor expanding Π(p2) at p2 = m2 and inverting the fraction gives

p2 −m2
0 − {Π(m2) + Π′(m2)(p2 −m2)}

p2 −m2
−→ Z−1 . (7.61)

Thus, we must have
Z−1 = 1− Π′(m2) (7.62)

One sometimes calls this Z-factor the ‘wave function renormalization’, but this name
will become clear only much later in our course.

7.7 Feynman rules for scattering amplitudes

The LSZ reduction formula may be written as

G(p1, . . . , pn, k1, . . . , km) ∼
∏
j

i
√
Z

p2
j −m2

∏
i

i
√
Z

k2
i −m2 out〈p1, . . .|k1, . . .〉in . (7.63)
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Moreover, in terms of Feynman diagrams the l.h. side takes the form

G(p1, . . . , pn, k1, . . . , km) =

= ,

(7.64)

where ‘A’ stands for amputated diagram, i.e. only diagrams which, after
cutting any internal line, will not fall apart in such a way that precisely one external
line is gone. By this definition, no external lines (i.e. propagators) are present in
‘A’. Note that ‘A’ is not exactly the same as 1 PI:

6=

For example, the following diagram is a legitimate part of ‘A’:

(7.65)

But is not part of the 1PI 4-point-function since it falls apart by cutting one line.
Yet, it does not fall apart in such a way that precisely one external line is separated
from the rest.

Furthermore we also know that:

∼ iZ

p2 −m2
. (7.66)

Using this relation and inserting (7.64) in (7.63), one can derive the following
expression for the amplitude:

out〈p1, . . . , pn|k1, . . . , km〉in =
(
Z

1
2

)n+m

·



 (7.67)

Equivalently we can formulate this result in terms of Feynman rules for iMfi:
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The invariant amplitude iMfi is calculated as the sum of all amputated diagrams
without vacuum bubbles and without the overall δ-function. In addition, one has to
multiply by a factor of Z

1
2 for each external line.

One may visualize the last statement by drawing the external lines as ‘ ’,
i.e.

out〈p1, . . . , pn|k1, . . . , km〉in = . (7.68)

The other ‘half’ of the correction associated with the external line is absorbed in
the normalization of the physical external particles.

We recall that our diagrams are built, in our specific theory, from the three
ingredients

=
i

p2 −m2
0 + iε

; = −iλ;
∫

d4p

(2π)4
for each loop.

Sometimes, one also states that the diagrams used for the amplitude should be
connected, i.e. that diagrams like

(7.69)

are to be excluded. Indeed, this diagram is not part of 2-to-4 scattering since one
momentum does not change. Thus, excluding the disconnected diagrams automati-
cally follows if one applies the result to ask sensible physical questions.

Note that we could move forward and calculate cross-sections at loop level. But
we would have trouble dealing with divergent diagrams. To solve this, one could
perform a so called Wick rotation p0 → ip0 and demand p2

E < Λ2 for the euclidean
momentum pE. This is known as cutoff regularization. The subsequent limiting
procedure of removing this cutoff (i.e. letting Λ → ∞) is called renormalization.
We will explain this important part of quantum field theory in the case quantum
electrodynamics, where the divergences are weaker and the procedure is hence more
intuitive.

8 The Electromagnetic Field

8.1 Gauge invariance

Recall the Lagrangian for the complex scalar:

L = ∂µφ∂
µφ∗ −m2φφ∗ . (8.1)

We have already seen that it has a (global) U(1)-symmetry: φ(x) → eiαφ(x). In
this context, ‘global’ means that this phase α is the same for every x ∈ R1,3.
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Following our locality paradigm, we would like to promote this to a local or
gauge symmetry:

φ(x)→ eiα(x)φ(x) . (8.2)

To figure out the transformation behaviour of L, we analyse how the derivative of
our scalar transforms:

∂µφ→ ∂µ
(
eiαφ

)
= eiα (∂µφ+ i(∂µα)φ) . (8.3)

This is not equal to eiα∂µφ. Hence, unlike the global case, the phase does not drop
out and L is not invariant.

Thus, ∂µφ does not transform just with a phase. But we would like to have a
similar quantity that does. For this purpose, one introduces a gauge connection
Aµ(x) and defines the covariant derivative:

Dµ ≡ ∂µ + iAµ . (8.4)

It transforms as follows:

Dµφ→ D′µφ
′ =
(
∂µ + iA′µ

)
eiαφ = eiα

(
∂µφ+ i(∂µα)φ+ iA′µφ

)
. (8.5)

For this to be equal to
eiαDµφ = eiα (∂µφ+ iAµφ) , (8.6)

we must demand
A′µ = Aµ − ∂µα . (8.7)

With this definition of how the vector field Aµ transforms under local phase rota-
tions, Dµφ transforms with an overall phase factor. As a result,

L = (Dµφ)(Dµφ)∗ −m2φφ∗ (8.8)

is invariant.
Let us also give a slightly more formal and less pragmatic explanation of the

concept of a gauge connection. This will help in building intuition:
Recall that a conventional derivative is defined as:

nµ∂µφ = lim
ε→0

1

ε
(φ(x+ εn)− φ(x)) , (8.9)

with n a unit vector in R4 (or any other Rd).
In the presence of (local) gauge symmetry this does not make sense since the

phases of φ(x) and φ(x + εn) are independent. Consequently, we cannot ‘compare’
these two quantities. If we want to know whether φ changes, which is the purpose
of the derivative, we have to parallel transport φ from x to y

φ(x)→ U(y, x)︸ ︷︷ ︸
∈U(1)

φ(x) (8.10)

in such a way that the (non-invariant and hence meaningless) difference of phase
factors between x and y is removed. Our factor U above fulfils this purpose if

U ′(y, x) = eiα(y)U(y, x)e−iα(x) . (8.11)
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As a result, U(y, x)φ(x) will transform just like a field at y and we can compare
φ(x) and φ(y) in a sensible way:

nµDµφ = lim
ε→0

1

ε
(φ(x+ εn)− U(x+ εn, x)φ(x)) . (8.12)

If we assume U to be smooth and U(x, x) = 1, we have

U(x+ εn, x) ≡ 1− iεnµAµ(x) + . . . , (8.13)

where Aµ has been defined as the linear coefficient of the Taylor expansion of U .
This definition of Dµ and the transformation properties of Aµ agree with our earlier
definition.

Furthermore, given some Aµ(x), we can define

U(y, x, C) = exp

i ∫
C(x,y)

Aµ dxµ

 . (8.14)

This object, also known as a Wilson line depends on the path C connecting x and
y. In our previous usage, we may think of U(x+nε, x) as the phase associated with
the straight line from x to x+ εn. The name ‘gauge connection’ should now be more
clear – it allows one to connect different points in a gauge-invariant manner.

Crucially, having introduced a new field Aµ, we must specify its dynamics, i.e. a
gauge invariant action for the gauge connection itself.

To do so, we observe that the differential operator Dµ transforms as:

Dµ
α→ D′µ = eiαDµe

−iα . (8.15)

We may check the equality of the two differential operators explicitly:

eiα(∂µ + iAµ)e−iα = eiα(∂µe
−iα) + ∂µ + iAµ = ∂µ + iA′µ (8.16)

It immediately follows that the commutator transforms as

[Dµ, Dν ] −→ eiα [Dµ, Dν ] e
−iα . (8.17)

At the same time, we have

[Dµ, Dν ] ={∂µ∂ν + ∂µiAν + iAµ∂ν − AµAν} − {µ↔ ν}
={i(∂µAν) + iAν∂µ + iAµ∂ν} − {µ↔ ν} = iFµν

(8.18)

with
Fµν ≡ ∂µAν − ∂νAµ . (8.19)

Here by {µ ↔ ν} we mean the previous expression, but with µ and ν exchanged.
Obviously, when substracting such a term expressions symmetric in µν are removed.

We now understand that, contrary to appearances, [Dµ, Dν ] is not a differential
operator. Indeed, all terms with ‘derivatives acting to the right’ have dropped out.
As a result,

eiα [Dµ, Dν ] e
−iα = eiαe−iα [Dµ, Dν ] = [Dµ, Dν ] , (8.20)
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in other words, the field strength tensor Fµν is gauge invariant.
We can now propose the scalar QED Lagrangian:

L = − 1

4e2
FµνF

µν + |Dµφ|2 −m2|φ|2, (8.21)

which is invariant under φ→ eiα(x)φ and Aµ → Aµ − ∂µα.
It is also Poincaré-invariant, with transformation rules

Translation: dµ : A′µ(x) = Aµ(x− d)

Lorentz rotation: Λ : A′µ(x) = Λ ν
µ Aν(Λ

−1x)
(8.22)

We saw earlier that the vector field ∂µϕ constructed from ϕ transforms in this way.
Here, we declare Aµ to be a fundamental vector field and to have this property
by definition.

A possibly more familiar form of the Lagrangian is obtained by the field redefi-
nition Aµ → eAµ. More precisely, we introduce Bµ through the definition Aµ ≡ eBµ

and subsequently rename B into A. The result is

L = −1

4
FµνF

µν + |Dµφ|2 −m2|φ|2 with Dµ = ∂µ + ieAµ . (8.23)

In this form, it is more apparent that e is a coupling constant.
Before closing, let us make a (possibly advanced) comment: Electrodynamics or

any other ‘abelian gauge theory’ has a much more elegant and natural definition in
terms of differential forms. Namely, A is a 1-form,

A = Aµ dxµ , (8.24)

and the gauge parameter α is a 0-form. The latter is just another name for a scalar
function. The the gauge-transformation reads

A→ A+ dα (8.25)

and the field strength, which is a 2-form, is defined as

F = dA , with F =
1

2
Fµνdx

µ ∧ dxν . (8.26)

The gauge field part of the action may be written as∫
L = −1

2

∫
F ∧ ?F , (8.27)

where the Hodge operator, mapping F to ?F , is defined at the component level by
(?F )µν = εµνρσFρσ/2.
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8.2 Gupta-Bleuler Quantization

We focus on the free theory first,

L = −1

4
FµνF

µν , (8.28)

and attempt to quantize the system in the familiar way, treating each of the four
components as an independent field:

πµ =
∂L
∂Ȧµ

=
∂

∂(∂0Aµ)

(
−1

4
FρνFστη

ρσηντ
)

= −1

2
Fρνη

ρσηντ
∂

∂(∂0Aµ)
(∂σAτ − ∂τAσ)

= −1

2
Fρν

(
ηρ0ηνµ − ηρµην0

)
= F µ0 .

(8.29)

In particular we find π0 = 0 as F µν is anti-symmetric. Situations like this repre-
sent a well-known problem of certain Hamiltonian systems and their quantization.
For a deeper understanding the reader may want to consult Dirac’s famous “Lec-
tures on Quantum Mechanics” or Kugo’s “Eichtheorie”, or the book on gauge theories
by Henneaux/Teitelboim, where the quantization of so-called systems with con-
straints is discussed.

In our course we will overcome this problem, which is characteristic of theories
with gauge invariance, in a somewhat naive manner by fixing the gauge.

We choose the Lorenz8 gauge by demanding

∂A ≡ ∂µA
µ = 0 . (8.30)

This allows us to use the modified Lagrangian

L = −1

4
FµνF

µν − λ

2
(∂A)2 , (8.31)

which gives the same equation of motion because ∂A appears quadratically. Thus,
the variation of L will still be linear in ∂A and hence vanish.

For simplicity, we set λ = 1, which is a special case of Lorenz or covariant gauges,
known as Feynman gauge. The lagrangian then simplifies to

L = −1

4
(2(∂µAν)(∂

µAν)− 2(∂µAν)(∂
νAµ)︸ ︷︷ ︸

integrate by parts and drop total derivatives

)− 1

2
(∂A)2

= −1

2
(∂µAν)(∂

µAν) +
1

2
(∂A)2 − 1

2
(∂A)2 + tot. deriv.

=
1

2
(∂µAν)(∂

µAρ)(−ηνρ) + tot. deriv. ,

(8.32)

which looks like a lagrangian for four massless, real scalars. However, the sign of
the kinetic term of A0 is wrong.

8Named after Ludvig Lorenz, not to be confused with the Hendrik Lorentz of Special Relativity.
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By explicit calculation or by analogy to the real scalar case, we see that

πµ = −Ȧµ = (−ηµν)Ȧν , (8.33)

which as expected gives the wrong sign for the A0 canonical momentum. This will
affect our quantization procedure.

We quantize by demanding:

[A,A] = [π, π] = 0

[Aµ(~x), πν(~y)] = iη ν
µ δ(3)(~x− ~y) = iδ ν

µ δ(3)(~x− ~y) .
(8.34)

Now we may Fourier transform, introduce a and a† as linear combinations of the
transformed fields, determine their commutation relations and go over to Heisenberg
fields. This all works as before and one arrives at

Aµ(x) =

∫
dk̃
(
a~k,µe

−ikx + a†~k,µe
ikx
)

[a, a] =
[
a†, a†

]
= 0 ,

[
a~k,µ, a

†
~k′,ν

]
= −ηµν2k0(2π)3δ(3)(~k − ~k′),

(8.35)

where we have k0 = |~k| since m = 0. Note that again the sign of [a0, a
†
0] is wrong.

The next step is to define |0〉 as the state annihilated by all a~k,µ ,∀~k, µ and to
construct the Fock space basis by applying all types of a†. However, this leads to
two problems:

Problem 1: The wrong sign of the [a0, a
†
0] renders our Hilbert space metric non-

positive-definite. To see this, consider a harmonic oscillator and an algebra with the
only non-trivial commutation relation [a, a†] = −1. For the first excited state one
has ∥∥a† |0〉∥∥2

= 〈0| aa† |0〉 = 〈0| (a†a− 1) |0〉 = −1 , (8.36)

which unacceptable in quantum mechanics. Switching the roles of a and a† does not
allow us to solve this problem, since there is a relative sign change between [a0, a

†
0]

and [ai, a
†
i ] which is enforced by Lorentz-symmetry.

Problem 2: We cannot impose our gauge choice ∂A = 0 at the operator level
since

[A0, ∂A] =
[
A0, ∂0A

0 + ∂iA
i
]

=
[
A0, Ȧ0

]
6= 0, (8.37)

where the commutator with the spatial derivatives vanishes because
[Aµ(~x), Aν(~y)] = 0 for µ 6= ν. Obviously contradicts our gauge condition.

Gupta and Bleuler suggested the following resolution: Let F be the Fock space
constructed above. and define Fphysical ⊂ F by

∂Aa |Ψ〉 = 0 ⇔ |Ψ〉 ∈ Fphysical . (8.38)

Here the superscript a denotes the annihilator part of A. This definition implies
that, for |Ψ〉 ∈ Fphysical,

〈Ψ| ∂A |Ψ〉 = 〈Ψ| [∂Aa + ∂Ac] |Ψ〉 = 〈Ψ| [∂Aa + (∂Aa)†] |Ψ〉 = 0 . (8.39)
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Here we used that (∂A)† vanishes acting to the left. As a result, our gauge condition
is satisfied for expectation values on all physical states, which is sufficient for our
purposes.

It will turn out that Fphysical is positive-semi-definite, i.e. it contains no negative-
norm-states. However, it does still have zero-norm states. We hence define

F0 ≡ {|Ψ〉 ∈ Fphysical : ‖ |Ψ〉‖ = 0} (8.40)

as the zero-norm subspace. This allows us to define our Hilbert space H as

H = Fphysical/F0 . (8.41)

This notation means that H is the space of equivalence classes of vectors from H,
with the equivalence relation ∼ defined by

|Ψ〉 ∼ |Ψ〉′ ⇔
∥∥|Ψ〉 − |Ψ〉′∥∥ = 0 . (8.42)

To see how all of this works more explicitly, it is convenient to use polarization
vectors. Thus, a small interlude on polarization follows:

A general 1-photon state is a linear combination of states a†~k,µ |0〉 with
µ = 0, . . . , 3. It may be written as

− εµ(k)a†~k,µ |0〉 , (8.43)

where ~k is fixed and the minus sign has been introduced to avoid a minus from the
metric when one considers space-like polarizations with lower index.

