7 ligh	t-cone quanti-action - Fock spece & symmetries 44
7.1 Fock	space
Recall:	$\begin{bmatrix} \varkappa_{m}, \varkappa_{n} \end{bmatrix} = m \delta^{\prime j} \delta_{m+n} ; \begin{bmatrix} \varkappa_{j}, p \end{bmatrix} = j \delta^{\prime j} ; \begin{bmatrix} \varkappa_{j}, p^{+} \end{bmatrix} = -i$
(20520)	• no independent p^- , instead: $m^2 = \frac{4}{d'} (N_1 + a)$, $N_1 = \tilde{N_1}$
	with $m^2 = 2p^+p^ p_1^2$ & $a = -(D-2)/24$
	· Only transverse oscillators => Foch space = Kilbert space
Орец :	No 2; Due to different relation of pt & 20th we have:
	$m^2 = \frac{1}{\alpha'} (N_1 + \alpha)$; all else is the same.
Start wit	th open string:
level 0:	$ 0,p>, m^2 = a/d' = -1/d'$; fadyou
Level 1:	$\mathcal{A}_{-1}^{i} 0,p>$, $m^{2}=(1+\alpha)/\lambda =0$; bector
	Note: a=-1 is required by lorentz symm. For a > -1
	We would have a massive vector with D-2 d.o.f. : 4
Level 2:	$\chi_{-1}^{i}\chi_{-1}^{j} _{0,p} \approx \chi_{-2}^{i} _{0,p} = m^{2} = (2+a)/\alpha' = 1/\alpha'$
	Before discussing this in defail, we make a small excursion:
7.2 Youn	ng Tablecux
• Consider	SU(N) tensor representations: t' - 'n -> U'n U'n, t'' - 'n
\overline{T}	

• Their irreducible components can be found by systematic symmetrization / antisymmetrization of their indices:

then antisymmetrize columns

- The Knowrs defined on the r.h. side correspond to irreducible sub-representations of our original (general) know repres.
- · Rows: symmetrize Columns: contisymmetrize
- · Key rule: Rows never become longer going from top to Boltom. Columns never become longer going from left to vight.
- Math. Background: Young tableaux achiely classify representations
 of the "symmetric groups" Sn. Since Sn commutes with
 the SU(N) action on tensors, Hois can be used to
 decompose SU(N) tensor representations.

· This carries over to SO (N) with two important careats:

- 1) For SO(N), in addition to (anti-)nyunmetrizotion, one Can use traces (implemented by Si.) to build projectors.
 - 2) One should in general also include spinors to build the original Know product representation.
- · We will use Young tableaux below in a noive, purely Notational way. You should consult kextbooks, e.g. Georgi or Hamermesh, for more details.
- In addition to Boxes, we will use "•" for the trivial, 1-dimensional representation.
- 7.3 Explicit spectra
- · We reproduce two key tables from BLT: Open string

level	$m^2 d'$	SO(24)-нер.	Little group	Cittle group rep.
0	-1	/0> ; • ; (1)	So(25)	• ; (1)
1	0	$\mathscr{A}_{-n}^{i} 0 > \Box_{i} \square_{i} (24)$	SO (24)	[]; (24)
2	1	~_2 10> , ~ d 1 10>		
		[] [] [] • . (24)+(299)+(4)	50(25)	1 <u></u> ; (324)
3	2	~_3'10> , ~_2 ~ j 10> , ~ d d d d k 10>		
			SO (25)	
		(24) (276) + (299) + (11) (2576) + (24)		(2900) (300)

(BLT also give level 4)

• The remarkable point about this table is that "light-wne" SO(24) representations can be combined into SO(25) representations, as required by the full compte-symme and for massive states.

Closed string

level	m².~~'	SO(24)-rep.	Little gwup	Little group sep.
0	-4	10> ; • ; (1)	SO(25)	• (1)
1	0	$\mathcal{L}_{A}^{i} \tilde{\mathcal{L}}_{A}^{j} 0 > ; \square + [-] + \cdot $ (299)+ (276) + (1)	SD(24)	[] + [-] + • (299) + (276) + (1)
2	4	~ ~ ~ ~ ~ ~ ~ ~ ~	SO(2.5)	
		& i J J k 10> , & J J J Z k 10>	>	The miraculous Matching with SO(25)-reps. Continues,

7.4 loventz symmetry

- By choosing l.c. gauge, we have given up manifest target-space lotente-invariance. We have quantized and now need to check whether lotente-invariance is still a feature of the guartum theory. (For first positive signs see table above.)
- It is straightforward to use Noether's procedure to derive the conserved charge associated with SO(1, D-1) symm. (cf BLT or Ewiebach for rather explicit derivations):

$$\Rightarrow \int_{a}^{\mu\nu} = T \int_{a}^{b} d5 \left(X^{\mu} \dot{X}^{\nu} - X^{\nu} \dot{X}^{\dagger} \right)$$

$$= \frac{T}{a} \int_{a}^{b} d5 \left(X^{\mu} \dot{X}^{\nu} - X^{\nu} \dot{X}^{\dagger} \right)$$

$$= \frac{T}{a} \int_{a}^{\mu\nu} \left(\frac{1}{a} \int_{a}^{\mu} \int_{a}^{a} \int_{a}^{b} \int_{a}^{b} \int_{a}^{\mu\nu} \int_$$

|| We see: The anomaly only vanishes for D=26 and a = -1 ||

Calculation appears only in GSW.

<u>Comment</u>: The manifesty posided. l.c.-Hilbert space can be mapped to the OCQ-Hilbert space => "Nos ghost theorem" (cf. GSW & P).