12.1 String coupling and sum over Riemann surfaces

Recall the basic definition of a string amplitude given larlier: $\begin{aligned}
\mathcal{A} &= \underbrace{\mathcal{E}}_{g=0} \int \frac{Dh DX}{Vbl} e^{-S[X;h]} \int d_{\tilde{z}_{1}}^{2} \cdots \int d_{\tilde{z}_{n}}^{2} V_{n}(\tilde{z}_{n}) \cdots V_{n}(\tilde{z}_{n}) \\
&\int \partial_{l} f_{X} Weye \\
&\uparrow \\ genus"g \\
\end{aligned}$ (in our earlier discussion we did not moke this integration manifest)

Illustration:

$$g=0$$
 $g=1$
 $f=2$
 $g=2$

- The "1/Vol" has been introduced to cancell the "Vol" from the integral over the gauge group.
- · In our earlier discussion, we have ignored a key term in S:

$$S[X,h] = \frac{1}{4\pi\sigma^{2}} \int d^{2} \sqrt{h} (\partial X)^{2} + \frac{1}{4\pi} \int d^{2} \sqrt{h} \, \phi \, \mathcal{R} + \frac{1}{2\pi} \int ds \, \phi \, \mathcal{K}$$

$$S[X,h] = \frac{1}{4\pi\sigma^{2}} \int d^{2} \sqrt{h} (\partial X)^{2} + \frac{1}{4\pi} \int d^{2} \sqrt{h} \, \phi \, \mathcal{R} + \frac{1}{2\pi} \int ds \, \phi \, \mathcal{K}$$

$$S[X,h] = \frac{1}{4\pi\sigma^{2}} \int d^{2} \sqrt{h} (\partial X)^{2} + \frac{1}{4\pi} \int d^{2} \sqrt{h} \, \phi \, \mathcal{R} + \frac{1}{2\pi} \int ds \, \phi \, \mathcal{K}$$

\$\overline{\phi}\$ is part of the fargetspace backgroumd, just like

\$\overline{\phi}\$ use intermined by the fallow pological

\$\overline{\phi}\$ use intermined by the fallow number

\$\overline{\phi}\$ use intermined b

• Examples:
• Examples:
• real pnjechive plane Möbiusship Klain bottle
• Define
$$g_s = e^{\phi}$$

• Tocussing on closed-shing amplitudes, we see that every colora
"hole" ("loop", in QFT language), produces an extra factor g_s^2 in d .
=> At $\phi \rightarrow -\infty$, our theory becomes weakly coupled
• The normalization of the Vis is to some extent a our antional since
if is related to the normalization of the Corresponding target-space
fields. One insuelly includes a factor g_s in V. Thus, the fadoron
Verkx appropriate is $V(k_{21}\overline{z}) = g_s : e^{iht^{K_{p}}(2,\overline{z})}:$
• As a result, one has for the 2-pt-fet.,
 $(xx) \sim g_s^{2} \cdot e^{-\phi(2-2g)} \sim g_s^{2} g_s^{-2} \sim 1$,
and then additional g_s -factors for loops $(x = x)$,
 $4-pt-fets$ (x, x) , etc.
12.2 facing fixing
• We thus have: $A \sim g_s^{2g-2} \int \frac{D \times Dh}{VK_{Diffx}Uyc} e^{-Sx} \prod_{i=1}^{T} \int_{i=1}^{V_i}$
• One carlier peth integral discussion shoused, of a rough level
 $\int Dh = Vol_{Mifx}Uyc \in \Delta_{FP}$ [h]

· Now we need to include two finer effects, which were already mentioned before:

a) On a compact Riemann surface, the metric generically
includes d.o.f. which can not by absorbed in Diffx Weyl.
An example are the shape moduli of a torus:
Let us denote these moduli by
$$t^{k}$$
; $k = 1, ..., p$ s.t. $h = h(t)$

· We now proceed by treating the integral over the metric together with x of the Verkx integrations:

$$\frac{1}{\operatorname{Vol}_{D\times W}}\int Dh \prod_{i=n}^{K} d^{2}_{\xi_{i}} = \frac{1}{\operatorname{Vol}_{D\times W}}\int Dh D_{5} d^{H}_{t} \prod_{i=n}^{K} \int d^{2}_{\xi_{i}} \delta(\xi_{i} - \xi_{i}^{\xi_{i}}) \delta[h - h^{5}(t)] \Delta_{FP}$$

$$piff_{x} \operatorname{Weyl} \qquad hixed \operatorname{Vevkx} positions$$

Here the 5 & t - integrations remove all S-fets. and AFP compensates the inverse determinant appearing in this process. We now carry out hand F; - integrations and eventually the 5-integration:

$$= \frac{1}{Vol_{DxW}} \int D\zeta d^{M}t \Delta_{FP} = \int d^{M}t \Delta_{FP}$$

We explicitly have: $\Delta_{FP}^{-1} = \int d^{H}t \int D\xi \, \delta\left[h - \hat{h}^{5}(t)\right] \, \frac{17}{5} \, \delta\left(\frac{\xi}{\xi} - \frac{\xi}{\xi}\right).$