Now there are four independent polarizations for any given k and many possible
basis choices. It is convenient to demand covariant orthonormality:

ε(λ)
µ (k)(ε(λ′)µ(k)) = ηλλ

′
. (8.44)

In the problems you are asked to demonstrate that this implies completeness, i.e.∑
λλ′

ηλλ′ε
(λ)
µ (k)

(
ε

(λ′)
ν (k)

)
= ηµν . (8.45)

To be fully explicit, we introduce some arbitrary but fixed unit vector n = {nµ}
with n2 = 1, n0 > 0 and demand

ε(0) = n ε(i) · n = 0 ε(1) · k = ε(2) · k = 0. (8.46)

The consistency of this requirement is most easily seen by going to the coordinate
system in which (recall that k2 = m2 = 0)

n =


1
0
0
0

 , k = |~k|


1
0
0
1

 . (8.47)
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In this coordinate system, one easily shows that all of the above conditions are met
by

ε(0) =


1
0
0
0

 , ε(1) =


0
1
0
0

 , ε(2) =


0
0
1
0

 , ε(3) =


0
0
0
1

 . (8.48)

In fact, these ε’s are unambiguous up to rotations in the x-y-plane.
As a different common choice, which will be most useful for us, is based on a

light-like auxiliary vector: We choose an n ∦ k with n2 = 0 and demand

εu = n , εL ∼ k , ε(1), ε(2) orthogonal to n, k . (8.49)

These ε’s form a basis but do not obey orthonormality. The previous orthonormality
relations are replaced by

(εu)2 =
(
εL
)2

= 0

εu · ε(i) = εL · ε(i) = 0

ε(i) · ε(j) = −δij
εu · εL = 1 ,

(8.50)

where the second and third relation are the same as before. If we now go to a
coordinate system such that

n =
1√
2


1
0
0
−1

 , k = |~k|


1
0
0
1

 , (8.51)

we may use the explicit basis

εu =
1√
2


1
0
0
−1

 , εL =
1√
2


1
0
0
1

 , ε(1) =


0
1
0
0

 , ε(2) =


0
0
1
0

 . (8.52)

Finally we define general 1-particle states by

− εµ(k)a†~k,µ |0〉 = |ε, k〉 , (8.53)

and obtain the scalar product

〈ε′, k′|ε, k〉 = ε′µ(k′)εν(k) 〈0| a~k′,µa
†
~k,ν
|0〉

= ε′µ(k′)εν(k)
(
−ηµν2k0(2π)3δ(3)(~k − ~k′)

)
= −(ε′ · ε)2k0(2π)3δ(3)(~k − ~k′) .

(8.54)

Thus, (−ε′ ·ε) measures the overlap of states, and −ε2 measures the norm of a single
state. With this we are now ready to continue our discussion.
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First, we reformulate our physical-state condition
∂Aa |Ψ〉 = 0 in terms of polarizations:

∂Aa |ε, q〉 = 0 ⇔ kµa
µ
~k
|ε, q〉 = 0

⇔ kµa
µ
~k
aν†~q εν(q) |0〉 ⇔ k · ε(k) = 0 .

(8.55)

This condition is violated only for εu, which we thus call “unphysical” (explaining
also our index choice).

Let us perform a linear transformation on the space of creation/annihilation
operators, defining

α†~k,(u,L,1,2)
≡ ε(u,L,1,2)µ(k) a†~k,µ (8.56)

We may now think of F as being built by applying the four α†s to |0〉. This is of
course still the same F as before.

As an important fact, we observe that Fphysical is the subspace of F built by using
only α†~k,(L,1,2)

. This clearly holds since

(q · a~q)
(
products of various ε(L,1,2)

~k
· a†~k
)
|0〉 = 0 . (8.57)

Thus, we know that any state in Fphysical can be written as superposition of states
of the form

|ψ〉 =
(

products of α†(L,1,2)

)
|0〉 . (8.58)

The next important fact is that, for such states |ψ〉, we have ‖|ψ〉‖ = 0 if and
only if at least one α†L appears in this product (since ε2L = 0). In this case one also
has |ψ〉 ∼ 0.

Finally, we note that the presence of such zero-norm states does not affect expec-
tation values of observables. Crucially, in the context of a gauge theory observables
are the operator versions of gauge-invariant classical expressions. For such operators
we claim that

〈ψ′|O |ψ′〉 = 〈ψ|O |ψ〉 if |ψ′〉 = |ψ〉+ (· · ·α†L · · ·) |0〉 . (8.59)

We will only demonstrate our claim for a simple example:

H = :

∫
d3x

(
πµȦµ − L

)
: = · · · =

∫
dk̃ k0

(
−a†~k,µa

µ
~k

)
=

∫
dk̃ k0

(
2∑
i=1

α†~k,iα~k,i −
[
α†~k,uα~k,L + α†~k,Lα~k,u

])
.

(8.60)

The expression in square brackets vanishes ‘inside’ any physical state, 〈ψ| [· · ·] |ψ〉 =
0. As a result, it can be dropped before calculating expectation values of H. Then
no annihilation or creation operators with index L are present in H and, as a result,
product states with α†L excitations do not contribute to 〈ψ|H |ψ〉.

Let us give a short summary of our findings:

• States in Fock space F are sums of products of α†s acting on the vacuum:
|ψ〉 ∈ F ⇒ |ψ〉 =

∑(
α†~k,iα

†
~p,uα

†
~q,L · · ·

)
|0〉.
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• The physical subspace contains only states without unphysical polarizations:
|ψ〉 ∈ Fphysical ⇒ No terms involving α†u appear.

• The zero-norm subspace is built only from product states involving at least one
longitudinal polarization:
|ψ〉 ∈ F0 ⇒ Each term in the sum involves at least one α†L factor.
(We note that this definition implies that F0 is a linear subspace).

• Finally, the Hilbert space is built from Fphysical by modding our F0:
H ≡ Fphysical/F0 ≡ Fphysical/∼, where ∼ is an equivalence relation stating that
two states are equivalent if they differ only by a vector from F0, i.e. by terms
with α†L.

We note that the freedom of adding states from F0 (recall εL is parallel to ~k)
corresponds to residual gauge freedom of the classical theory:

Aµ → Aµ + ∂µχ

Fourierspace : Ãµ → Ãµ + ikµχ̃ .
(8.61)

If k is lightlike (which does not have to be the case for a classical gauge transforma-
tion), then adding a term ∼ kµ in Fourier space does not destroy our original gauge
choice because taking a further derivative removes the term: k2 = 0. The new field
still obeys kµÃµ = 0. This explains the term ‘residual’ – it is the gauge freedom
which is still left after Lorenz gauge has been imposed. The quantum analogue of
the above is clearly the addition of states involving longitudinal polarizations.

We should recall that F, Fphysical and H were defined abstractly, before a specific
choice for n. Hence, they do not depend on n – only our basis choice for the explicit
description needed n.

Finally, we should emphasize that gauge symmetries differ from usual, global
symmetries in a much deeper way than simply because of their x-dependence.
Namely, both in the classical and in the quantum theory, states differing by a gauge
transformation are declared to be physically identical. This is very different from,
e.g., a particle on a line. In this case, in spite of perfect shift symmetry, x is a legit-
imate observable and states with different positions are distinguishable in principle.
By contrast, two gauge-equivalent field configurations describe the same physical
reality. In our construction, this become particularly clear since we mod out F0

from our physical Fock space. What is physically real is encoded in the Hilbert
space vector and gauge transformations simply do not exist in this final setting.

8.3 Photon Propagator

It is straightforward to calculate the vacuum expectation value of two photon fields,

〈0|Aµ(x)Aν(y) |0〉 = 〈0|
∫

dk̃dk̃′e−ikx+ik′ya~k,µa
†
~k′,ν
|0〉 = −ηµν

∫
dk̃e−ik(x−y) ,

(8.62)
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where we used that in the left field only a and in the right field only a† is relevant.
We then find

〈0|TAµ(x)Aν(y) |0〉 = Θ
(
x0 − y0

)
〈0|Aµ(x)Aν(y) |0〉+ {x↔ y}

= Θ
(
x0 − y0

)(
−ηµν

∫
dk̃e−ik(x−y)

)
+ {x↔ y}

= −ηµν
(
Θ
(
x0 − y0

)
〈0|ϕ(x)ϕ(y) |0〉+ {x↔ y}

)
= −ηµν 〈0|Tϕ(x)ϕ(y) |0〉 = −ηµνDF (x− y,m2 = 0) .

(8.63)

Our whole quantization procedure and the above derivation of the propagator can
also be performed in a general gauge, λ 6= 1. The result is

〈0|TAµ(x)Aν(y) |0〉 =

∫
d4k

(2π)4
(−i)

(
ηµν

k2 + iε
+

1− λ
λ

kµkν
(k2 + iε)2

)
e−ik(x−y) .

(8.64)
Elements of this will be discussed in the problems, see also [2]. Deriving this prop-
agator is also rather straightforward in the path integral approach, to be studied in
the next term.

8.4 Feynman rules for scalar QED

As a warm-up, consider a model with N different real scalars:

L =
N∑
i=1

1

2

(
∂ϕi
)2 −m2

(
ϕi
)2 − λ

8

(
N∑
i=1

(
ϕi
)2

)2

. (8.65)

We note that from the many possible quartic interaction terms we chose one re-
specting the O(n) symmetry of the free lagrangian. The propagator is

〈
Tϕi1ϕ

j
2

〉
= ϕi1ϕ

j
2 = δijDF (x1 − x2) = i j (8.66)

To derive the vertex, we consider the simplest non trivial four-point function〈
Tϕi1ϕ

j
2ϕ

k
3ϕ

l
4

∫
d4x

(
−iλ

8

)
(δmnϕ

m
x ϕ

n
x) (δpqϕ

p
xϕ

q
x)

〉
, (8.67)

and we focus only on the fully connected part:

i

j

k

l

(8.68)

This means that ϕ1, ϕ2, ϕ3 and ϕ4 must each be contracted with one of the ϕx.
First, consider the contraction

ϕi1ϕ
m
x ϕ

j
2ϕ

n
xϕ

k
3ϕ

p
xϕ

l
4ϕ

q
x = δijδklDF (x1 − x)DF (x2 − x)DF (x3 − x)DF (x4 − x) . (8.69)
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From this we obtain a contribution of

− iλ

8
δijδkl (8.70)

to the vertex. The exact same contribution arises by exchanging ϕmx ↔ ϕnx or
ϕpx ↔ ϕqx or ϕmx ϕnx ↔ ϕpxϕ

q
x. Thus, after adding these contractions, the factor 1/8

disappears.
One can think of the sum of all those terms as arising from ‘pairing up’ i with j

and k with l. There are two more such pairings: (ik)(jl) and (il)(jk). Hence:

i

j

k

l

= −iλ
(
δijδkl + δikδjl + δilδjk

)
. (8.71)

As a cross check, note that 8 · 3 = 4!, so we did not forget anything.
As a side comment, we note that a maybe more elegant method to derive the

vertex is to rewrite the interaction term as follows (see also problems):

− λ

8

(
N∑
i=1

(
ϕi
)2

)2

= − λ
4!

N∑
ijkl=1

(
δijδkl + δikδjl + δilδjk

)
ϕiϕjϕkϕl . (8.72)

Crucially, the combination of δ functions on the right provides a totally symmetric
expression with four indices. Thus, we may treat this like our simplest example of
a single real scalar, just with that scalar replaced by real vector full of scalars. But
all the algebra, in particular the factor of 4! from the different contractions, remains
unchanged and we may hence read off the vertex Feynman rule directly from the
interation term – we only need to add an i from exp(iS) and remove the 4!.

As a further warmup consider a single complex scalar. Recall that

φ(x) =

∫
dk̃
(
a†~ke

ikx + b~ke
−ikx

)
, (8.73)

which implies

φxφy = 0, φ†xφy = φxφ
†
y = DF (x− y) . (8.74)

Since φ and φ† are truely different, we can (even though DF is symmetric in x and
y) assign a direction to the corresponding line in the Feynman rule, for example

φxφ
†
y = y x . (8.75)

Here the arrow gives the direction of a b-particle, being created at y and annihilated
at x. Note that in operator products time grows ‘right-to-left’ but in diagrams
‘left-to-right’.

After these preliminaries we simply state the Feynman rules of scalar QED. We
will then give a partial derivation, which will be completed in the tutorials. Thus,
the Feynman rules for scalar QED are:
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=
i

k2 −m2 + iε
; µ ν =

−iηµν

k2 + iε
(8.76)

k ↗
→ p

↘ p′

µ

= −ie
(
pµ + p′µ

)
with p′ = p− k (8.77)

→ p

µ↖ k′

→ p′

ν ↗ k

= 2ie2ηµν with p′ = p− k − k′ (8.78)

= Z
1/2
φ external scalar particle (8.79)

= Z
1/2
A εµ(k) incoming photon (ε∗ for outgoing photon) (8.80)

In principle, a proper derivation of this requires to go through the whole proce-
dure of the last sections (Green functions, LSZ-formula, etc.) with our new theory
replacing the real scalar λϕ4- model. We will only give a condensed version, sufficient
to get the rules.

As an example, consider the process: γ + φ† → φ†, i.e.

p↗

µ

→ p′

k ↘
. (8.81)

Of course, this diagram alone can not satisfy energy-momentum conservation and
it has to be seen as part of, for example, the following process:

. (8.82)
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Let us nevertheless focus on the previous simpler diagram and calculate the ampli-
tude for the process (8.81) (see also problems):

〈0| b~p′
(
i

∫
d4xLint

)
b†~p

(
− εµ(k) a†~k,µ

)
|0〉 = iMfi(2π)4δ4(p′ − k − p) . (8.83)

Here we just need to consider the cubic part of the interaction Lagrangian Lint,
meaning the part of |Dµφ|2 which contains the three fields Aµ, φ† and φ:

− ieAνφ†∂νφ+ h.c. (8.84)

We obtain the following contributions:

Aν →
∫

dq̃ aν~q e
−iqx acting on a†~k,µ |0〉

⇒ aν~q a
†
~k,µ

= −ηνµ(2π)32k0 δ
3(~k − ~q)

∂ν → −ipν

φ→
∫

dq̃′ b~q′e
−iq′x acting on b†~p |0〉 ,

(8.85)

and similarly for φ†.
Collecting everything we find:

iMfi = −iepµεµ(k)−iep′µεµ(k)︸ ︷︷ ︸
from 2nd term in (8.84)

=

vertex︷ ︸︸ ︷
−ie(p′µ + pµ) εµ(k)︸ ︷︷ ︸

incoming photon

. (8.86)

Let us end with an important comment: Since the interactions involve Ȧ, the
canonical momentum of A receives a contribution from Lint. Thus, the relation
Hint = −Lint does not hold and since Hint is the crucial quantity in perturbation
theory, our derivation above is not correct. However, at the same time, it is too
naive to assume that ∂µ commutes with contractions. For example:〈

T ∂µϕx∂νϕ
†
y

〉
=

∂

∂xµ
∂

∂yν
〈Tϕxϕy〉 − iηµ0ην0 δ

4(x− y) . (8.87)

This effect also corrects the Feynman rules precisely compensating the error we made
by assuming Hint = −Lint. In fact, this had to be the case to ensure that the final
result is Poincaré-invariant. In summary, our naive analysis gave the correct result.
For details see please consult the section on scalar electrodynamics in Sect. 6.1.4
of [2].

9 Spinors

9.1 Fields and representations

We already know three types of fields with different transformation properties:

ϕ(x)→ ϕ(Λ−1x)

Aµ(x)→ Λµ
ν A

ν(Λ−1x)

F µν(x)→ Λµ
ρΛ

ν
σ F

ρσ(Λ−1x) ,

(9.1)
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with the last one not being elementary. This has an obvious extension to tensors
with more than two indices.

Now we want to think about this in a more abstract way. Let us define our field
as a map

R4 −→ V ; x 7→ {φi(x)} , (9.2)

where V denotes a vector space and i labels the corresponding components of the
field in some basis. We note that a Lorentz-transformation acts in two ways:

(1) On the argument (i.e. on spacetime R4): it acts in a unique, standard manner.
(2) On the field value (i.e. on V ): it acts differently from field to field.

Thus, each of our different fields is characterized by a vector space V and a repre-
sentation of SO(1, 3) on V .

Let us briefly remind ourselves of this key concept: For any group G a rep-
resentation R is a map G

R−→ GL(V ) (general linear transformations on V) such
that

R(1) = 1 and R(gh) = R(g)R(h) . (9.3)

In other words, R is a group homomorphism from G to GL(V ).
In our examples above we have:

• scalar: V = R or C;

• vector: V = R4;

• tensor: V = R4 ⊗ R4;

R(Λ) = 1 (trivial transformation)

R(Λ) = Λ (fundamental representation)

R(Λ) = Λ⊗ Λ (antisymmetric tensor representation).

We note that F µν or, more precisely, F µν êµ⊗ êν lives in the antisymmetric subspace
of R4 ⊗ R4. Of course, fields taking values in the symmetric part also exist, for
example the metric fluctuations (or graviton field).

We also note that, if we want to fit the tensor (e.g. our F µν) into the general {φi}-
notation, then the index i runs over all pairs of distinct indices µ and ν, such that
the index pair {µν} can be identified with the single index {i}. Our representation
has (4 × 4 − 4)/2 = 6 dimensions, which sets the range of {i} and corresponds to
the number different index pairs {µν}. As an advanced comment, we note that
this 6-dimensional representation of SO(1, 3) naturally induces a representation of
the subgroup SO(3) of rotations. But this representation is reducible, i.e. it is
the sum of two smaller representations of SO(3). The latter of course the electric
and magnetic field. In mathematical notation, these statements are formulated as
SO(1, 3) ⊃ SO(3) ; 6=3 + 3. Here, in the last equation, the boldface numbers
stand for the dimensions of the relevant representations and, at the same time, for
the representations themselves.

