2.1 Relativistic point particle The relativistic point particle is a very useful toy model, exhibiting some key aspects of the string. You should have already shadied if in your course on special relativity. $X \longrightarrow Worldline Y \ farget space M, coordinates X/$ $X^{0} = t \ M = 0, ..., D-1$ $X^{2} E$ The embedding of y in M is specified by D fcts. XM(t), where I parameterizes y. The action, known from relativity, Can be expressed in ferms of these fets .: S = "length of worldline" = -m f ds = -m f dt /- m x^mx^v Here we used: $ds^2 = -\gamma_{\mu\nu} dX^{\mu} dX^{\nu}$, i.e. $\mathcal{M} = IR^{1, D-1}$ $dX^{h} = \dot{X}^{h} dt$. $(f_{t} = c = 1)$

You can check: • S is invariant under reparameterizations: $T \rightarrow T'=T'(T)$ • The EOM read $\ddot{X}^{M} = O$ • The non-relationstic limit is $S = \int dt \left(\frac{m}{2}\overline{\sigma}^{2} - m\right)$

• The action above is the point-particle analogue of the so-called "Nambu-Soto-action". We write: S = SNG.

- Recall that on a manifold with coordinates y^a one
 measures distances using a metric: ds² = gab dy^a dy^b.
- Treat y as a 1d manifold, with metric ds² = h_{tt} dt².
- A general action on γ would then be $S = \int dt \sqrt{-h} \mathcal{Z}(x^{h}, \dot{x}^{h}).$
- · The specific divice $S_{p} = S_{p} \left[X, h \right] = -\frac{m}{2} \int d\tau \sqrt{-h} \left(h^{TT} \frac{dX^{h}}{d\tau} \frac{dX_{m}}{d\tau} + 1 \right)$ is called "the Polyakor action". $(Here h = det h'' = h_{\tau\tau} , h^{\tau\tau} = h_{\tau\tau}^{-1})$ · One can check the following: - The EOIM for h are: $\frac{dS_p}{\delta h} = 0 \implies h_{TT} = \dot{X}^M \dot{X}_\mu = \dot{X}^2$ $-S_{p}[x, h = \dot{x}^{2}] = S_{NG}$ => Sp and SNG are classically equivalent. Sp is much move convenient since it has no square root. 2.2 Bosonic string X^{1} world sheet ZFornything analogous: X^{2}

• Embedding of worldsheet
$$\leq$$
 in target space \mathcal{M} specified
by fets. $\chi^{h}(\tau, 5)$.
 $S_{NG} = -T \int df$
 $\int df$
 $\int \mathcal{L}_{String} fansion$ area of \leq
(comalugue of mass m) measured with
farget space metric
 $if will be convenient to use$
 $a covancent coordinate notation also $oh \leq :$ $(\tau, 5) \equiv (\xi^{0}, \xi^{1}) \equiv \xi$
• Ah infinitesimal tremslation $d\xi$ on \leq induces an
infinitesimal tremslation $d\xi$ on \mathcal{M} , and that
 $ds^{2} = -\eta_{\mu\nu} d\chi^{h} d\chi^{\nu} = -\eta_{\mu\nu} (\frac{\partial \chi^{h}}{\partial \xi^{a}} d\xi^{a}) (\frac{\partial \chi^{\nu}}{\partial \xi^{b}} d\xi^{b}) \equiv -G_{ab} d\xi^{a} d\xi^{b}.$
• We see that $G_{ab} \equiv \partial_{a} \chi^{h} \partial_{b} \chi^{\nu} \eta_{\mu\nu}$ is the induced metric
 $\equiv S_{NG} = -T \int d^{2} \xi \sqrt{-a^{2}}$; $G \equiv det G_{ab}$$

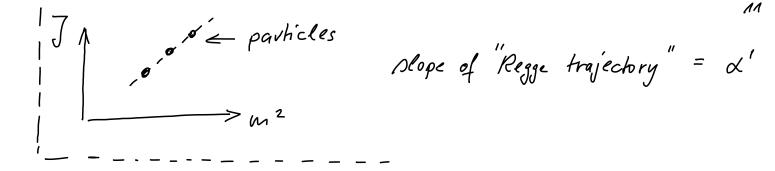
• In almost complete analogy to the point-particle case, we introduce an independent WS-metric h_{ab} and define the Polyakov action $S_{p} = -\frac{T}{2} \int d^{2}\xi \sqrt{-h} h^{ab} \frac{\partial x^{h}}{\partial x} \frac{x^{v}}{\partial \mu v} \frac{\partial x^{h}}{\partial x} \frac{\partial x^{h}}{\partial y} \frac{x^{v}}{\partial \mu v} \frac{\partial x^{h}}{\partial x} \frac{\partial x^{h}}{\partial y} \frac{\partial x^{h}}{\partial y$

(Ney difference : No constant term needed for classical equivalence with SNG. We will show this in a moment.)