- Note that 5 and t define together our FP determinant.
 The two relevant descriptions are ξi, h ⊂ DFP > 5, t.
 <u>Intuitively</u>: h⁵(t) parametrizes all metrics. But 5, t have slightly more freedom the residuel gauge tifs. The metal between 5, t and h time couly becomes perfect when supplementing he with the k points ξi.
- We now mole manifest how $h^{5}(t)$ changes due to § (infinitesimally given by $\in \& w$) and t (infinitesimally given by st): $Sh_{ab} = -(P\epsilon)_{ab} + (2w - D_{c}\epsilon^{c})h_{ab} + \sum_{k=1}^{h} st^{k} \partial_{tk} h_{ab}(t)$ • Analogously, ξ_{i}^{5} changes due to 5 as $S\xi_{i}^{5} = \epsilon(\xi_{i})$. • Thus, we have $\Delta_{Fp}^{-1} = \int a^{th} st D\epsilon \int d^{k} x D\beta \exp 2\pi i \left[\int \beta \cdot (-P\epsilon + st^{k} \partial_{t} h) + x_{i} \cdot \epsilon(\xi_{i}) \right]$ $\int \int I_{ak} grahons tealizing \delta - fets.$ infinitesimal versions of <math>t, 5 integrahon above. The w-integrahon has been carried out leaving β traceless by definition.
- Now, to get Δ_{FP} , we simply make all our integration variables frassmann. $E \rightarrow C$; $\beta \rightarrow b$; $x \rightarrow \eta$; $\delta t \rightarrow S$ 1 $\alpha \ell \ell$ frassmann variables / fields.
- The variables η , β appear only linearly and w/v derivatives in the exponent. So we can perform the integration giving $\frac{17}{17} C^{4}(\hat{\xi}_{i}) \cdot C^{2}(\hat{\xi}_{i}) \qquad \text{and} \qquad \frac{17}{17} \int b \cdot \partial_{k} h^{2} \cdot d_{k} h^{2} \cdot$

• The rest produces the usual FP-action together with the
b, c integrations. Thus, collecting all the factors from our
previous formula for the emploted e, we have:
(dranging notation according to
$$\frac{1}{2} \rightarrow \frac{2}{12}$$
)
 $\mathcal{A}_{n} = \frac{2}{2}g_{3}^{-2+2g}\int d^{n}t DX Db Dc e^{-Sx^{-}Sxp} \prod_{i=1}^{n} \int d^{2}t_{i} \prod_{j=n+2i}^{n} c^{n}(\frac{2}{2}i)c^{2}(\frac{2}{2}i)$
 $\prod_{k=1}^{n} \int b \partial_{k}h \prod_{i=1}^{n} 1 h(\frac{1}{2}i) V_{i}(\frac{2}{2}i)$.
 $\frac{1}{2} \int b \partial_{k}h \prod_{i=1}^{n} 1 h(\frac{1}{2}i) V_{i}(\frac{2}{2}i)$.
 $\frac{1}{2} The Virasoro-Shapiro amplitude$
 $(4-tadyon scattuning at the level, i.e. On S^{2})$
• Facts: $-S^{2}$ has no moduli
 $-Goul. bifs. on S^{2}$ allow one to move 3 arbitrary points to
 3 desired fixed positions $(e.g. 2, z=0, z_{2}=0, z_{3}=1)$.
 $[cl. BLT; finsparg's lecture under]$
 $\Rightarrow \mathcal{A}_{4} = g_{3}^{*} \int d^{2}t_{4} <: e^{it_{1}X(2n,\overline{n}_{1})}: \int_{1}^{3}: c(\overline{n})\overline{c(\overline{n}_{1})}e^{it_{1}X(2n,\overline{n}_{2})}: \sum_{i=1}^{i=1}$
• Obtriously, the X & c = points split.
• Ignoring wormed ordering, the X-point veads
 $\int DX \exp\left[\frac{1}{2\pi di}\int d^{2}t_{2}X\partial \overline{d}X + i\int d^{2}t_{3}J \cdot X\right]$
with $J(2,\overline{n}) = \sum_{i=1}^{4} h_{i}S^{i}(2-\overline{c}_{i}, \overline{z}-\overline{c}_{i})$
 $\int \int_{1}^{2} DX^{k} = \int_{1}^{2} DX^{k} \int d^{2}t_{4}$ where X contains only the
 $\int \mu^{2}t DX^{k} = \int_{1}^{2} DX^{k} \int d^{2}t_{4}$ where X contains only the
 $\int \mu^{2}t DX^{k} = \int_{1}^{2} DX^{k} \int d^{2}t_{4}$

• The zero-mode part gives
$$\int d^{26} x e^{i\frac{\xi}{1-1}k_i \cdot x} \sim S^{26}(\frac{\xi}{1-1}k_i)$$
 92

· The non-zero-mode part is easily evaluated since the operator in the quadratic piece of the exponent is invertible:

We may use 1/27 = π ln 121 (although Unis is strictly speaking too notive because on a compact space one needs to introduce a background charge to be able to solve the KG-eq. with S-source. New theles, the naive approach gives the correct result. See Polchinski, Sect. 6.2 for details).