9.2 Remarks on Lie Groups & Lie Algebras

Lie groups are groups which are also manifolds, such that the group operation is a
diffeomorphism. (If manifolds are not yet known, the reader might think of smooth
subspaces of RN and the group operation being differentiable.) Prime examples are
the group O(n) of orthogonal matrices, the group U(n) of unitary matrices, and the
Sp(n) of symplectic matrices.
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With a Lie group G always comes a Lie algebra Lie(G) ≡ g. A Lie algebra is
a vector space g with a bilinear, antisymmetric map: g × g → g, (a, b) 7→ [a, b],
satisfying the Jacobi-identity:

[a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0 . (9.4)

We will only need matrix groups and matrix Lie algebras (although the reader
should be aware that important Lie groups which do not fall into this class exist).
For matrix Lie groups, the relation between group and algebra can be understood
in an elementary way (here we will not give any proofs):

The exponential map ‘exp’ of matrices represents a diffeomorphism from a small
neighborhood of 0 ∈ M(n) to a small neighborhood of 1 ∈ Gl(n). Here M(n)
denotes the vector space of all n×n matrices and Gl(n) the corresponding invertible
matrices. Thus, we have

exp(0) = 1 and exp(a) = g (where, for a near O, g is near 1) . (9.5)

Given a matrix group G, we may define Lie(G) as the linear subspace of M(n)
generated by exp−1(O1), where O1 is a neighborhood of 1 ∈ G ⊂M(n) (cf. Fig. 11).
In other words, exp(a) = g with a ∈ Lie(G), g ∈ G maps (at least) a small patch of
Lie(G) near 0 to a small patch of G near 1. In fact, this map extends to the whole
Lie algebra and the image is the whole identity component of the group. But we
will not derive this.

Figure 11: Illustration of group G and its Lie algebra as subsets of the set of all
n× n matrices.

As an example, consider G = SO(3). We claim that Lie(G) = { antisymmetric
3× 3 matrices }. Indeed, if R = exp(T ) then

RRT = exp(T ) exp(T )T = exp(T ) exp(−T ) = 1 (9.6)

for antisymmetric T . We note that the ‘S’ of SO(n) is not visible at the Lie-algebra
level.

It is illuminating to see in general that, if a, b ∈ Lie(G), then exp [a, b] ∈ G, where
[·, ·] now is simply commutator rather than the abstract Lie algebra operation. Let
A = exp(εa) and B = exp(εb), with ε denoting a small number. Clearly,

ABA−1B−1 = C ∈ G . (9.7)
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We can expand this group element C as

C = (1 + εa+
ε2

2
a2)(1 + εb+

ε2

2
b2)(1− εa+

ε2

2
a2)(1− εb+

ε2

2
b2) +O

(
ε3
)

= 1 + ε2 [a, b] +O
(
ε3
)
.

(9.8)

Now we recall that exp(x) can be defined as the large-N -limit of (1 +x/N)N . Thus,
with ε2 ≡ 1/N we find

exp [a, b] = lim
N→∞

C1/N ∈ G . (9.9)

The point of this was to see, in a hands-on way, that it is really the matrix commu-
tator which naturally allows one to build a new Lie algebra element from two given
ones.

In analogy to groups, we also have the concept of a Lie algebra representation:

Lie(G)
R−→M(n) , a 7→ R(a) , (9.10)

with R(0) = 0, R([a, b]) = R(a)R(b)−R(b)R(a) = [R(a), R(b)].
In what follows, we will make extensive use of the following crucial fact which

holds for simply connected9 Lie groups and their Lie algebras: Given some repre-
sentation R of a Lie algebra Lie(G), we can always construct an associated
representation of G (which we will also call R by abuse of notation), such that

R(A) = exp(R(a)) if A = exp(a) . (9.11)

Let us sketch some of the key ideas of the proof: Define the desired group
representation R by

R(A) ≡ exp
(
R
(
exp−1(A)

))
, (9.12)

where for simplicity we assume that A ∈ G is near the identity 1. All we need to
show is that this R is fullfills

R(A)R(B) = R(A ·B) . (9.13)

To do so, we define C ≡ A ·B and choose a, b, c ∈ Lie(G) such that

A ≡ ea , B ≡ eb , C ≡ ec . (9.14)

We now need to show that
eR(a) eR(b) = eR(c) . (9.15)

Given our assumptions, we already know that

ea eb = ec . (9.16)

Moreover, the Baker-Campbell-Hausdorff formula tells us that

ea eb = eZ(a,b) , (9.17)
9 Roughly speaking, this means any loop in the group can be smoothly contracted to a point.

We will later see why this qualification is important.
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where
Z(a, b) = a+ b+

1

2
[a, b] +

1

12
[a, [a, b]]− 1

12
[b, [a, b]] + . . . (9.18)

is the famous series of iterated commutators that represents the heart of the Baker-
Campell-Hausdorff result. Hence,

c = Z(a, b) . (9.19)

This implies
eR(a) eR(b) = eZ(R(a),R(b)) = eR(Z(a,b)) = eR(c) , (9.20)

which is what we wanted to show. The key penultimate step relies in (9.20) relies
on the fact R respects the commutator of the Lie algebra.

9.3 The spinor representation of SO(1, 3)

Let us first understand Lie(SO(1, 3)) = so(1, 3). We write a Lorentz matrix that is
close to the identity as an exponential and expand to leading order in the exponent:

Λ = eiε T → Λ ν
µ = δ ν

µ + i ε T ν
µ + · · · . (9.21)

The i in the exponent is a conventional definition used by physicists - mathematicians
would absorb it in T . The matrix T is by our definition an element of so(1, 3) and
ε is a small real parameter.

We recall
Λ ν
µ Λ σ

ρ ηνσ = ηµρ (9.22)

and investigate what this implies for T :(
δ ν
µ + i ε T ν

µ

) (
δ σ
ρ + i ε T σ

ρ

)
ηνσ = ηµρ +O

(
ε2
)
⇒ Tµρ + Tρµ = 0 . (9.23)

In other words, after lowering the second index SO(1, 3) generators are antisymmet-
ric.

A useful basis of antisymmetric 4 × 4 matrices in the present context is one
where each matrix Mµν generates a (Lorentz) rotation in the µ-ν-plane. We define
this basis by demanding that it fulfils the commutation relations

[Mµν ,Mρσ] = i (ηνρMµσ − ηµρMνσ − ηνσMµρ + ηµσMνρ) (9.24)

and leave it to the reader to find an explicit set of matrices satisfying this. The
task is relatively easy since the basis deviates from the probably familiar basis of
Lie(SO(n)) only by some signs.

A generic element of Lie(SO(1, 3)) can be written as

⇒ T ν
µ = tρσ (Mρσ) ν

µ . (9.25)

We note that both tρσ and Mρσ are antisymmetric, which implies that there are 6
independent basis elements and 6 parameters. Without providing a proof, we also
note that any Λ ∈ SO+(1, 3) can be written as Λ = exp(itµνMµν).
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To define the spinor representation, we first introduce the Clifford algebra
which is generated by 1 and four elements γµ which satisfy

{γµ, γν} ≡ γµγν + γνγµ = 2ηµν 1 , (9.26)

where {·, ·} is the anti-commutator. Thus, the Clifford algebra is the vector space
generated by 1, γ0, γ1, γ2, γ3, γ0γ1, γ1γ2, γ0γ1γ2, . . . with the relation {γµ, γν} =
2ηµν imposed. Two elements of this vector space can be multiplied to to give another
element - this makes it an algebra.

We will see that this algebra is finite-dimensional, a fact that is not immediately
obvious. Much more of what follows could be done at this abstract level.

Nevertheless we want to use an explicit representation or realization of this al-
gebra in terms of 4× 4 matrices. One such representation is

γµ =

(
0 σµ

σ µ 0

)
, (9.27)

whereby every entry is 2× 2 matrix and

σµ = (σ0, σi) =

{
1,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)}
σ µ = (σ0,−σi) .

(9.28)

Note that the overline here does not mean complex conjugation – the σµ are simply
a second set of 4 matrices. Furthermore we will use the notation

γµ = ηµνγ
ν , (9.29)

and analogously for the σ’s.
We have to check whether those 4 × 4 matrices represent the Clifford algebra.

To do so, consider

{γµ, γν} =

{(
0 σµ

σ µ 0

)
,

(
0 σν

σ ν 0

)}
=

(
σµσ ν + σνσ µ 0

0 σ µσν + σ νσµ

)
. (9.30)

Now, analyze the cases µ, ν = 0, 0 / 0, i / i, j separately, using also the probably
familiar Pauli matrix relation {σi, σj} = 2δi,j 1.

With this, the reader can straightforwardly check that the matrices

Mµν ≡
i

4
[γµ, γν ] (9.31)

satisfy the same commutator relations as the Mµν introduced earlier.
Thus theMµν represent so(1, 3) and we can construct a corresponding represen-

tation of SO+(1, 3).
The prescription is as follows: Write Λ ∈ SO+(1, 3) as

Λ = exp(i tµνMµν) . (9.32)

Then define the action of Λ on C4 as:

ψD
Λ−→ S(Λ) · ψD where S(Λ) = exp(i tµνMµν) . (9.33)
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Figure 12: Visualization of a double cover of a manifold.

This is a concrete realization of how we learned to abstractly lift a Lie algebra
representation (here the one through theMµν) to a Lie group representation.

We are now ready for our main point: A Dirac spinor is a set of fields

(ψD)a (x) , a = 1, 2, 3, 4 (9.34)

transforming under the Lorentz group as

(ψD)a (x)
Λ−→ S(Λ) b

a (ψD)b (Λ−1x) . (9.35)

Unfortunately, the full story is slightly more complicated. The reason is that
our map Λ −→ S(Λ) is not defined globally on SO+(1, 3). To see this chose some
arbitrary rotation axis and some corresponding generator T = tµνMµν . Let T be
normalized such that a rotation around this axis is described by Λ(ϕ) = exp(iϕT ).
Naturally,

Λ(2π) = 1 . (9.36)

However, for TS = tµνMµν one finds

S(2π) = exp(i 2π TS) = −1 . (9.37)

This can be straightforwardly checked using our explicit realization of the Clifford
algebra and hence of the generators. You have probably seen a similar situation
arise in the transformation of spinor in quantum mechanics.

The issue is resolved a follows: The fundamental symmetry group of nature
(ignoring translations for the moment) is not SO(1, 3) but rather Spin(1, 3). This is,
by definition, the group generated byMµν ’s. It is simply connected, so here were are
really entitles to pass from any Lie algebra representation to a group representation.
Specifically, the mapMµν 7→ Mµν leads to an associated representation of this group
acting on vectors:

Λ = Λ(S) . (9.38)

One may visualize what is going on by noting that Spin(1, 3) is the “double
cover” of SO+(1, 3), cf. Fig. 12. Note, however, that this visualization using S1 as
the double cover of another S1 is not prefect. Both S1s are, of course, not simply
connected. By contrast, the 2 : 1 map from Spin(1, 3) to SO+(1, 3) takes one from
a simply connected to a non-simply-connected space.

The representation of SO(1, 3) (more correctly Spin(1, 3)) on Dirac spinors is
reducible. By this we mean that the relevant vector space is the direct sum of two
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subspaces and the group acts independently on each of them. This becomes clear
by explicitly working out the generators:

Mµν =
i

4
[γµ, γν ] =

i

4

[(
0 σµ
σ̄µ 0

)
,

(
0 σν
σ̄ν 0

)]
=

(
σµσ̄ν − σν σ̄µ 0

0 σ̄µσν − σ̄νσµ

)
.

(9.39)
We note the block diagonal structure, which is of course retained after exponentia-
tion. This confirms our claim, with the two relevant subspaces being formed by the
two upper and the two lower components of our 4-component spinor respectively.

We thus can write
ψD =

(
ψα
χ̄α̇

)
, (9.40)

where the indices α, α̇ run over 1, 2. Here the Weyl spinor ψ and the complex-
conjugate Weyl spinor χ̄ transform independently. Note that, in addition to
complex conjugation, the second Weyl spinor also has an upper rather than lower
index. The meaning of this will be clarified shortly.

The decomposition of ψD in two independent parts can also be understood ab-
stractly (i.e. without using our explicit representation of the γ’s). For this purpose,
we first introduce

γ5 ≡ iγ0γ1γ2γ3 =
i

4!
εµνρσγ

µγνγργσ . (9.41)

Now, due to the obvious property γ5γµ = −γµγ5, it follows that

γ5Mµν =Mµνγ
5. (9.42)

Additionally one finds
(γ5)2 = 1 . (9.43)

With this, we may define

PL ≡
1

2

(
1− γ5

)
and PR ≡

1

2

(
1 + γ5

)
. (9.44)

It follows immediately that PL,R satisfy

P 2
L = PL , P 2

R = PR , PL + PR = 1 , PLPR = 0. (9.45)

The first two properties make PL and PR projection operators. The remaining
two relations show that they induce a decomposition of the space on which they act
in two subspaces:

V = VL ⊕ VR ≡ Im(PL)⊕ Im(PR) . (9.46)

Since PL and PR commute with Mµν , it now follows that ψD,L ≡ PLψD and
ψD,R ≡ PRψD transform independently. This confirms what we already know from
the explicit block-diagonal structure of the generators noted above. We will call
ψD,L and ψD,R left-handed and right-handed Dirac spinors.

In our explicit representation we have

γ5 =

(
−1 0
0 1

)
, PL =

(
1 0
0 0

)
, PR =

(
0 0
0 1

)
, (9.47)
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such that
ψD,L =

(
ψ
0

)
and ψD,R =

(
0
χ̄

)
. (9.48)

Thus, the Weyl-spinor is a two-component object, containing the information of
two complex numbers. Dirac spinors are four-component objects (vectors in C4),
which are built form two Weyl spinors or, equivalently, from one left-handed und
one right-handed Dirac spinor.

All of the above works for any even number of dimensions d. In this case the
Dirac spinor has dimension 2d/2. For an odd number of dimensions, one uses (d−1)-
dimensional γ’s and adds γd ∝ γ0γ1 . . . γd−2. This γd does not commute with the
Mµν . Accordingly left- or right-handed Dirac as well as Weyl-spinors do not exist
for an odd number of dimensions. (For a more detailed account see Polchinski,
‘String Theory’, vol. II, Appendix ‘Spinors in various dimensions’).

An interesting and useful fact special to d = 4 is that

Spin(1, 3) = SL(2,C) , (9.49)

where SL(2,C) is the group of 2× 2 matrices M with detM = 1.
Using this group isomorphism, the 2:1 map from Spin(1, 3) to SO(1, 3) can be

given explicitly: Let M ∈ SL(2,C), v ∈ R4 and v̂ ≡ vµσ
µ. Since {σµ} is a basis of

hermitian 2× 2 matrices, v̂ is a generic hermitian matrix.
Next we define v̂′ = Mv̂M †. Using this transformed matrix, we may implicitly

define a transformed vector v′ by v̂′ = v′µσ
µ. The straightforward calculation

(v′)2 = (v′0)2 − (~v′)2 = det
(
v′0 + v′3 v′1 − iv′2
v′1 + iv′2 v′0 − v′3

)
= det(v̂′) = det(v̂) = det

(
v0 + v3 v1 − iv2

v1 + iv2 v0 − v3

)
= v2

(9.50)

demonstrates that the action of M on R1,3 which we have implicitly introduced
preserves the length of vectors.

Let us repeat the logic: Any M ∈ SL(2,C) defines a map v̂ 7→ v̂′ ≡ Mv̂M †

on hermitian 2 × 2 matrices. Hence it also defines a map vµ 7→ v′µ that preserves
the length. As a result, there exists a matrix Λ = Λ(M) ∈ SO(1, 3) such that
v′µ = Λ ν

µ vν . Obviously, Λ(M) = Λ(−M), which is consistent with our claim that
this map is 2:1.

We note without proof that our Weyl spinor ψα introduced earlier transforms as

ψα →M β
α ψβ , M ∈ SL(2,C) . (9.51)

The other 2-spinor, which forms the two lower components of the 4-component
Dirac spinor, is χ̄α̇ = εα̇β̇χ̄β̇, with χ̄β̇ being the complex-conjugate of a Weyl spinor:
χ̄β̇ = (χβ)∗ and β̇ = β. The complex-conjugate Weyl spinor transforms with the
complex conjugate SL(2,C) matrix:

χ̄β̇ → M̄ α̇
β̇
χ̄β̇ . (9.52)
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This follows by complex conjugation from χα → M β
α χβ. We also note that the

2-component ε-tensor is an invariant tensor of SL(2,C), so it may naturally be used
to lower and raise dotted and undotted Weyl indices.

It is a non-trivial claim that the Dirac spinor in our representation is formed
precisely from a lower-index Weyl spinor and a complex-conjugate upper-index Weyl

spinor. This claim could be checked explicitly using our definition of how ψD =

(
ψ
χ̄

)
transforms.10

To conclude, we could also say that SL(2,C) is the fundamental symmetry group
of space-time. Note that the relations between

SU(2) ⊂ SL(2,C) and SO(3) ⊂ SO(1, 3) (9.53)

and hence between spinors and vectors in non-relativistic quantum mechanics work
very similarly.