• Note:
$$S_{p}$$
 is a field theory action for D free
real scalors in two dimensions.
• A contral object for such a theory is its
energy momentum tensor, $T_{ab} = \frac{4\pi}{V-h} \cdot \frac{\delta S_{p}}{\delta h^{ab}}$
(This differs from the standard GR convention by
a "stringy" mormalization factor -2π .)
• We calculate: $S_{p} = -\frac{T}{2} \int d^{2}F V-h h^{ab} G_{ab}$
 $\delta (h^{ab}G_{ab}) = \delta h^{ab} G_{ab}$
 $\delta T-h = -\frac{1}{2V-h} \delta (det h) = -\frac{1}{2V-h} (det h) tr(h^{-4}Sh)$
 $identify for variation of a dimension of any determinant
 $tr(h^{-1}Sh) = -tr(h \delta h^{-1}) = -h_{ab} \delta h^{ab}$
 $\Rightarrow T_{ab} = \frac{4\pi}{V-h} \cdot (-\frac{T}{2}) (V-h G_{ab} + h^{cd}G_{cd}(-\frac{h}{2V-h})(-h_{ab}))$
 $T_{ab} = -2\pi T (G_{ab} - \frac{1}{2}h_{ab} (G_{cd}h^{cd})))$
 $= \frac{1}{\alpha'} coith d' = "Regge slope"$
This name goes book to the time when string theory was
inverted as a model for hadronic physics:
hadron $\stackrel{?}{=} (\int_{ab} f_{ab} = \int_{ab} f_{ab} f_{ab}$$

1

1 I I



• The EOM for h is clearly
$$T_{ab} = 0$$
.
• This is solved by $h_{ab} = c G_{ab}$ for any fol. c:
 $\frac{1}{2} c G_{ab} \left(c^{-1} G^{cd} G_{cd} \right) = G_{ab} \implies T_{ab} = 0$
• $S_p \left[X, h_{ab} = c G_{ab} \right] = -\frac{T}{2} \int d^2 \xi \sqrt{-c^2 G^2} c^{-1} G^{ab} G_{ab}$
 $= -T \int d^2 \xi \sqrt{-c^2} = S_{NG} v$

2.3 EOM & Symmetries $S_{p} = -\frac{T}{2} \int d^{2}\xi \left[-h \left(\partial X \right)^{2} \right] \quad \text{with } \left(\partial X \right)^{2} = h^{ab} \left(\partial_{a} X^{h} \right) \left(\partial_{b} X^{v} \right) \eta_{\mu v}$ WS metric metric ou "field space" of our 2d RFT Symmetries: 1) Diffeomorphisms: $\xi^a \longrightarrow \xi^{1a} = \xi^{1a}(\xi^0,\xi^1)$ 2) D-dim. Poincare - invariance: $X^{\prime \mu} \rightarrow X^{\prime \prime \mu} = \Lambda^{\prime \mu}{}_{\nu} X^{\nu} + V^{\prime \mu}{}_{,} \Lambda \in So(\eta, p-\eta)$ (This is an internal global symm. of our 2d QFT.) 3) Weyl-rescaling invariance: $h_{ab}(\xi) \rightarrow h_{ab}(\xi) = \varphi(\xi) h_{ab}(\xi).$

The fact that such a rescaling factor
$$\varphi(z)$$
 drops
out of the action is a lay special feature of $d=2$.

- The EOM are: $h \longrightarrow T_{ab} = 0$ (see above) $X^{h} \longrightarrow \Box X^{h} = 0$ (standard RFT result) $\uparrow_{ab} = D_{a} \partial^{a}$
- Command 1: As in GR, diffeomorphism invariance implies DT^{ab} = 0 (even before the EOM of h sets T^{ab} to zero).
 Command 2: Ta^a = 0 holds as an identity - without using EOMs (Photem: Derive this from the symmetries of S!)

• <u>Key claim</u>: Using Diff. & Weyl, we can locally ensure $h_{ab} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}. This is called "flat gauge".$ • <u>Naive argument</u>: $\xi^{a} \rightarrow \xi^{'a}(\xi^{0}\xi^{1})$ $\begin{cases} 3 \text{ arbitrary fcts.} \\ h_{ab} \rightarrow h_{ab} \cdot \varphi(\xi^{0}\xi^{1}) \end{cases}$

Since hab contains only 3 arbitrary feds. , we generically have enough freedom to bring hab to any desired form.