• => ~
$$exp\left(\frac{\alpha'}{2} \underset{ij}{\overset{\varepsilon}{\underset{j}}} k_i \cdot k_j \cdot k$$

- Now we recall that normal ordering is present, n.1- no contributions
 with i= j arise.
 => ~ [7] |2,-2; | x'k; k;
 i< j
- Next, the glasst part: $\langle C(\overline{z}_1)C(\overline{z}_2)C(\overline{z}_3)\rangle \& \langle \overline{C}(\overline{z}_1)\overline{C}(\overline{z}_2)\overline{C}(\overline{z}_3)\rangle$
- First, note the (maybe counterintuitive) fact that these 3-pl-fets are #0.
 Technical reason (cf. Poldninshi 5.3): 3 conf. Killing vectors
 > 3 corresponding zero modes of path integral -> need 3 insertions
 for non-zero result due to frassman nature of ind.
- · Completely generally (-> e.g. Ginsporg, BLT, ...): For primary fields, Conf. symm. fixes z-dependence of 2& 3-pt. fcts:

$$C_{13} \sim C_{123} \frac{1}{2n_{1}^{h_{1}+h_{2}-h_{3}} \frac{2n_{1}^{h_{1}+h_{2}-h_{3}}}{2n_{3}} \frac{1}{2n_{3}^{h_{1}+h_{2}-h_{3}}} \frac{1}{2n_{3}^{h_{1}+h_{3}}} \frac{1}{2n_{3}^{h_{1}+h_{3}}} \frac{1}{2n_{3}^{h_{1}+h_{$$

• Remains
$$z_{4} \rightarrow z_{+}$$
; Reinstack $z_{-linkgraphion}$ etc.... \Rightarrow
 $\mathcal{A} = ig_{5}^{2}C_{52}(2\pi)^{24}\int_{1=q}^{q}(d^{2}z)\left[\frac{1}{2}\right]^{-\frac{q}{2}(d-4)}\left[1-z\right]^{-\frac{d}{2}t-4}$
[hormabia bion factor; can be determined by explicit traduction of
the determinants arising in path integration appears or from unitarity;
 e_{5} \longrightarrow $i \in foldeninski$]
• Define: $C(q,b,c) = \int d^{2}z |z|^{2a-2} (1-z)^{2b-2}$; $c = 1-a-b$
Fact: $C(q,b,c) = \int d^{2}z |z| \int (a) \Gamma(b) \Gamma(c)$
 $\Gamma(4-a)\Gamma(4-b)\Gamma(4-c)$ ($\Rightarrow Tang, Pold., Csw$
 $protoms$)
 $\Rightarrow A_{14} = ig_{5}^{2}C_{52}(2\pi)^{24}S^{24}(-1) \frac{\Gamma(-4-\frac{d}{4}s)\Gamma(-4-\frac{d}{4}s)\Gamma(-4-\frac{d}{4}s)}{\Gamma(2+\frac{d}{4}s)} \int (2+\frac{d}{4}s) \frac{1}{2}$
(damons trisult!)
• Recall Γ -fot:
 $i = \int (1-z)\Gamma(z) = \pi/2i \sin \pi z$.
• Me see: A_{4} has many poles.
 e_{3} , from s-channec exchange:

These effects correspond to poles in
$$\Gamma(-1-\frac{\alpha's}{4})$$
 at $s=M_h^2$.

•
$$A_{4}$$
 also has poles from t-channel exchange; (or u-channel exchange,
 $1 \int_{1}^{3} \int_{1}^{3} \int_{2}^{3} \int_{1}^{3} \int_{1}^{3} \int_{2}^{3} \int_{1}^{3} \int_{1}$

- · In contrast to RFT, all these poles come from the same WS. No need to sum different diegrams, like in QFT.
- · Commant: C32 can be fixed nince Site can be near pole

related to
$$\sum_{s_2} \cdot \frac{1}{s_2}$$
. The former is $\sim C_{s_2}$,
the latter to $(C_{s_2})^2$. => C_{s_2} can be determined.

· High-energy behaviour:

Consider $\mathcal{A}(s,t)$ at $s, t \to \infty$ with s/t fix (fixed-angle highlnergy scattering). Using $1^{7}(x) \sim e^{\chi \ln x} \delta$ "reflection formula", one sees that $\mathcal{A}_{4} \sim \delta(\Xi h;) \exp(-\frac{\alpha'}{z}(s\ln s + t\ln t + u\ln u))$ (away from poles).

 $\lambda \varphi^{4} - \mu_{eory}: A_{4} \sim \delta(-)\lambda$; spanify: $A_{4} \sim \delta(-)\frac{E^{2}}{M_{p}^{2}} \sim \delta(-)\frac{S}{M_{p}^{2}}$ ("E²" homog. of degree 1 in s, t, u) · From the QFT relation

 \rightarrow ~ \int_{k} \times

We may guess that the "soft" betraviour of amplitudes just discovered will also cure loop divergences. This does indeed happen.