9.4 Invariants involving spinors and lagrangian equations of
motion

Our focus will now be on Dirac, not Weyl spinors. So we will drop the index D
for brevity: ψD → ψ. To write Lagrangians we need invariants, i.e. Lorentz-singlets
built from ψ. Our first step in constructing such singlets is to recall that, for unitary
representations of any symmetry group

v → Uv , U ∈ U(n) , (9.54)

the object v†v ≡
∑

i v̄ivi is always invariant:

v
′†v′ = (Uv)†Uv = v†U †Uv = v†v. (9.55)

This can also be written infinitesimally as

v
′†v′ ≈ ((1 + iT )v)† (1 + iT )v = v†(1− iT †)(1 + iT )v ≈ v†(1 + i(T − T †))v.

(9.56)
Thus our claim follows from T = T †.

In our case ψ transforms as

ψ → (1 + itµνMµν)ψ . (9.57)

From (γ0)† = γ0 and (γi)† = −γi we can now conclude that

M†
0i = −M0i , M†

ij =Mij . (9.58)

Thus, ψ†ψ is not an invariant. We therefore need to find a different object from which
we can construct our Lagrangian. As a side-remark, we note that the mathematical

10 A standard reference for the very useful techniques of working with dotted and undotted Weyl
indices is the famous book by Wess and Bagger [5] on supersymmetry (especially the Appendix).
Some elements also appear in Chapter 1 of [6], in particular Problem 1.9.4.
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reason for this is that SO(1, 3) is non-compact. Non-compact Lie groups possess no
finite-dimensional unitary representations.

To construct an invariant we observe that

γ0γµγ0 = (γµ)† , γ0Mµνγ
0 =M†

µν , γ0M†
µνγ

0 =Mµν . (9.59)

It follows that ψ†γ0 transforms according to

ψ†γ0 → ψ†(1+ itµνMµν)
†γ0 = ψ†(1− itµνM†

µν)γ
0 = ψ†γ0(1− itµνMµν) , (9.60)

such that ψ†γ0ψ is an invariant.
One generally defines

ψ̄ ≡ ψ†γ0 , (9.61)

allowing for the very compact notation

ψ̄ψ (9.62)

for the invariant introduced above.
For the second ingredient in constructing Lorentz-singlets we use the following

important relation, proved in one of the problems:

[Mµν , γρ] = −(Mµν)
σ
ρ γσ . (9.63)

This basically says that, up to a sign, the commutator action of Mµν on the γ-
matrices corresponds to the standard, multiplicative action of the Mµν . One may
then conclude that

(1 + itµνMµν)γρ(1− itµνMµν) = (1− itµνMµν)
σ
ρ γσ +O(t2) (9.64)

or, after exponentiation,

S(Λ)γρS(Λ)−1 = (Λ−1) σ
ρ γσ . (9.65)

If we now multiply by Λ from the left and make the spinor representation indices
explicit, we find

Λ σ
ρ (S(Λ)) b

a (γσ) c
b (S(Λ)−1) d

c = (γρ)
d
a . (9.66)

We have learned that (γσ) b
a is an invariant tensor of SO(1, 3), where σ is a vector

index, a is a Dirac spinor index, and b is an upper or inverse Dirac spinor index,11

similar to the index of ψ̄a. Hence ψ̄γµψ is a vector and ψ̄γµψvµ is a scalar.
For the Lagrangian we may thus write

L = ψ̄(iγµ∂µ −m)ψ . (9.67)

This is the lowest order Lagrangian in fields and derivatives. In the problems it will
be shown that the i is needed for S to be real.

11 More formally, this is an index of the complex-conjugate Dirac spinor representation.
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The equations of motion may now be straightforwardly derived: We treat ψ, ψ̄
as independent variables and use the notation γµvµ ≡ /v (pronounced v-slash) for
any Lorentz-vector or vector-operator v. It follows that12

0 = δS =

∫
d4xδL =

∫
d4x

[
δψ̄(i/∂ −m)ψ + ψ̄(i

←
∂/−m)δψ

]
(9.68)

and hence
(i/∂ −m)ψ = 0 . (9.69)

This is the celebrated Dirac equation.
As an important fact we observe that, if ψ solves the Dirac equation, then it also

solves the Klein-Gordon-equation. To see this, we first note that, for any vector p,
one has

/p
2 = γµγνp

µpν =
1

2
{γµ, γν}pµpν =

1

2
2ηµνp

µpν = p2 . (9.70)

By multiplying the Dirac equation with (−i/∂ −m) one then finds

0 = (−i/∂ −m)(i/∂ −m)ψ = (/∂
2

+m2)ψ = (∂2 +m2)ψ = 0 , (9.71)

confirming our claim.

9.5 Solutions of the Dirac equation

We make the ansatz ψ(x) = u(p)e−ipx with p2 = m2, justified by ψ solving the
Klein-Gordon equation. We fix p0 > 0, making our choice of sign in the exponent
non-trivial. The other possible solution with e+ipx will be considered below.

The Dirac equation constrains u(p):

(i/∂ −m)ψ = 0 ⇒ (/p−m)u(p) = 0 . (9.72)

In a frame where p = (m,~0), this becomes m(γ0 − 1)u(p) = 0 or(
−1 1

1 −1

)
u(p) = 0 . (9.73)

With the ansatz
u(p) =

(
ξ
ξ′

)
, (9.74)

we then have ξ − ξ′ = 0. Since the space of 2-spinors is 2-dimensional, there a then
two independent solutions. We write them as

us ∼
(
ξs
ξs

)
, s = 1, 2 , (9.75)

with ξ1 =

(
1
0

)
and ξ2 =

(
0
1

)
. It will be convenient to use the following normaliza-

tion:
us(p) ≡

√
m

(
ξs
ξs

)
in a frame where p = (m,~0) . (9.76)

12Note that
←
∂ µ acts to the left and has an extra minus.
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We note that, once defined in this particular frame, our solutions defined in any
other frame by Lorentz transformations with S(Λ).

Let us comment on the relation of Dirac spinors to non-relativistic spinors, which
is particularly obvious in the frame p = (m,~0). To see this, let us exclude boosts,
restricting attention to SO(3) ⊂ SO(1, 3). At the Lie algebra level, this corresponds
to the restriction

tµνMµν → tjkMjk = tjk
i

4

(
σjσ̄k − σkσ̄j 0

0 σ̄jσk − σ̄kσj

)
. (9.77)

Using [σj, σk] = 2iεjklσl, this becomes

tjkMjk = tjk
1

2

(
εjklσl 0

0 εjklσl

)
. (9.78)

We see that both upper and lower two-component solutions transform under rota-
tions just as in non-relativistic quantum mechanics.

Even more explicitly: To rotate around the 3-axis by an angle ϕ, we must pick

tjk =
1

2
εjkl(ê3)l ϕ . (9.79)

The reader should check that this is indeed the correct normalization using the
explicit SO(3) generators Mij given earlier. Then, for the corresponding rotation of
the spinor, one finds:

⇒ exp
(
itijMij

)
=

(
exp
(
iϕ1

2
σ3

)
0

0 exp
(
iϕ1

2
σ3

)) . (9.80)

This is also consistent with SU(2) ⊂ SL(2,C) and the SL(2,C)-action on spinors
described earlier. Moreover, appealing to what should be known from quantum
mechanics, this demonstrates that our Dirac spinors are going to describe spin-1

2
-

particles.
As advertised at the beginning, the is a second set of so-called negative fre-

quency solutions: ψ(x) = v(p)e+ipx with p0 > 0, p2 = m2. This time we have

(i/∂ −m)ψ = 0 ⇒ (/p+m)v(p) = 0 . (9.81)

In a frame with p = (m,~0) one has(
1 1

1 1

)
v(p) = 0 (9.82)

and hence
vs(p) =

√
m

(
ηs
−ηs

)
, s = 1, 2 (9.83)

with η1 =

(
1
0

)
and η2 =

(
0
1

)
.

Our choice of basis has been made to ensure the following relations:

ūr(p)us(p) = 2mδrs ūr(p)vs(p) = 0

v̄r(p)vs(p) = −2mδrs v̄r(p)us(p) = 0.
(9.84)
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Crucially, by Lorentz invariance this holds in all frames since these expressions are
Lorentz singlets.

In addition to these ‘orthonormality relations’, there is also a form of a ‘com-
pleteness relation’:

2∑
s=1

(us(p))a (ūs(p))
b = (/p+m) b

a

2∑
s=1

vs(p)v̄s(p) = /p−m.

(9.85)

Here, in the second line, we used a very convenient shorthand, matrix notation in
which the indices of the spinors are suppressed. The idea is that vs is interpreted
as a column-vector while vs is a row-vector. The product is then a matrix, which is
equal to matrix on the r.h. side. Here m is shorthand for m1.

We derive the first equation of the two relations in (9.85): For this purpose, let
both sides of the equation act on the basis {us(p), vr(p)} of the spinor space C4.
Using the relations (9.84), we have:

LHS :

(
2∑
s=1

us(p)ūs(p)

)
ur(p) =

2∑
s=1

us(p)2mδrs = 2mur(p)(
2∑
s=1

us(p)ūs(p)

)
vr(p) = 0

(9.86)

RHS :(/p+m)ur(p) = (/p−m)ur(p)︸ ︷︷ ︸
=0

+2mur(p) = 2mur(p)

(/p+m)vr(p) = 0 .

(9.87)

Analogous manipulations demonstrate the validity of the second of the two relations
in (9.85).

As a final comment, we note that it is easy to remember the signs in the com-
pleteness relations (9.85): Indeed, these relations must be consistent with the Dirac
equation, which is the case only for the right sign choice:

(/p−m)
∑
s

us(p)ūs(p) = (/p−m)(/p+m) = p2 −m2 = 0 (9.88)

10 Quantization of Spinors

10.1 Hamiltonian

To transit from the Lagrangian to the Hamiltonian description, we first compute the
canonical momenta for the set of 4 fields ψ = {ψa}. From the lagrangian density

L = ψ̄(i/∂ −m)ψ (10.1)

it follows that
πa =

∂L
∂ψ̇a

=
∂

∂ψ̇a
(iψ†γ0γ0ψ̇) = i(ψ†)a . (10.2)
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We may write this in vector notation, with ψ a column vector and π a row vector as

π = iψ† . (10.3)

We note that the Lagrangian (and hence Hamiltonian) may be expressed using just
ψ and π = iψ†. There is hence no need for a canonical momentum corresponding to
ψ†. This is different from the complex scalar case, where both φ, π and φ†, π† were
needed.

The underlying reason for this distinction is the following: The equation of
motion is only of first order in t in the case of the Dirac spinor. As a result, there
is an effective reduction of the number of degrees of freedom (for more details, see
Weinberg [4], Chapter 7).

Thus, we are now ready derive the Hamiltonian density in the standard way:

H = πψ̇ − L = iψ†ψ̇ − ψ†γ0(i/∂ −m)ψ

= −ψ†γ0(iγi∂i −m)ψ

= iπγ0(iγi∂i −m)ψ .

(10.4)

10.2 Quantization attempts with commutators

We could attempt to define, as we did for the scalar and vector case,

[ψ(~x), π(~y)] =
[
ψ(~x), iψ†(~y)

]
= iδ3(~x− ~y)1 . (10.5)

One would then proceed exactly as before. We skip these familiar intermediate
steps and jump directly to the expression for the free fields in terms of creation and
annihilation operators:

ψ(x) =

∫
dp̃(as~pus(p)e

−ipx + bs †~p vs(p)e
ipx) . (10.6)

We would expect these operators to obey[
as~p, a

r †
~q

]
= (2π)3δ3(~p− ~q)δrs2p0 =

[
bs~p, b

r †
~q

]
. (10.7)

Of course, we must check the consistency with the original commutation relations
(at x0 = y0):[
ψ(~x), ψ†(~y)

]
=

∫
dp̃ dq̃

(
ei~p~x−i~q~yus(p)u

†
r(q)

[
as~p, a

r †
~q

]
+ e−i~p~x+i~q~yvs(p)v

†
r(q)

[
bs †~p , b

r
~q

])

=

∫
dp̃

ei~p(~x−~y)(/p+m)− e−i~p(~x−~y)(/p−m)︸ ︷︷ ︸
~p→ −~p

 γ0 (10.8)

=

∫
dp̃ ei~p(~x−~y)

(
p0γ

0 + piγ
i +m−

(
p0γ

0 − piγi −m
))
γ0 .

Here, in the step from the first to the second line, we used the δ-function from the
commutator and the relations us(p)u†r(p) = us(p)ur(p)γ

0 = (/p+m)γ0 and similarly
for the second term.
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However, the result obtained in the last line is unsatisfactory: The p0 term
required to cancel the 1/p0 from dp̃ drops out. By contrast, the terms with mass
and pi do not cancel. We can not obtain the δ-function on the r.h. side of (10.5) in
this way.

So let us try to assume instead that
[
b, b†

]
= −1, effectively exchanging the roles

of b and b†. At first glance, this appears to work. Repeating the analysis one now
finds [

ψ(~x), ψ†(~y)
]

= . . . =

∫
dp̃ ei~p(~x−~y) 2p0γ0 γ0 = δ3 (~x− ~y) 1 . (10.9)

However, proceeding to the quantum Hamiltonian in a straightforward manner re-
veals a deep problem. One finds

H =

∫
H d3x =

∫
dp̃ p0

∑
s

(
as~p
†as~p − bs~p

†bs~p
)
, (10.10)

with a wrong sign in front of the antiparticle contribution. Due to the relative sign
between the two terms, the energy is unbounded from below. In other words, the
vacuum is unstable. No cure for this problem has been found in the framework
which we have so far developed.

10.3 Quantization with anticommutators

The only known cure for the problem we just found is to fundamentally change of the
quantization procedure. It can be proven rigorously that this is unavoidable for all
fields with half-integer spin. This is known as the Spin-Statistics Theorem, see,
e.g. [7], and it is related to the double-cover feature of the Spin(1, 3) with respect
to SO(1, 3).

The key idea is to use anti-commutators, {a, b} = ab+ba, instead of commutators,
when quantizing the theory. We basically repeat the previous subsection with the
new postulate

{ψ(~x), π(~y)} =
{
ψ(~x), i ψ†(~y)

}
= iδ3(~x− ~y)1 . (10.11)

It follows that the creation/annihilation operators obey{
ar~p, a

s†
~q

}
=
{
br~p, b

s†
~q

}
= (2π)3 2p0 δ3(~p− ~q) δrs , (10.12)

with other anti-commutators being zero. As a result, one finds

H =

∫
dp̃ p0

∑
s

(
as~p
†as~p − bs~pbs~p

†) =

∫
dp̃ p0

∑
s

(
as~p
†as~p + bs~p

†bs~p
)

+ (∝ 1) , (10.13)

where the term proportional to unity is omitted, like in the scalar case, by declaring
the Hamiltonian to be normal ordered.

Now let us have a look at the calculational details. Recall first the Hamiltonian

H =

∫
d3x ψ̄

(
−i~γ ~∇+m

)
ψ (10.14)
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and the mode expansion of the field

ψ(~x) =

∫
dp̃
(
as~p us(p)e

+i~p~x + bs~p
† vs(p)e

−i~p~x) (10.15)

ψ̄(~x) =

∫
dp̃′
(
as
′

~p′
†
ūs′(p

′)e−i~p
′~x + bs

′

~p′ v̄s′(p
′)e+i~p′~x

)
. (10.16)

We will use the standard relation∫
d3x ei~p~x±i~p

′~x = (2π)3 δ3(~p± ~p′) (10.17)

in what follows.
In working out the Hamiltonian we find four terms, with a†a, a†b†, ba, and bb†

respectively. Let us treat them one by one:
1.) The a†a term reads

Ha†a =

∫
dp̃

2p0
as
′†
~p′ a

s
~p ūs′(p) (~γ~p+m)us(p) . (10.18)

We use
0 = (/p−m)u(p) = (γ0p0 − ~γ~p−m)u(p) , (10.19)

from which it follows that

(~γ~p+m)u(p) = γ0p0 u(p) . (10.20)

Thus, we find

Ha†a =

∫
dp̃

2
as
′†
~p′ a

s
~p ūs′(p)γ

0us(p) . (10.21)

A useful relation in this context is the following:

ūr(p)γ
0us(p) = v̄r(p)γ

0vs(p) = 2p0δrs . (10.22)

To prove it, we recall that
(/p−m)u(p) = 0 (10.23)

and hence
0 = u†(p)(/p

† −m) = u†(p)(/p
† −m)γ0 = ū(p)(/p−m) . (10.24)

With this, we may write

ūr(p)γ
0us(p) =

1

2m
ūr(p)

{
m, γ0

}
us(p)

=
1

2m
ūr(p)

{
/p−m+m, γ0

}
us(p)

=
1

2m
ūr(p)

{
/p, γ

0
}
us(p)

=
p0

m
ūr(p)us(p) =

p0

m
2mδrs = 2p0δrs .

(10.25)
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An analogous calculation can be performed with v and v̄. One then obtains

Ha†a =

∫
dp̃ p0 as†~p a

s
~p , (10.26)

concluding our discussion of the a†a contribution.
2.) Now we turn to the a†b† term. This term vanishes,

Ha†b† = 0 , (10.27)

which follows from manipulations analogous to those used in case 1.) together with
the identities

u†s(p
0,−~p) vr(p0, ~p) = 0 and v†s(p

0,−~p)ur(p0, ~p) = 0 . (10.28)

The readers are invited to derive these identities by themselves, using tools that are
already at their disposal (this is also treated in the problems).