More pucise argument:

- Consider the Ricci scalar of the WS with metric h_{ab} : R[h]. A straight forward calculation shows that (see e.g. Wald): $h'_{ab} = e^{2\omega}h_{ab} \implies R[h'] = e^{-2\omega} (R[h] - 2D^2\omega).$
- Given some metric h, we can now solve the PDE $D^2 \omega = R[h]/2$ for ω . This is a simple wave equation with a source. On a cylinder, with some cut through the cylinder as a Cauchy-surface, this will always have a solution. Having found ω , we rescale $h_{ab} \rightarrow h'_{ab} = e^{2\omega} h_{ab}$. Now we have gauge-equivalent metric h' with R[h'] = 0.
- Specifically in d=2, we have Raped = ½[habhed had he].R.
 Thus, our new metric has vanishing Riemann tensor and is hence flet. In other words: On choose coordinates s.t.
 hab = diog (-1,1).
- More general than this "flat gauge" are conformal gauges, where h_{ab} is only flat up to a rescaling $h_{ab} \rightarrow e^{2\omega}h_{ab}$. Gumment:

We will later consider the eachidean version of our 2d theory. Then E's other than torus (or strip) will become relevant and the existence and uniqueness of a flat gauge choice will become highly NOL-minise and important See BLT, Sec. 2.3 & 6.2 for more powerful methods use-ful in this context.

2.5 Solutions

• We use flat gauge and light-cone coordinates: 5 = T = 6. $\Rightarrow ds^2 = -d\tau^2 + d\sigma^2 = -d\sigma^+ d\sigma^-$, i.e. $h_{++} = h_{--} = 0 \& h_{+-} = h_{-+} = -\frac{1}{2} \& h^{+-} = h^{-+} = -2$ $\Box = h^{ab} \partial_a \partial_b = 2h^{+-} \partial_a \partial_a = -4 \partial_a \partial_a \quad \text{with} \quad \partial_{\pm} = \frac{\partial}{\partial 6^{\pm}}$ • EOM: 22 × = 0 · Any solution can be written as : $X^{h} = X_{L}^{h}(6^{+}) + X_{R}^{h}(6^{-})$ · The index L/R stands for left- (right-moving wave, explained by the parametinitation of the cylinder as $\Rightarrow X^{\mu}(\tau, 6) = X^{\mu}(\tau, 6+\ell)$

(By diff-invariance, we can choose any desired value for l.) • X^{lh} periodic in $5 \Rightarrow 2 X^{h} = 2 X_{L}^{h}$ & $2 X^{h} = 2 X_{R}^{h}$ both periodic in 5. => $2 X_{L}^{h} & 2 X_{R}^{h}$ can be written as $E^{*} e^{-2\pi i n \cdot 5^{\pm}/\ell}$ $h \in \mathbb{Z}$ => $X_{L}^{h} & X_{R}^{h}$ follow by inkgraphic and hence, in addition, Contain a linear term. => feneral polyhic: $X_{L}^{lh} = \frac{1}{2} \times l^{h} + \frac{\pi d}{\ell} p^{h} 5^{+} + i \sqrt{\frac{d}{2}} \sum_{n \neq 0}^{lh} \frac{1}{n} \propto_{n}^{lh} e^{-2\pi i n \cdot 5^{-}/\ell}$

- The constant
$$(x^{h})$$
 is the same in X_{LR}^{h} by convention.
- The coefficient p^{h} of the linear term number be the same
for periodicity of X^{h} in 5.
- X^{h} rale \Rightarrow x^{h} , p^{h} real & $(\overline{a}_{h}^{h})^{*} = \widehat{a}_{-h}^{h}$.
- X^{h} rale \Rightarrow x^{h} , p^{h} real & $(\overline{a}_{h}^{h})^{*} = \widehat{a}_{-h}^{h}$.
- $X^{h} = x^{+h} + \frac{2\pi\alpha'}{\ell}p^{h}\tau + \cdots = liner$ unohish + fluctuabilits.
- By Diff+Weyl invariance, our choice of ℓ is orbitrary. Moreover,
the coeffs in the 'oscillator expansion'' above are conventional.
We gave the form of BLT. One can be example also follows
GSW (cf. also my old nohs) and choose $\ell = \pi$, and in addition
set $\alpha' = l_{s}^{2}/2$, with l_{s} the "othing length".
 $\Rightarrow X_{L}^{h} = \frac{1}{2}x^{h} + \frac{l_{s}^{2}}{2}p^{h}6^{+} + \frac{il_{s}}{2}\sum_{n\neq 0}\frac{1}{n}\widehat{\alpha}_{n}^{h}e^{-2in6^{+}}$,
 $X_{R}^{h} = \frac{1}{2}x^{h} + \frac{l_{s}^{2}}{2}p^{h}6^{-} + \frac{il_{s}}{2}\sum_{n\neq 0}\frac{1}{n}\alpha_{n}^{h}e^{-2in6^{-}}$,
cf. also my old notes. (Do not confuse ℓ & $l_{s} - hey$
are conceptically obifierent grambilities.)