3.) By an analogous reasoning, one can also show that

Hba = 0 . (10.29)

4.) Similarly to case 1.), one finds

Hbb† =

∫
dp̃

2p0
bs
′

~p′b
s†
~p v̄s′(p)(−~γ~p+m)vs(p)

=

∫
dp̃

2p0
bs
′

~p′b
s†
~p v̄s′(p)(−γ

0p0)vs(p)

=

∫
dp̃ p0

(
−bs~pb

s†
~p

)
.

(10.30)

Thus, combining all the results above, we have

H =

∫
dp̃ p0

(
as†~p a

s
~p + bs~pb

s†
~p

)
+ irrelevant constant. (10.31)

We define the Fock space just like in the bosonic case:

|0〉 , as†~p |0〉 , b
s†
~p |0〉 , a

s†
~p a

r†
~q |0〉 , . . . (10.32)

As before, the vacuum obeys

as~p |0〉 = bs~p |0〉 = 0 ∀ ~p, s . (10.33)

The crucial difference to the bosonic case arises from the anti-commutation relations,
which ensure that creation and annihilation operators square to zero. Thus,(

as†~p

)2

|0〉 = 0, (10.34)

i.e. multiple particle states with identical quantum numbers never occur. In standard
quantum mechanical terminology, this means that our particles are fermions. Hence
the name ‘spin-statistics theorem’, which was mentioned earlier. Actually, in the
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plane-wave case in Minkowski space the index p is continuous, such that one might
naively think that p = p′ never occurs anyway. This is of course not true if one
thinks carefully about the right physical questions. For example one may take
the non-relativistic limit and derive the familiar antisymmetry of the quantum-
mechanical two-particle wave-function in real space. To appreciate the importance
of the constraint above (i.e. of the Pauli exclusion principle) in a very simple-minded
way, directly in quantum field theory, one should think of a finite volume situation.

Then ~p is discrete and the relation
(
as†~p

)2

|0〉 = 0 obviously excludes a significant
part of the naively available low-energy states in the Fock space.

10.4 Time ordering, Green’s functions, Dirac propagators

Our fundamental goal is to go through the complete logic of perturbative quantum
field theory, from LSZ to Wick’s theorem to Feynman rules, once again, but this
time with anti-commuting rather than commuting fields. This is straightforward
and the readers are invited to check as much of this they want, consulting also the
relevant textbooks. But the results will be extremely similar and the only difference
is easy to understand:

Namely, whenever we write some expression involving products of fields, we
simply attach a relative minus sign to every term involving an odd permutation of
fermionic fields relative to the corresponding bosonic formula. For example, the very
definition of the anti-commutator if of this type:

[φ1, φ2] = φ1φ2 − φ2φ1 (10.35)

turns into
{ψ1, ψ2} = ψ1ψ2 − sgn(σ)ψσ(1)ψσ(2) = ψ2ψ1 + ψ2ψ1 , (10.36)

where {σ(1), σ(2)} = {2, 1} is the unique non-trivial permutation of two elements.
Here we suppress spinor indices. As another example, consider the derivation prop-
erty of the commutator that was important in proving Wick’s theorem:

[φ1, φ2φ3] = [φ1, φ2]φ3 + φ2[φ1, φ3] . (10.37)

The fermionic analogue of this is

[ψ1, ψ2ψ3] = {ψ1, ψ2}ψ3 + sgn(σ)ψσ(1){ψσ(2), ψσ(3)} , (10.38)

where {σ(1), σ(2), σ(3)} = {2, 1, 3}. The reader should check explicitly that the
above relation is correct.

We note that the product of an even number of fermionic objects counts
as bosonic while the product of a odd number of fermionic objects remains
fermionic. Thus, for example, the derivation property applied to a product of three
fermionic fields is formulated using an anti-commutator instead of a commutator:
{ψ1, ψ2ψ3ψ4}. We will not spell this out in detail since the basic idea should by now
be clear.

One of the basic objects of interest in our context is

〈0|T (product of ψ’s and ψ̄’s)|0〉 . (10.39)
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To be able to use this object in analogy to the bosonic case, we need to change its
definition as explained above. Thus, for fermionic fields we define:

Tψa1(x1) . . . ψan(xn) ≡ sgn(σ)ψaσ(1)(xσ(1)) . . . ψaσ(n)(xσ(n)) (10.40)

where {σ(1) . . . σ(n)} is a permutation σ of {1 . . . n} such that x0
σ(1) ≥ . . . ≥ x0

σ(n)

and sgn(σ) = ±1 for even and odd σ, respectively. This generalizes in an obvious
way to products of ψ’s or combinations of ψ, ψ.

With this definition of T , the LSZ-formula can be derived in complete analogy
to the familiar bosonic case. An overall sign can arise if the order of the fields in the
time-ordered correlation function does not match the order of creation/annihilation
operators used to define the incoming/outgoing combinations of particles.

Moreover, the relation between time-ordered Green’s functions for interacting
and for free fields (with the crucial factor exp(i Sint) under the T -symbol) still holds:

〈0|Tψ1 · · ·ψn|0〉 =
0〈0|TψI1 · · ·ψIn exp

(
iSIint

)
|0〉0

0〈0|T exp(iSIint)|0〉0
. (10.41)

The reader is invited to check that nothing changes in the derivation. One important
aspect to note here is that Sint and Hint are always bosonic. Another relevant
comment is that the order of operators should remain the same on both sides of all
relations, even under the T -symbols. Otherwise, extra signs can arise.

Finally, in the last step towards the Feynman rules we need the fermionic version
of the Wick theorem. The latter is affected by extra signs, as explained in the
beginning of this section. Formally, the Wick theorem looks exactly as before:

T (ψ1 · · ·ψn) = :
(
ψ1 · · ·ψn + all possible contractions

)
: . (10.42)

But in detail there are some crucial modifications. First, the meaning of normal-
ordering has to be adjusted for fermions in a fairly obvious way: In a normal ordered
product, all creators appear on the left of all annihilators, and an overall sign is
included if the permutation of fermionic fields required to achieve this is odd.

Second, the definition of ‘contraction’ also includes a factor of (−1) for each
exchange of neighbouring ψ, ψ-fields required to place contracted pairs next to each
other. Going back to our derivation of Wick’s theorem, one may easily convince
oneself that these adjustments in fact necessary for the theorem to remain correct.

We give a simple example for how the factors (−1) (in the present case only a
single such factor) appear:

:ψ1ψ2ψ3ψ4 := −ψ1ψ3 :ψ2ψ4 : . (10.43)

A contraction of two fields is defined in the same way as in the bosonic case:

ψa(x)ψ
b
(y) ≡

〈
Tψa(x)ψ

b
(y)
〉
≡ SF (x− y) b

a . (10.44)

Contractions of ψψ or ψ ψ vanish or, if you wish, do not exist. This is analogous to
the situation with a complex scalar, where the only non-vanishing contractions are
those of φ with φ.
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The Dirac propagator SF (where the index ‘F ’ denotes the Feynman-iε-
prescription) just introduced explicitly reads

SF (x− y) =

∫
d4p

(2π)4

i(/p+m)

p2 −m2 + iε
e−ip(x−y) . (10.45)

The derivation of this is completely analogous to the bosonic case. The only differ-
ence is that a factor /p + m in the numerator arises from the u’s and v’s which are
part of the mode expansion of the spinor fields.

We do not go through this straightforward but somewhat tedious analysis. In-
stead, we provide an alternative argument which is much simpler. It does not look
the moment like a proper derivation but rather like a way to guess the correct re-
sult. However, using the path or functional integral approach studied in Quantum
Field Theory II, it will become clear that it is, in fact, completely trustworthy and
rigorous.

We start by recalling that, in the scalar case,

− (�x +m2)D(x− y) ≡ iδ4(x− y) . (10.46)

Any D satisfying this relation is a Green’s function. It is not unique since the Klein-
Gordon operator has zero modes. Feynman’s iε prescription fixes this ambiguity:

DF (x− y) =

∫
d4p

(2π)4

i

p2 −m2 + iε
e−ip(x−y) . (10.47)

Crucially, the denominator p2−m2 is just the Fourier-space version of −(�x +m2).
Depending on the pole-prescription used, we get the Feynman, retarded or advanced
Green’s function.

Analogously, the Green’s function S for spinors is defined by

(i/∂x −m)S(x− y) ≡ 1 iδ4(x− y) . (10.48)

The solution with Feynman prescription can be read off immediately:

SF (x− y) =

∫
d4p

(2π)4

i(/p+m)

p2 −m2 + iε
e−ip(x−y) . (10.49)

One simply has to take the Dirac operator to Fourier space,

(i/∂ −m) → (/p−m) , (10.50)

and to find the inverse:
(/p−m)

/p+m

p2 −m2
= 1 . (10.51)

Here we have used that (/p+m)(/p−m) = (p2 −m2)1.
Equivalently, we may directly write down the inverse of the Dirac operator in

Fourier space, 1/(/p −m), and reformulate it in a way which makes it obvious how
to introduce the iε by analogy to the bosonic case:

1

/p−m
=

/p+m

p2 −m2
→ /p+m

p2 −m2 + iε
. (10.52)
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10.5 U(1)-Symmetry of the Dirac lagrangian

Consider the free Dirac-Lagrangian

L = ψ̄(i/∂ −m)ψ (10.53)

and observe that it is invariant under the global symmetry transformation:

ψ → e−iεψ ' ψ − iεψ . (10.54)

Moreover, recall Noether’s theorem states that

jµ =
∂L

∂(∂µϕ)
χ− F µ (10.55)

is a conserved current if

(1) if ϕ → ϕ + εχ is the infinitesimal version of a continuous global symmetry
transformation and

(2) the lagrangian transforms as L → L+ ε∂µF
µ.

In the case at hand we obtain

jµ =
∂L

∂(∂µψ)
(−iψ) = ψ̄iγµ(−iψ) = ψ̄γµψ , (10.56)

where we have used that F µ = 0 and χ = −iψ.
Jumping ahead, we note that this current will become the electromagnetic cur-

rent after gauging the U(1) or, in other words, making the U(1)-symmetry ‘local’.
Of course, with our current comes a conserved charge Q. It can be evaluated

straightforwardly using the relations just obtained and the mode decomposition of
our field:

Q =

∫
d3x j0 =

∫
d3x ψ†ψ =

∫
dp̃
∑
s

(
as†~p a

s
~p − b

s†
~p b

s
~p

)
. (10.57)

10.6 Yukawa theory

The arguably simplest interacting theory with fermions is the so-called Yukawa
theory. In its minimalist version, it is described by the lagrangian

L = ψ̄(i/∂ −m)ψ︸ ︷︷ ︸
free fermion

+
1

2
(∂ϕ)2 − µ2

2
ϕ2︸ ︷︷ ︸

free scalar

+ λϕψ̄ψ︸ ︷︷ ︸
Yukawa interaction

. (10.58)

Interactions of this type play a fundamental role for the fermion-mass generation
in the Standard Model. There, m = 0 and the real scalar ϕ is replaced by the Higgs
boson (a 2-component complex scalar). The latter has a non-zero value in the
vacuum (a so-called vacuum expectation value or VEV) providing a mass for the
fermions which is proportional to the coupling constant λ. This so-called Yukawa
coupling is different for each fermion and responsible for their different masses.
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The Yukawa theory also plays a phenomenological role in nuclear physics. There,
the relevant fermions are proton and neutron and the exchanged scalars are the pion
fields. Both these fermions and the scalars are built from more fundamental objects,
the quarks and gluons of Quantum Chromodynamics or QCD. Hence, in this case
the Yukawa theory is not fundamental but only provides an effective description.
Of course, also in the Standard Model case it is possible that, probing quarks,
leptons and Higgs field at higher energies we will discover that these and hence their
Yukawa-type interactions are not fundamental either.

Some more details of the Yukawa interactions will be developed in the problems.
We will now turn to the more complicated and structurally more interesting gauge
interactions of fermions.

11 Quantum Electrodynamics

11.1 Lagrangian

The logic underlying the QED Lagrangian is the same as in ‘scalar QED’ discussed
earlier: We promote the global U(1)-symmetry of

L = ψ(i/∂ −m)ψ (11.1)

to a local symmetry:
ψ → e−iα(x)ψ . (11.2)

In order to maintain the invariance of our action under this larger ‘gauge’ symmetry,
we also need to promote the partial derivative in the free-fermion lagrangian to a
covariant derivative:

∂µ → Dµ = ∂µ + iAµ . (11.3)

Finally, a kinetic term for the gauge potential Aµ has to be introduced.
Thus, the QED Lagrangian reads

LQED = − 1

4e2
FµνF

µν + ψ(i /D −m)ψ , (11.4)

where /D ≡ γµDµ. Alternatively, by redefining the gauge field A we may write

LQED = −1

4
FµνF

µν + ψ(i /D −m)ψ (11.5)

with Dµ = ∂µ+ ieAµ. Let us check the claimed gauge-invariance explicitly: We have

Dµψ → D′µψ
′ = (∂µ + ieA′µ)e−ieα(x)ψ = e−ieα(x)(∂µ − ie∂µα + ieA′µ)ψ

= e−ieα(x)Dµψ , (11.6)

where we used A′µ = Aµ + ∂µα(x) in the last step. The exponential factor drops
out when the derivative of the spinor ψ is combined with its counterpart ψ in the
Lagrangian, which is hence indeed invarant.
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11.2 Deriving the Feynman rules

We split the Lagrangian according to

LQED = Lfree + Lint , (11.7)

with the free Lagrangian

Lfree = −1

4
FµνF

µν + ψ̄(i/∂ −m)ψ (11.8)

and the interaction Lagrangian

Lint = −eψ̄ /Aψ. (11.9)

The interaction Lagrangian arises exclusively from the so-called minimal coupling
that is needed to ensure gauge-invariance.

As a side remark, we note that a non-minimal coupling would, for example,
be

Lint =
1

Λ
Fµνψ̄γ

µγνψ . (11.10)

It is suppressed by a mass-dimension parameter, which is typically related to the
cutoff scale Λ (we have identified the two). This coupling is less important if Λ is
large. Also, this coupling is forbidden if we require our theory to be renormalisable
- a term characterising theories where infinities can be removed in controlled way
(to be discussed further down).

We note that our bosonic fields and (obviously) the partial derivative have mass
dimension one. This is written as

[ϕ] = [Aµ] = [∂µ] = E1 , (11.11)

where [·] denotes the power of mass or energy which has the same unit as the object
inside the brackets. Recall that we have set h̄ = c = 1.

From this, it follows that the fermion field has mass dimension 3/2, i.e.

[ψ] = E3/2 . (11.12)

To see this, note that

[S] = [h̄] = E0;
[
d4x
]

= E−4 and hence [L] = E4 . (11.13)

Combining this with (11.8) & (11.11) we obtain (11.12). Also, from (11.10) it follows
that:

[Λ] = E , (11.14)

a fact which we already stated without prove above. Typically, Λ is the energy
scale at which some new physics (beyond the QED lagrangian) appears. This new
physics might be responsible for or ‘generate’ the non-minimal coupling we discussed.
One also says that this non-minimal coupling corresponds to a higher-dimension
operator, i.e. an expression the mass dimension of which is larger than four. In our
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case [Fµνψγ
µγνψ] = E5. We now return to pure QED without higher-dimension

operators.
For the fermion, the free lagrangian Lfree implies the following Feynman rule:

p
a b =

(
i(/p+m)

p2 −m2 + iε

) a

b

. (11.15)

As before, this is just the Fourier-space expression for
〈
Tψb(x)ψ̄a(y)

〉
. As a side

remark, we note that it is equivalent to add the iε directly to the matrix in the
denominator:

i

/p−m+ iε
=

i(/p+m− iε)
(/p+m− iε)(/p−m+ iε)

=
i(/p+m− iε)
p2 − (m− iε)2

=
i(/p+m− iε)

p2 −m2 + 2miε+ ε2
=̂

i(/p+m)

p2 −m2 + iε′
.

(11.16)

In the last step we neglected the ε in the numerator as we are only interested in the
poles. Furthermore, in the small ε-limit we can neglect the ε2-term. By redefining
ε′ = 2mε→ ε we obtain the already known expression for the propagator in Fourier
space.

In our simplest gauge choice (Feynman gauge) the Feynman rule for the gauge
propagation is

p→
µ ν =

−iηµν

p2 + iε
. (11.17)

Finally, the interaction lagrangian Lint implies the Feynman rule

a

b

µ = −ie(γµ) a
b . (11.18)

Up to a possible sign this should be clear: The vertex is just the coefficient of the
3-field term in L. To derive this more carefully, let us consider an imagined process
e+ + γ → e+ (with momenta p+ k = p′). For the corresponding matrix element we
have

〈0| as′~p′
(
i

∫
d4xLint

)
as†~p a

µ†
~k
|0〉
(
− εµ(k)

)
= (2π)4δ4(. . . )iMfi , (11.19)

where the annihilation/creation operators account for:

as
′

~p′ : outgoing positron with spin s′.

as†~p : incoming positron with spin s.

aµ†~k : incoming photon with polarisation εµ(k).
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We now insert the explicit interaction Lagrangian:

〈0| as′~p′(−ie)
(∫

d4x ψ̄(x)γνA
ν(x)ψ(x)

)
as†~p a

µ†
~k
|0〉
(
− εµ(k)

)
. (11.20)

We also recall the relevant parts of the field expansions,

ψ(x) =

∫
dq̃ ar~q ur(q)e

−iqx + . . . , ψ̄(x) =

∫
dq̃ ar~q ūr(q)e

iqx + . . .

Aµ(x) =

∫
dq̃ aµ~q e

−iqx + . . . (11.21)

and the (anti-)commutation relations{
ar~q, a

s†
~p

}
= 2p0(2π)3δ3(~p− ~q)δrs ,

[
aν~q , a

†µ
~k

]
= −2k0(2π)3δ3(~k− ~q)ηνµ . (11.22)

Inserting this in (11.20) and carrying out the integrations one gets

iMfi = ūs′(p
′)︸ ︷︷ ︸

Outgoing state

vertex︷ ︸︸ ︷
(−ieγµ) us(p)εµ(k)︸ ︷︷ ︸

Incoming state

. (11.23)

Thus, we confirm the vertex Feynman-rule stated above.
In addition, we have learned from our analysis how to include external states:

p, s→ = (. . . )us(p) incoming positron

→ p, s = ūs(p) (. . . ) outgoing positron

(11.24)

k → = εµ(k) incoming photon

→ k = ε∗µ(k) outgoing photon

(11.25)
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Thus, we now know how a vertex connects to incoming and outgoing states.
Next, we will see how it connects to internal lines, i.e. to propagators. For this
purpose, consider the process

e+γ → e+γ : , (11.26)

with time flowing from left to right in the diagram. The corresponding amplitude
follows from the second-order term in the perturbative series in the interaction
lagrangian:

〈0| as′aµ′T
[(∫

x

ψ̄(−ieγνAν)ψ
)(∫

y

ψ̄(−ieγρAρ)ψ
)]

as†aµ† |0〉 . (11.27)

Here contractions involving a’s are meant as an informal symbol for producing a
non-zero number by commutation relations, similar to the actual contractions. A
detailed evaluation of this expression gives

q
p

k

p′

k′

︸ ︷︷ ︸
Read from left to right

= ε∗µ′(k
′)ūs′(p

′)(ieγµ
′
)

i

/q −m+ iε
(ieγµ)us(p)εµ(k)︸ ︷︷ ︸

Read from right to left

, (11.28)

where the contraction of matrix indices from right to left corresponds to moving
along the fermion line, in the direction of the arrow. As an important technical
conclusion we note: Our definition of the propagator (where the arrow corresponds
to going from ψ̄ to ψ ) is consistent with the way the arrow was introduced in (11.24)
for external particles.

Finally, let us consider external antiparticles, in this case electrons. We study
the (unrealistic) process e−γ → e− with momenta p+k = p′. For the matrix element
we have

〈0| bs′
(∫

ψ̄(−ie /A)ψ

)
b†sa
†
µ |0〉 , (11.29)

and thus

k ↗

p↘

→ p′

︸ ︷︷ ︸
read from left to right

= εµ(k)v̄s(p)(−ieγµ)vs′(p
′)︸ ︷︷ ︸

time flows also from left to right

. (11.30)

Summarising we can say: In the string of matrices corresponding to a fermion line,
time flows from right to left for particles and from left to right for antiparticles.
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11.3 Summary of QED Feynman rules and simple examples

Let us summarise the QED Feynman rules:

=
i

/k −m+ iε
(11.31)

=
−iηµν

k2 + iε
(11.32)

a

b

= −ie(γµ) a
b . (11.33)

We include the rules for external fermions:

p→ = (. . . )u(p) incoming particle

p→ = v̄(p)(. . . ) incoming antiparticle

(11.34)

→ p = ū(p)(. . . ) outgoing particle

→ p = (. . . )v(p) outgoing antiparticle .

(11.35)

Of course, as in the bosonic case, Z-factors have to be added. We have suppressed
them for brevity. The Z-factors are the same for particle and antiparticle.
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There are some additional sign rules characteristic of fermion diagrams: A
diagram receives a relative minus sign for

1. Every closed fermion line (loop).

2. The exchange of two external fermion lines (relative to another diagram).

We will not derive them in generality but merely illustrate how they arise in two
examples:

Consider the following two diagrams for e+e+ → e+e+:

1

2

1′

2′

1

2

1′

2′

〈2′1′(ψ̄ /Aψ)(ψ̄ /Aψ)(ψ̄ /Aψ)(ψ̄ /Aψ)12〉 〈2′1′(ψ̄ /Aψ)(ψ̄ /Aψ)(ψ̄ /Aψ)(ψ̄ /Aψ)12〉

(11.36)

They are of order e4 for the amplitude. Since a non-zero amplitude for this process
arises already at the order e2, and no e3 contribution exists, on calls such a correction
an ‘NLO contribution’, with NLO standing for ‘next-to-leading order’.

Each of these two diagrams acquired two minus signs (and hence no minus in
total) from ‘intersecting fermion contractions’. But, crucially, in addition the right-

hand side has a contraction ψ̄ψ = −ψψ̄ = −SF . We claim (and the reader should
check using other examples and thinking about the structure contractions) that such
an extra minus always occurs if there is a closed fermion loop.

The minus sign associated with the exchange of external lines comes simply from

〈0| ar~k′a
s
~p′ = −〈0| as~p′ar~k′ . (11.37)

It is easy to see that this relative minus sign appears for example in

p

k

p′

k′

vs.

p

k

p′

k′

. (11.38)

11.4 Elementary processes

In this section, we will mention a few famous QED scattering processes and then
pick a particularly simple one to work out in detail.
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First, there is Compton scattering: e−γ → e−γ. The relevant LO (leading-
order) diagrams are

+ , (11.39)

and the resulting cross section is described by the Klein-Nishina formula.
Then there is Møller scattering: e−e− → e−e− (or e+e+ → e+e+), described

by the diagrams

+ . (11.40)

A closely related process is that in which the two scattering particles are distin-
guished, like e.g. e−µ− → e−µ−. Then clearly only the first diagram contributes.

Of this last process, one may now consider two particularly interesting limit-
ing cases: The first is the case of a non-relativistic target and a highly relativistic
projectile. At high but not too high energy, this is automatically realised if, for
example, an electron scatters off a muon or off a nucleus. This is Coulomb scat-
tering, where the cross section is characterised by the Mott formula. The name
‘Coulomb scattering’ implies scattering off a static Coulomb field.

The second case is the case of a non-relativistic projectile and a non-relativistic
target. This is called Rutherford scattering, with the famous Rutherford for-
mula describing the cross section.

Further interesting processes are pair annihilation to photons, e+e− → γγ,

+ , (11.41)

Bhabha scattering, e+e− → e+e−,

+ , (11.42)
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and light-by-light scattering, γγ → γγ,

+ . . . . (11.43)

An interesting special feature of the last process is that it does not occur as a
tree-level process, only at loop-order.

As an example to work out in detail we pick the scattering process e+e− → µ+µ−.
This is similar to Bhaba scattering but even simpler since only the following single
diagramm is involved:

q

p, r ↗

p′, r′ ↘

↘ k, s

↗ k′, s′

(11.44)

We have the kinematic relations

q = p+ p′ = k + k′ and q2 ≡ s (11.45)

and, using our Feynman rules derived earlier, the invariant matrix element reads

iM = ūs(k)ieγµvs′(k
′)
−iηµν

q2 + iε
v̄r′(p

′)ieγνur(p) . (11.46)

As in section 5.3, the differential cross section in the limit
√
s � me,mµ can be

given as

dσ =
1

2s
|M|2 dX(2) =

1

64π2s
|M|2 dΩ . (11.47)

Let us now assume that we have unpolarized incoming beams and that the spin
of the outgoing particles is not measured. Then we need to average over incoming
and sum over outgoing spins. This is realised by replacing the invariant matrix
element squared in (11.47) according to

|M|2 → 1

2

∑
r

1

2

∑
r′︸ ︷︷ ︸

average

∑
s

∑
s′︸ ︷︷ ︸

sum

|M(r, r′, s, s′)|2 (11.48)

=
e4

4s2

∑
s,s′

(ūs(k)γµvs′(k
′)) (ūs(k)γνvs′(k′)) ·

∑
r,r′

(v̄r′(p
′)γµur(p)) (v̄r′(p′)γνur(p))

≡ e4

4s2
Aµν B

µν .
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Let us evaluate the first of the two tensor factors into which we have split the result
in the last line:

Aµν =
∑
s,s′

tr [ūs(k)γµvs′(k
′)v̄s′(k

′)γνus(k)]

=
∑
s,s′

tr [us(k)ūs(k)γµvs′(k
′)v̄s′(k

′)γν ]

= tr
[
(/k +mµ)γµ(/k

′ −mµ)γν
]

= tr
[
/kγµ/k

′
γν
]
−m2

µ tr[γµγν ]

= 4(kµk
′
ν + k′µkν − (k · k′)ηµν −m2

µηµν) .

(11.49)

Here, in the first line of (11.49), we interpreted the scalar expression as a 1 × 1
matrix, so the matrix is identical to its trace. To get to the second line we made use
of the cyclicality of the trace. Then we applied the completeness relations (9.85) as
well as the following trace identity of gamma matrices:

tr [γµγνγργσ] = 4 (ηµνηρσ + ηµσηνρ + ηµρηνσ) . (11.50)

A completely analogous calculation can be performed for Bµν .
From now on we neglect the m2-terms in Aµν and Bµν , since mµ,me �

√
s. We

find:

1

4

(∑)4

|M|2 =
e4

4s2
16
(
kµk

′
ν + k′µkν − ηµν(k · k′)

)
(pµp′ν + p′µpν − ηµν(p · p′))

=
8e4

s2
((k · p)(k′ · p′) + (k · p′)(k′ · p)) = 2e4 t

2 + u2

s2
. (11.51)

Here, in the last expression we have introduced the so-called the Mandelstam
variables s, t, u. These are defined by

s = (p+ p′)2 , t = (p− k)2 , u = (p− k′)2 (11.52)

and they satisfy the relation s + t + u =
∑4

i=1m
2
i . To get some intuition, consider

the momenta as defined in Fig. 13 and note that
√
s is the energy flowing in a

left-to-right interpretation of this figure as a scattering process. By contrast,
√
t

corresponds to the energy flowing in a top-to-bottom interpretation. Finally,
√
u is

the energy flowing if we re-interpret this figure with p and −k′ as incoming momenta.
In the massless case, i.e. with

p2 = p′2 = k2 = k′2 = 0 , (11.53)

we have the following relations:

s = 2pp′ = 2kk′ , t = −2kp = −2k′p′ , u = −2pk′ = −2kp′ . (11.54)

Let us go to the center of mass system (cms) and express these quantities using the
scattering angle, cf. Fig. 14:

t = −2kp = −2(k0p0 − ~k~p) = −2k0p0(1− cos Θ) (11.55)

= −2

(√
s

2

)2

(1− cos Θ) = −s
2

(1− cos Θ) . (11.56)
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p

p′

k

k′

Figure 13: Momenta in a scattering process drawn to illustrate the meaning of s, t
and u. See explanations in the text.

Next, using the sum rule for s, t and u, we have

u = −s− t = −s
2

(1 + cos Θ) . (11.57)

Inserting this in (11.51) we find

1

4

(∑)4

|M|2 = e4(1 + cos2 Θ) . (11.58)

Hence the cross section reads

dσ

dΩ
=

1

64π2s

1

4

(∑)4

|M|2 =
α2

4s
(1 + cos2 Θ) , (11.59)

where α ≡ e2/4π.

~p −~p

k

−~k

Θ

Figure 14: Definition of the scattering angle in the cms.

We notice that the angular dependence encodes an interesting phenomenon, il-
lustrated in Fig. 15: Small scattering angles are preferred relative to large ones. We
will next try to derive this preference in an intuitive way. To do so, let us recall that∑
|M|2 may be written∑

spins

(v̄γµu)(v̄γνu) ηµµ
′
ηνν

′ ∑
spins

(ūγµ
′
v)(ūγν′v) = Bµν η

µµ′ηνν
′
Aµ′ν′ . (11.60)
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In this expression, we may perform the substitution

ηµµ
′ → ηµµ

′ − qµqµ
′

q2
, (11.61)

and similarly for ηνν′ . The reason is that q = p + p′ = k + k′ and that, due to
relations like /pu(p) = 0, u(k)/k = 0 etc., the term ∼ qµqµ

′ drops out.

is prefered to

Figure 15: Illustration of intuitive meaning of the angular dependence.

As a result, in the center-of-mass system only the spatial part of ηµµ′ and ηνν′

remains non-zero. In other words, we may replace

ηµµ
′ → δii

′
and ηνν

′ → δjj
′
. (11.62)

This implies that also of the matrices A, B only the spatial parts are relevant. We
may replace them according to

Bµν → Bij and Aµ′ν′ → Ai′j′ . (11.63)

Let us finally note that v(p′)γµu(p) can be viewed as the polarization of the spin-1
state created from the two incoming particles. Hence, we may think of∑

r′r

(vr′(p
′)γµur(p)) (vr′(p′)γνur(p)) = Bµν → Bij ∼ ρini

ij (11.64)

as of the quantum mechanical density matrix characterising the polarisation of this
initial state. The concept of a density matrix comes in since, due to the unpolarised
beam, our information is incomplete. Analogously, we may think of the spatial part
of Aµν as of a final-state density matrix:

Aµν → Aij ∼ ρfin
ij . (11.65)

In this language, we have ∑
|M|2 ∼

∑
ij

ρini
ij ρ

fin
ij . (11.66)

We also note that the indices i, j correspond to the three physical polarizations of
the intermediate, massive photon.

As we know from our explicit calculation, we have Bµν ∼ pµp′ν +p′µpν−ηµν(pp′).
Rotating the cms in such a way that p = (0, 0, 1)T , one thus finds

ρijini ∼ δij − p̂ip̂j ∼

1 0 0
0 1 0
0 0 0

ij

, (11.67)
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where p̂ ≡ ~p/|~p|. For the final state we have an analogous but in general rotated
matrix:

ρijfin ∼ δij − k̂ik̂j . (11.68)

The angular dependence arising in this language is of course the same that we found
before: ∑

|M|2 ∼ tr(ρiniρfin) ∼ 3− 1− 1 + (k̂p̂)2 = 1 + cos2 Θ . (11.69)

But we can now understand more clearly where it comes from: As we see from the
form of the density matrices, the two incoming spin-1/2 particles always produce a
photon with spin ±1, never one with spin 0 along the 3-axis. Indeed, recall that the
relevant polarisation vectors are proportional to 1

i
0

 ,

 1
−i
0

 ,

 0
0
1

 . (11.70)

The last one does clearly not contribute to our initial-state density matrix above.
Analogous statements apply to the final-state density matrix. Due to this missing
third photon polarisation, the trace of the product of the two matrices is sensitive to
rotations. If each were a unit matrix, representing all three photons polarisations,
no angular dependence would arise.

1
-1

Figure 16: Spinor polarisations adding up to produce the photon polarisation.

We may also express what was said above by arguing about how the spinor
polarisations combine to form the polarisation of the photon, cf. Fig. 16. The two
incoming spinors make a polarisation +1 or −1 photon, along the beam axis. The
outgoing spinors analogously make a polarisation +1 or −1 photon along the decay
axis. Hence the correlation between beam and decay axis.

But why is the mathematically also possible combination

(+1/2)fermion + (−1/2)fermion = 0photon (11.71)

not realised? Naively, one would think that this is also a perfectly good process for
producing a massive intermediate photon.

The reason is that we are in the high-energy limit, where the fermion mass can
be neglected. Without a mass term, we are in fact dealing with two independent
und uncoupled fields. Indeed, as one can easily check, the Dirac lagrangian may be
rewritten according to

ψ(i /D −m)ψ = ψLi /DψL + ψRi /DψR −mψLψR −mψRψL . (11.72)
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If one drops the mass term, this means that (as long as one does not use the photon
propagator), there are two independent theories: one for the l.h. and one for the
r.h. field. The resulting possibilities for an annihilation process are illustrated in
Fig. 17. We see that no spin-0 photon (along the 3-axis) can be produced. The
underlying reason is that no helicity flip is possible in the absence of a mass-term.
More precisely, it is suppressed in the high-energy limit, when the mass is negligible.

e+
R, e

−
R can anihilate p p′

s s′

e+
L , e

−
L can anihilate p p′

s s′

e+
R, e

−
L cannot! p p′

s s′

Figure 17: Possible annihilation processes in the absence of a mass term.

12 Renormalization

12.1 Concept

Let us denote by {Qj, j = 1, 2, ...} the set of quantities we would like to calculate in
a given QFT. Typically, this might be cross-sections, decay rates, various Greens-
functions in real or Fourier space etc. Let us call them observables, although to
some of them, like Green’s functions, our access is somewhat indirect. Performing
the necessary calculations to obtain such observables in perturbation theory one
encounters, at higher orders, divergent loop integrals. A simple example is the
amplitude for 2-to-2-scattering in λϕ4-theory at NLO:

+

↓

+ ...

∫
d4k

1

k2 −m2 + iε
· 1

(k + q)2 −m2 + iε

(12.1)

Let us, for the moment, regularise by analytically continuing (‘Wick rotating’)
to Euclidean space, k2 → k2

E = k2
0 + k2

1 + k2
2 + k2

3, and introducing a cutoff in
our integration: |kE| < Λ. As a result, we have Qj = Qj(Λ) and naively the limit
Λ→∞ cannot be taken. Renormalization is the method to properly taking this
limit nevertheless.

We will explain this method using our main example, QED. We write the la-
grangian as

L = −1

4
F0,µνF

µν
0 + ψ̄0(i(/∂ + ie0 /A0)−m0)ψ0 (12.2)
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where F µν
0 = ∂µAν0−∂νA

µ
0 . The index 0 denotes so called bare fields and couplings.

Next, we rewrite L in terms of renormalised quantities:

Aµ0 = Z
1/2
A Aµ ; ψ0 = Z

1/2
ψ ψ ; e0 = Zee ; m0 = Zmm. (12.3)

Note that the renormalisation factors we introduced are related but not identical to
the Z-factors of LSZ. The lagrangian now takes the form

L = −1

4
ZAFµνF

µν + Zψψ̄(i(/∂ + iZeZ
1/2
A e /A)− Zmm)ψ . (12.4)

The key idea is as follows: Choose Zi to be specific functions of Λ,

Zi = Zi(Λ) , (12.5)

such that Qj = Qj(e,m,Λ, Zi(Λ)) have a well-defined (finite) limit as Λ→∞:

Q∞j ≡ lim
Λ→∞

Qj(e,m,Λ, Zi(Λ)) . (12.6)

If that is possible, our QFT is called renormalisable.
Note that it is highly non-trivial that this can be achieved because there are

infinitely many observables, j = 1, . . . ,∞, while the number of Zi’s is finite (here:
i = 1, . . . , 4). Even if it is possible, this procedure is in general non-unique: One can
always move finite factors between renormalised quantities and the Zi. Thus, to turn
the above in a unique procedure one needs so-called Renormalisation conditions.

For example, one may fix the positions of the poles of all propagators to the phys-
ical masses of the corresponding particles and all the residues to unity. Moreover,
one may fix some specific cross section experimentally and, using its tree-level (a.k.a.
LO) expression σ = σ(e,m), one may then fix e. As result, all further observables
(other cross sections, Green’s or correlation functions etc.) are now unambiguously
determined in terms of σ,m or, equivalently e,m. Only such further cross sections
and correlation functions will then be predictions of the theory.

As a comment, we note that one may be slightly more economical: If one accepts
that correlation functions diverge as Λ→∞, one may restrict oneself to introducing
only the renormalisation factors Ze = Ze(Λ) and Zm = Zm(Λ). That is sufficient to
make all ‘field-normalisation-independent’ observables, like cross sections and decay
rates, finite.

12.2 Renormalization conditions

12.2.1 Mass and field (re)normalisation of a scalar

Though we will not need this in QED, let us start with the particularly simple case
of the mass and field renormalization of the scalar field. Even more concretely, let
us look at λφ4 theory where, in agreement with our general approach, we no write
the lagrangian as

L =
1

2
(∂ϕ)2Zϕ −

1

2
ϕ2m2ZϕZm −

λ

4!
ϕ4ZλZ

2
ϕ . (12.7)
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In the case of free fields, i.e. for λ = 0, we expect the Zi’s to become unity. Therefore
it is natural to write them as13

Zϕ = 1 + δZϕ , Zm = 1 + δZm , Zλ = 1 + δZλ . (12.8)

Here we think of a power series expansion of all quantities in λ, such that δZi collects
all higher-order terms. With this, L can be written as

L =
1

2
(∂ϕ)2 − 1

2
ϕ2m2︸ ︷︷ ︸

free

+
1

2
(∂ϕ)2δZϕ −

1

2
ϕ2m2(δZϕ + δZm)− λ

4!
ϕ4ZλZ

2
ϕ︸ ︷︷ ︸

interactions

. (12.9)

Crucially, here we have used the fact that all δZi are of linear and higher order in λ
and we have hence grouped them together with the interaction term. We will treat
them as higher-order corrections in a systematic expansion in λ.

The new interaction terms introduced in this way contain two fields and hence
correspond to a 2-vertex. We will denote it by

. (12.10)

The corresponding Feynman rule can be derived as usual. In this simple case it can
also be simply read off from the above lagrangian. For example, for the correction
to the mass term, the so-called mass counterterm, we obviously have

m2

= im2(δZϕ + δZm) . (12.11)

A similar term proportional to p2 is added to include the effect of the lagrangian
term ∼ (∂ϕ)2 δZϕ. If we now calculate, for example, the leading-order self-energy
correction, we find

− iΠ(p2) =

︸ ︷︷ ︸
counter term

+

∼ Λ2

at O(λ) . (12.12)

At this point, we recall from Sect. 7.6 the definition

= −iΠ(p2) (12.13)

13 This argument may appear to be somewhat circular concerning Zλ which, in the absence of
interactions, does not even exist. Nevertheless, it is common and useful to expand also Zλ in this
manner.
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and the result

=
i

p2 −m2 − Π(p2)
. (12.14)

Note that here m denotes the Lagrangian (renormalized) mass parameter. This
quantity has been called m0 before, but now we used that symbol for the bare
mass. For the physical mass, as measured by an experimentalist, we introduce a
new symbol: mphys. The formula calculating the physical mass is, of course, as
before:

m2
phys = m2 + Π(m2

phys) . (12.15)

This result has been derived in Sect. 7.6 but, again, please note the change of
notation. Our proposed choice of mass renormalisation condition is:

m2 = m2
phys (12.16)

or, equivalently,
Π(m2) = 0 . (12.17)

In other words, we choose our renormalised mass parameter in the lagrangian to
simply be identical with the physical mass.

For the field renormalisation or wave-function renormalization, we first
recall our previously derived formula for the Z-factor of LSZ:

Z−1 = 1− Π′(m2
phys) . (12.18)

It is then a natural choice to demand

Z = 1 (12.19)

or, equivalently (using m2
phys = m2),

Π′(m2) = 0 . (12.20)

We see that, by imposing relations like Π(m2) = 0, Π′(m2) = 0 etc., we get
conditions of the type δZi = λfi(Λ) with f(Λ)→∞ as Λ→∞. This is for example
particularly obvious in (12.12). The logic in perturbation theory is to always take
the limit λ→ 0 (which the limit defining perturbation theory!) more seriously than
Λ → ∞. In other words: δZi is treated as a small correction in spite of Λ being
potentially large. Only after all Λ-dependence has disappeared we are allowed to
give λ its measured, physical value.

12.2.2 Mass and field normalization of the electron

Conceptually, this directly carries over to spinor fields:

a b = −iΣ(/p)
b
a ; (12.21)
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=
i

/p−m− Σ(/p)
. (12.22)

Here the self-energy Σ is defined in complete analogy to the scalar case. It is, of
course, a matrix since the field has four components. Also, it is not a Lorentz-
invariant. Hence, it can depend on p more generally then through p2. This is
accounted for by giving Σ the argument /p. The readers should check themselves
that the summation of the geometric series leading to the result above works just
like in the scalar case.

Our choice of renormalisation conditions is, in analogy to the scalar case,

m = mphys ⇒ Σ(m) = 0 (12.23)

for the mass and
Z = 1 ⇒ Σ′(m) = 0 (12.24)

for the field.
We now want to confirm that, once Σ(m) = Σ′(m) = 0 holds, we really get a pole

at p2 = m2 with a residue like in the free case. For this purpose, we Taylor-expand
the function Σ(/p) around m:

Σ(/p) = Σ(m) + Σ′(m)(/p−m) +
1

2
Σ′′(m)(/p−m)2 + . . . . (12.25)

This gives

i

/p−m− Σ(/p)
=

i

(/p−m)
(
1− 1

2
Σ′′(m)(/p−m)− . . .

)
=

i(/p+m)

(p2 −m2)
(
1− 1

2
Σ′′(m)(/p−m)− . . .

)
=
i(/p+m)

(
1 + 1

2
Σ′′(m)(/p−m) + . . .

)
(p2 −m2)

=
i(/p+m)

p2 −m2︸ ︷︷ ︸
pole at p2 = m2

+ i

(
1

2
Σ′′(m) + . . .

)
︸ ︷︷ ︸

analytical at p2 = m2

.

(12.26)

We see that the first term has a pole at p2 = m2 as in the free case. The second
part does not give any contributions because it is analytical at p2 = m2. Overall,
the residue is the same as in the free theory.

12.2.3 Field normalization of the photon

The photon mass should remain zero automatically, by the structure of the theory.
More precisely, because gauge invariance does not allow us to write down a mass
term for the vector field of the photon, no such term should arise from higher-order
corrections.
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The analogue of the self-energy,

µ ν = iΠµν(q) , (12.27)

is also often called vacuum polarization in the photon case. The term on the
right-hand side can be thought of as a 4 × 4-matrix which we will denote by ΠM .
We have

= iΠM ;

=
i

−q2η
+

i

−q2η
iΠM i

−q2η
+ . . . =

i

−q2η + ΠM(q)
.

(12.28)

Here η denotes the matrix ηµν .
We know that ΠM(0) = 0 must be maintained to keep the photon massless and

we assume that our regularisation respects this. By covariance, we have

Πµν(q) = ηµνA(q2) + qµqνB(q2) . (12.29)

As a crucial fact, we claim that gauge-invariance enforces A = −B · q2, i.e.,

Πµν(q) = (ηµνq
2 − qµqν)Π(q2) . (12.30)

For this, a general derivation will be given later on. A quick argument is as follows:
Consider 2→ n photon scattering: }

n outgoing photons . (12.31)

Let us change one polarization vector by a gauge transformation:

εµ(k) → εµ(k) + αkµ . (12.32)

Since, by gauge invariance of our theory, the amplitude should not change, we con-
clude that the amplitude must vanish if any index is contracted with its correspond-
ing kµ.

Our interest is in the special case of only two photon lines. We then expect

k k
µ ν k

ν = 0 (12.33)
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and hence
Πµν(q) q

ν = 0 and, finally, A = −B q2 . (12.34)

Thus, we have

=
i

−ηq2(1− Π(q2))− (q ⊗ q)Π(q2)︸ ︷︷ ︸
(∗)

, (12.35)

where (∗) does not contribute after contraction with physical polarizations since

εµ(q) qµ = 0 . (12.36)

Form the above, it is clear that a natural normalisation condition is

Z = 1→ Π(0) = 0 , (12.37)

since in this case the propagator reproduces the behaviour of the free theory near
the pole. We recall that Π(q2) is defined by

µ ν ≡ iΠµν(q
2) ≡ i(ηµνq

2 − qµqν)Π(q2) .

Note that, due to the extracted factor q2, the requirement Π(0) = 0 for the photon
is the natural analogue of the condition Π′(m2) = 0 for the scalar.

12.2.4 Vertex normalization

This analogous in spirit but technically simpler than to fixing some specific cross
section. We first define the vertex function Γµ by

≡ ieΓµ(p, p′) a
b .

(12.38)

The simplest contributing diagram is

, (12.39)

but there are of course many more at higher order. We make the choice that p
belongs to the upper fermion line and p′ to the lower, bot are directed along the
arrows. Moreover, q = p′ − p is the incoming photon momentum.

Our condition is as follows: We interpret Γµ as the amplitude of a positron to
scatter off a fixed electromagnetic field configuration. This implies that we choose
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both fermion momenta on-shell and multiply with u(p′) and u(p) from left and right
respectively. Then we require that in the low-energy limit, i.e. for q → 0, we should
recover the tree-level result: Γµ(p, p) = γµ.

It is interesting to see how many independent constraints this actually imposes.
This is a non-trivial question since Γµ is in general a matrix.

To analyse this, let us observe that Γµ can be built from γ matrices and hence
its index µ can only belong to a γ matrix or to one of the available independent
vectors, which are p and p′. (The Levi-Civita tensor can not appear since we are
dealing with a parity invariant theory.) Hence, in full generality,

Γµ = γµ · A(/p, /p
′) +

(
p′
µ

+ pµ
)
B(/p, /p

′) +
(
p′
µ − pµ

)
C(/p, /p

′) . (12.40)

Now we take advantage of the fact that we analyse Γ only as being sandwiched
between ū(p′) and u(p). Hence, we may use

/p u(p) = mu(p′) , ū(p) /p′ = ū(p′)m (12.41)

to replace A, B, C, without loss of generality, by numbers ×1. Thus, we have

Γµ = γµA(q2) +
(
p′
µ

+ pµ
)
B(q2) +

(
p′
µ − pµ

)
C(q2) , (12.42)

where q2 is the only kinematic invariant and hence the only possible argument of
our scalar functions A,B,C.

As before, using gauge invariance we can argue that

ū(p′) qµΓµ u(p) = 0 , (12.43)

even if q2 6= 0 since the gauge parameter within the propagator could vary and this
should not affect the result. One may think here of the propagator as appearing in
a more complicated diagram like

. (12.44)

We thus learn from gauge invariance that

qµ
(
p′
µ − pµ

)
= q2 6= 0 ⇒ C = 0

qµ
(
p′
µ

+ pµ
)

= p′
2 − p2 = m2 −m2 = 0 ⇒ B unconstrained .

(12.45)

Now we have
Γµ = γµA(q2) +

(
p′
µ

+ pµ
)
B(q2) . (12.46)

Applying u(p′) and u(p) from left and right and using the Gordon identity

2mu(p′)γµu(p) = u(p′) (p′
µ

+ pµ + iσµνqν)u(p) , (12.47)

with σµν ≡ i
2
[γµ, γν ], one may trade the term proportional to (pµ + p′µ) for a term

proportional σµν and a contribution to the term with γµ. Thus, we have

Γµ = γµF1(q2) +
iσµνqν
2m2

F2(q2) , (12.48)

where F1(q2) and F2(q2) are known as form factors. We see that we are actually
imposing only a single constraint: F1(0) = 1.
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12.3 Vacuum polarisation in dimensional regularisation

Before continuing the conceptual development, let us calculate one of the relevant,
divergent loop diagrams which make the procedure of renormalisation necessary and
important. While it is intuitive to think of regularising by a cutoff, to exclude high
momenta, in practice a different approach (automatically respecting Poincare and
gauge invariance) is more useful. It is known as dimensional regularisation:

Let us embed our theoretical considerations in a d-dimensional space-time and
try to calculate

iΠµν
(1)(q) = = (−1)(ie)2

∫
ddk

(2π)d
tr

[
γµ

i

/k −m
γν

i

/k + /q −m

]
. (12.49)

Before doing so, let us explain the idea of dimensional regularization using a
simpler example. Consider the log-divergent euclidean integral

∫ Λ d4kE
(k2
E +m2)2

= Ω3

Λ∫
0

d|kE| |kE|3

(|kE|2 +m2)2
' Ω3 ln

(
Λ

m

)
. (12.50)

In dimensional regularization with d = 4− ε, the same integral gives∫ Λ d4−εkE
(k2
E +m2)2

= Ω3−ε

∞∫
0

d|kE| |kE|3−ε

(|kE|2 +m2)2
= Ω3−εm

−ε

∞∫
0

d|k′E| |k′E|
3−ε

(|k′E|
2 + 1)2

(12.51)

' Ω3m
−ε

∞∫
1

d|k′E| |k′E|
3−ε

|k′E|
4 = Ω3m

−ε

∞∫
1

dx

x1+ε
= Ω3m

−ε1

ε
.

Here, in going from the first to the second line, we used the fact that, at ε � 1,
our integral is almost log-divergent. It is hence dominated by the region |k′E| � 1.
We thus make only a small error by dropping the ‘+1’, which suppresses the regime
|k′E| � 1, and instead starting the integration at |kE| = 1. In this step we also use
Ω3−ε ' Ω3. But we keep the ε in m−ε since it seems awkward to change the mass
dimension of the expression.

Our result demonstrates that the poles in ε track the physical log-divergence.
This can be made rigorous, see e.g. Collins’ book on Renormalization [8]. In the
end, we always return to d = 4 and absorb the 1/ε poles in the Zi. This is analogous
to what was explained earlier using the cutoff Λ rater than ε as a regulator.

It is crucial that even for a modified number of dimensions Poincaré and gauge
invariance are fully preserved. Thus we still have

Πµν =
(
q2ηµν − qµqν

)
Π (12.52)

and hence
Π µ
µ =

(
q2d− q2

)
Π and Π =

1

(d− 1)q2
Π µ
µ . (12.53)
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The trace in our integral is evaluated according to

tr
[
γµ

i

/k −m
γµ

i

/k + /q −m

]
= −

tr
[
γµ(/k +m)γµ(/k + /q +m)

]
(k2 −m2) ((k + q)2 −m2)

= −
tr
[
((2− d)/k +md)

(
/k + /q +m

)]
(k2 −m2) ((k + q)2 −m2)

= 4
(d− 2)k(k + q)−m2d

(k2 −m2) ((k + q)2 −m2)
, (12.54)

where we used the Clifford algebra in d dimensions with relations like

γµγ
µ = d · 1, γµ/kγµ = 2/k − γµγµ/k = (2− d)/k, etc. (12.55)

Note that here the convention is to use, in spite of the changed number of dimensions,
tr(1) = 4. This is just an unimportant overall factor.

The integral in d dimensions over k of the above expression lets one expect a
quadratic divergence in d = 4. In dimensional regularization this corresponds to a
pole at d = 2. But at d = 2, the coefficient of the k2-term vanishes. Accordingly
Π ν
µ is not quadratically divergent in d = 4. That is someting which is not as easily

seen if one simply introduces a cutoff.
It is convenient to proceed by introducing an integration over a so-called Feynman

parameter:
1

AB
=

∫ 1

0

dx
1

(xA+ (1− x)B)2 . (12.56)

With this we can write

iΠ µ
(1)µ = 4e2

∫
ddk

(2π)d

∫ 1

0

dx
(d− 2)k(k + q)−m2d

[(1− x)(k2 −m2) + x((k + q)2 −m2)]2
. (12.57)

Now we change the order of integration and substitute the integration variable ac-
cording to k′ = k − xq. Then we rename k′ to k. In the denominator, we obtaink2 + x(1− x)q2 −m2︸ ︷︷ ︸

≡−∆

2

, (12.58)

where we introduced ∆ as a convenient abbreviation. For the numerator we find

(d− 2)
(
k2 + (1− 2x)kq − x(1− x)q2

)
−m2d . (12.59)

In this term we can drop the term (1 − 2x)kq as it is odd under k → −k and the
denominator is even.

Together this gives

iΠ µ
(1)µ = 4e2

∫ 1

0

dx

∫
ddk

(2π)d
(d− 2) (k2 − x(1− x)q2)−m2d

(k2 −∆)2
. (12.60)

In the above calculation we supressed iε for brevity. But in fact we always had
m2 → m2 − iε. This determines the pole structure in the k0-plane, cf. Fig. 18.
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Re k0

Im k0

Figure 18: Pole structure in the complex k0 plane (symbolically). In appropriate
regions of q the structure is such that the integration contour can be rotated to the
imaginary axis, as described in the text.

We can perform a so-called Wick rotation, changing the integration contour
according to

k0 → ik0 , dk0 → i dk0 , k2 = k2
0 − ~k2 → −k2

E = −(k2
0 + ~k2) . (12.61)

The index E characterises the use of a Euclidean metric. With this we obtain

iΠ µ
(1)µ = 4ie2

∫ 1

0

dx

∫
ddkE
(2π)d

(d− 2) (−k2
E + x(1− x)q2)−m2d

(k2
E + ∆)2

(12.62)

Next we split the fraction using

k2
E + ∆−∆

(k2
E + ∆)2

=
1

k2
E + ∆

− ∆

(k2
E + ∆)2

(12.63)

and hence only need to calculate integrals of the type∫
ddkE
(2π)d

1

(k2
E + ∆)n

=

∫
dΩd−1

(2π)d

∫ ∞
0

d|kE|
|kE|d−1

(k2
E + ∆)n

. (12.64)

Here the first, angular integration is well-defined for all d > 1. It can easily be
promoted to an analytic function of d with poles using∫

dΩd−1 =
2πd/2

Γ(d/2)
. (12.65)

The second integral is well-defined for all d < 2n and can easily be promoted to an
analytic function of both d and ∆, yielding the result∫ ∞

0

dy
yd−1

(y2 + ∆)n
=

Γ(d
2
)Γ(n− d

2
)

2Γ(n)

(
1

∆

)n− d
2

. (12.66)
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Crucially for n = 2 and d = 4− ε we get a pole in ε:

Γ(n− d

2
) = Γ(

ε

2
) =

2

ε
− γ +O(ε) , (12.67)

where γ is the Euler-Mascheroni constant, γ ≈ 0.577.
It is equally important that we do not get a pole in d = 2 from the k2

E term, since
this would have signalled a quadratic divergence in d = 4. The result is proportional
to

(d− 2)
Γ(1) Γ(1− d

2
)

2Γ(1)

(
1

∆

)1− d
2

= −(1− d

2
)Γ(1− d

2
) ∆

ε
2 = −Γ(2− d

2
)∆

ε
2 . (12.68)

The pole also appears in d = 4, corresponding to a contribution to the log divergence.
Now we use equations (12.62) and (12.64), focus on the ε→ 0 limit and perform

the x integration to get

Π(1)(q
2) =

1

(d− 1)q2
Π µ

(1)µ = − e2

6π2ε
+ · · · . (12.69)

The finite terms are also easy to obtain and are important, but we will not have
time to make use of them so we do not display them.

12.4 QED β-function

At this point in the course we could perform numerous further calculations. We
could use the calculation of the last subsection to determine ZA and the analogous
self-energy calculation for the electron to fix Zψ and Zm. The vertex calculation at
1-loop order would, analogously, fix Ze. Then we could calculate two cross-sections
– one to fix the coupling e in terms of experimental data, the second as a prediction
of our theory.

In fact, for the first cross section, one typically picks the process eγ → eγ at
qγ → 0. With some effort one would find that our coupling e is indeed the classical
electric charge, as defined by this process.

Thus, one needs at least the diagrams

, , (12.70)

plus diagrams required for the actual cross-section. We do ot have the time to carry
this out.

However, there is a very important physical quantity (observable) which we can
obtain with the help of only one diagram: The β-function determines the Λ-
dependency of e0(Λ). Let us recall that our renormalized coupling e is by definition
independent of Λ. As

e0 = e0(Λ) = Ze(Λ) e, (12.71)
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we have

d

d ln(Λ)
e0 = e

d

d ln(Λ)
Ze(Λ) = e

d

d ln(Λ)
(1 + δZe(Λ)) (12.72)

' e
d

d ln(Λ)

(
1 + c e2 ln(Λ)

)
= c e3, (12.73)

where we used that Z has a logarithmic Λ-dependency and we are working only at
leading order in e. We have defined c to be the coefficient of the 1-loop log-divergence
in δZe.

Since e ' e0 at leading order we can discard higher order terms on the right
hand side to find

d

d ln(Λ)
e0(Λ) = c e3

0(Λ) . (12.74)

Now let us give (one possible) definition of the β-function:

β (e0(Λ)) ≡ d

d ln(Λ)
e0(Λ) (12.75)

Hence equation (12.74) supplies us with the leading order β-function for the bare
coupling of QED. Note that, given β(e0), the above differential equation (known as
renormalization group equation orRGE) allows us to find e0 for any Λ provided
some boundary condition.

Why is this so-called running of the bare coupling of any physical relevance?
To understand this, let us calculate a cross-section at a given energy

√
s at leading

order:
dσ

dΩ
=
c1 e

4
0(Λ)

s

(
s� m2

)
(12.76)

Here we used the bare coupling, which is sufficient since the higher order difference
is small as long as ln(Λ/

√
s) is not large (i.e. δZ ' e2 ln(Λ/

√
s)� 1 ).

Next, let us define a scale-dependent physical coupling by

e4(µ) ≡ s

c1

dσ

dΩ

∣∣∣∣
s=µ2

. (12.77)

The idea is that this coupling governs the proper strength of interactions at an
energy corresponding to µ.

We see that
e(µ) ' e0(Λ) at µ . Λ (12.78)

and hence e(µ) obeys approximately the same RGE as e0:

d

d ln(µ)
e(µ) = β (e(µ)) ; β(e) = c e3 . (12.79)

We recall that c is defined by δZe = c e2 ln(Λ).
As a cautionary remark, please note that the β-functions of the various different

couplings (here bare vs. physical) agree only at leading order.

120



It is obvious that the structure ∂µ+ieAµ will be unchanged under renormalization
if Ze

√
ZA = 1. This relation can be shown to hold exactly, which is part of the

Ward-Takahashi identities, to be discussed later on and in QFT 2.
Note that, for historical reasons, many books use a different notation:

ZA = Z3 ; Zψ = Z2 ; ZeZψ
√
ZA = Z1 . (12.80)

Then the crucial identity we just stated takes a different form:

Ze
√
ZA = 1 ⇔ Z1 = Z2 . (12.81)

From ZA = Z−2
e we can conclude that

c = −1

2

1

e2

d

d ln(Λ)
ZA . (12.82)

So there is clearly a ln(Λ)-term in δZA, and δZA corresponds to a counterterm in L:

L ⊃ −1

4
FµνF

µνδZA =
1

2

(
Aµ∂

2Aµ − Aµ∂µ∂νAν
)
δZA . (12.83)

This provides a counterterm vertex

= i
(
−ηµνp2 + pµpν

)
δZA. (12.84)

The complete leading-order expression for the photon self-energy now reads

iΠµν = + , (12.85)

or in words
self-energy = counter term + 1-loop term . (12.86)

We also recall that
iΠµν = i

(
q2ηµν − qµqν

)
Π(q2) (12.87)

and
iΠ(1)µν = i

(
q2ηµν − qµqν

)
Π(1)(q

2) . (12.88)

Hence, using renormalization condition on Π(q2), we can conclude that

c = − 1

2e2
·
{
coeff. of ln(Λ)-term in Π(1)(q

2)
}
. (12.89)

Using our calculation of the vacuum-polarisation diagram, this gives us

c =
1

12π2
(12.90)
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and thus the β-function at 1-loop level:

β(e) =
e3

12π2
. (12.91)

Note the interesting implication this has for the interaction strength:

d

d ln(µ)

(
1

e2

)
= − 2

e3
β(e) = − 2

12π2
. (12.92)

The solution of this, illustrated in Fig. 19, shows that we find a so-called Landau
pole. This occurs at very high energy scales (way above the Planck scale), but
at the conceptual level it implies that pure QED is only effective theory for low
energies. The cutoff can, in this case, not be taken all the way to infinity. This will
be different, e.g., in QCD.

α-1(μ)

ln(μ)me Landau Pole

Figure 19: Inverse running coupling of QED.

12.5 The Ward-Takahashi identity

The Ward-Takahashi identity is an identity between amplitudes or Green’s functions
which relies on gauge invariance. We start with an illustrative example calculation:
Consider a leading order three-point function with the γ-propagator amputated but
the fermion propagator present, and contract this with kµ:

kµ·

 k, µ,→

p

p+k
 =

i

(/p+ /k)−m
ie/k

i

/p−m
= (−e)

{
i

/p−m
− i

(/p+ /k)−m

}

(12.93)
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The last expression follows by writing /k = (/p + /k −m) − (/p −m). Pictorially this
can be understood as

(12.94)

In words: An external γ-line contracted with kµ can be removed and the vertex
replaced by the difference of the two propagators before and after the vertex (mul-
tiplied by (−e)).

We can also amputate the external fermion propagators by multiplying with

− ((/p+ /k)−m) {. . . } (/p−m) (12.95)

which yields
− ekµΓµ = i

{
((/p+ /k)−m)− (/p−m)

}
(12.96)

where in our leading order case Γµ = γµ.
Further, we can look at the actual matrix element by putting p and p+k on-shell

and multiplying with ū(p+ k) . . . u(p):

ū(p+ k)kµΓµu(p) = 0 . (12.97)

This is just a special case of the general gauge-invariance-based claim that kµMµ = 0
for any physical amplitude with external photon.

The key interest is in the following simple generalisation of our argument:

(12.98)
If we evaluate the sum, all terms except the last and the first cancel pairwise. We
thus get

(12.99)
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Moreover, the same argument can be made for closed loops:

∑
all insertions

kµ ·
~k

µ = 0 . (12.100)

Here, to find the vanishing result one also needs to shift the integration variable at
the end.

Combining the above statements for the open fermion line and the loop, we arrive
at the General Theorem:

(12.101)
For us, two corollaries are particularly important:

Corollary 1: We amputate fermion lines (multiplying with /qi, /pi∀i), go on shell,
and multiply with external spinors (ū(qi), u(pi)). This gives zero on the r.h. side
due to factors like

ū(qj)i /qj
i

/qj − /k
= 0 . (12.102)

Thus, we have derived the desired result that kµMµ = 0 forMµ a physical ampli-
tude.

Corollary 2: Consider the case of a 3-point-function:

. (12.103)

Let us introduce the notation S(p) for the resummed fermion propagator in momen-
tum space:

S(p) =
i

/p−m− Σ(/p)
. (12.104)
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The our general theorem implies

S(p+ k) (iekµΓµ(p+ k, p))S(p) = (−e) (S(p)− S(p+ k)) (12.105)

and hence
− ikµΓµ(p+ k, p) = S−1(p+ k)− S−1(p) . (12.106)

We can read off that the divergence in kµΓµ at k → 0 is the same as the divergence
in Σ′. Hence it is possible to choose ZψZ

1/2
A Ze = Zψ or, equivalently, Z1 = Z2. As

we argued, this is the preferred choice respecting gauge invariance.

12.6 Sketch of an operator derivation of the Ward Takahashi
identity

See the very end of the renormalisation chapter in the handwritten notes on the
Web page of the course.

13 Non-abelian Gauge Theory and Standard Model

13.1 Non-abelian gauge theory

Remember: L = (∂µφ)(∂µφ)−m2φφ
is invariant under φ(x)→ eiα(x)φ(x)⇒ U(1)-gauge-theory
Now let φ(x) ∈ V (vector space), such that L is invariant under a group G acting
on V through a representation R:

φ(x)→ R(g) · φ(x), want g = g(x) (13.1)

• To be more concrete, focus on G = SU(n), R is the fundamental representation

• In this case:
L = (∂µφ)j(∂µφ)j −m2φjφ

j

= (∂µφ)†(∂µφ)−m2φ†φ
(13.2)

This is obviously invariant under φ→ Uφ, U ∈ SU(n), as U †U = 1

• Let us, as in the U(1) case introduce:

Dµφ = ∂µφ+ iAµφ, (13.3)

where Aµ is a matrix and demand

Dµφ→ UDµφ, (13.4)

even if U = U(x) (This will ensure the invariance of L). This will be true if:

D′µ
!

= UDµU
†

⇔1∂µ + iA′µ
!

= U (1∂µ + iAµ)U †

⇔1∂µ + iA′µ
!

= ∂µ + U(∂µU
†) + UiAµU

†

⇒A′µ
!

= UAµU
† − iU(∂µU

†)

(13.5)
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• Let us look at the infinitesimal version U = eiT , T ∈ g is small.

LO in T⇒ δAµ = i[T,Aµ]−∂µT︸ ︷︷ ︸
∗

+O
(
T 2
)

(13.6)

*) We also have this in abelian gauge theory. But note: for abelian case [.,.]
vanishes, so the expression holds.

• We see that if Aµ ∈ g, it will stay so! This completes our construction:

L = Lgauge + Lmatter

= − 1

2g2
trFµνF

µν︸ ︷︷ ︸
gauge

+ (Dµψ)† (Dµψ)−m2ψ†ψ︸ ︷︷ ︸
matter

, (13.7)

where Fµν = −i[Dµ, Dν ], Dµ = ∂µ + iAµ and Aµ ∈ g.

• Invariance straight forwardly follows from

D′µ = UDµU
† (13.8)

• In particular, Fµν is defined as a differential operator but happens to be just a
matrix. Also:

F ′µν = UFµνU
†

trF 2 is invariant
(13.9)

• Sometimes: Convenient to choose a basis T a ∈ g, a = 1, · · · , dim(G). Then:

Aµ = AaµT
a; Fµν = F a

µνT
a (13.10)

Consider:
Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ] (13.11)

Decompose both sides in components, use the definition of structure constants of
Lie algebras

[
T a, T b

]
= ifabcT c

⇒ F a
µν = ∂µA

a
ν − ∂νAaµ − fabcAbµAcν (13.12)

Also if we choose a basis where tr
(
T aT b

)
= 1

2
δab, then

tr(FµνF
µν) =

1

2
F a
µνF

µν a (13.13)

• Generalization to fermions:

Lmatter = ψ̄(i /D −m)ψ

= (ψ̄k)
a

[
i(γµ)ba

(
∂µδ

k
j + iAαµ( Tα︸︷︷︸

∗

)kj

)
−mδbaδkj

]
(ψj)b

(13.14)

*) possibly R(Tα) for other representation.
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13.2 Standard Model

• We have:

Lgauge = −
3∑
i=1

1

2g2
i

tr
(
F (i)
µν F

(i)µν
)
, (13.15)

where the group is G = SU(3) × SU(2) × U(1) and i = 1, 2, 3 corresponds to
U(1), SU(2), SU(3), respectively

• Fermions come in 3 generations:

Lmatter =
3∑

a=1

ψ̄aLi /Dψ
a
L all left handed (13.16)

where for each a, we have the fields:

ψaL = {Qa, (uc)a, (dc)a, La, (ec)a}
= (3, 2)1/3︸ ︷︷ ︸

∗

+(3̄, 1)−4/3 + (3̄, 1)2/3 + (1, 2)−1 + (1, 1)2 (13.17)

*) 3 stands for the fundamental representation of SU(3), 2 for the fundamental
representation of SU(2) and the index gives the charge under U(1) (here: ψ →
eiα/3ψ).
The second line in 13.17 fixes all the couplings in Lmatter
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