The Weak Gravity Conjecture

through the eyes of Cosmic Strings

and Axionic Black Holes

Arthur Hebecker (Heidelberg)

based on work with Philipp Henkenjohann and Lukas Witkowski and with Pablo Soler

Outline

- The magnetic Weak Gravity Conjecture for axions
- Cosmic string solutions and possible implications
- Axionic Black Holes
- Attempt at 'deriving' a Weak Gravity Conjecture

Motivation

The Weak Gravity Conjecture,

Arkani-Hamed/Motl/Nikolis/Vafa '06

$$m < gM_P$$
 or $\Lambda < gM_P$,

has recently been revisited by many authors:

Cheung/Remmen; Rudelius; de la Fuente/Saraswat/Sundrum ... '14 Ibanez/Montero/Uranga/Valenzuela; Brown/Cottrell/Shiu/Soler; Bachlechner/Long/McAllister; AH/Mangat/Rompineve/Witkowski; Junghans; Heidenreich/Reece/Rudelius; Kooner/Parameswaran/Zavala; Harlow; AH/Rompineve/Westphal; ... '15 Conlon/Krippendorf; Ooguri/Vafa; Freivogel/Kleban; Banks; Danielsson/Dibitetto;'16

Motivation (continued)

A particularly timely aspect of it is the axionic case,

 $g\equiv 1/f$,

relevant for natural inflation.

• The standard ('electric') logic is

 $m < g M_P \qquad \Rightarrow \qquad S_{inst} < M_P/f$,

such that the instanton-induced potential

$$V_{inst} \sim e^{-S_{inst}} \cos \varphi$$

is unsuppressed. This threatens slow-roll inflation.

Motivation (continued)

- An important concern is that the underlying 'black hole stability argument' can not be made for instantons.
- Another is a set of loopholes related to the prefactors of the instanton terms and the 'mild vs. strong' forms of the WGC.

de la Fuente/Saraswat/Sunderum; Rudelius; Brown/Cottrell/Shiu/Soler; (cf. AH/Mangat/Rompineve/Witkowski for a stringy realization)

• Thus, it might be worthwhile to approach the problem from the 'magnetic side'

What is the magnetic WGC for axions?

- The basic underlying assumption is that "The minimally charged magnetic objects should exist in field theory," (i.e. not yet be a black hole).
- This can be insured if the monople UV-completes at a scale

$\Lambda < g M_P$

or, in a p-form gauge theory in d dimensions,

$$\Lambda < \left(g^2 M_P^{d-2}\right)^{1/(2p)} \, .$$

 It is useful to rewrite this in terms of the 'electric strong-coupling-scale' Λ_e of the *p*-form gauge theory:

$$g^2 \equiv g_e^2 \equiv \Lambda_e^{2(p+1)-d}$$
.

What is the magnetic WGC for axions?

- The parametric situation is shown on the right.
- One finds

$$\frac{\Lambda}{M_P} < \left(\frac{M_P}{\Lambda_e}\right)^{\frac{d-2(p+1)}{2p}}$$

• In our case of interest,

 $\Lambda_e \equiv f > M_P$, $p \to 0$.

• Thus, one is tempted to conclude:

 $\Lambda=0,$ i.e. the theory does not exist!

 $E \uparrow$ $\Lambda_{\rm e}$ + strong coupling $M_{\rm P}$ + naive cutoff $\Lambda + WGC$ cutoff 0 -

Magnetic WGC for axions – another naive argument

- This 'analytic continuation in p' is clearly somewhat naive.
- Another (also naive) argument supports the conclusion:
- Indeed, p = 0 means the magnetic object has codimension two (a string in d = 4).
- But the gauge-field contribution to the tension of a string diverges logarithmically (both near the string and at infinity):

$$\sigma \sim f^2 \ln(\Lambda_{UV}/\Lambda_{IR})$$
.

The deficit angle is

$$\Delta \varphi = \sigma / M_P^2 \,,$$

such that for $f > M_P$ one does not expext a sensible string-spacetime to exist.

Magnetic WGC for axions – string solutions

- Now, by the standard logic, not having a field-theoretic magnetic object means the theory should not exist.
- This can be made more precise by studying the Cohen-Kaplan string spacetime

• The latter can indeed not be extended to $f > M_P$, since the outer singularity moves inwards and meets the region where $\Delta \varphi > 2\pi$.

Magnetic WGC for axions – string solutions

- The Gregory string spacetime avoids the outer singularity by allowing for an expansion along the string worldsheet (the transverse part of the solution remains static).
- However, this solution also breaks down for $f > M_P$.
- Thus, the only way out appears to be the (completely non-static) topological-inflation-spacetime.

Linde/Vilenkin '94

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• In our case, one takes $\Phi \in \mathbb{C}$ and

$$\mathcal{L} ~\sim~ |\partial \Phi|^2 + m^2 |\Phi|^2 - \lambda |\Phi|^4 \,,$$

and demands that the resulting abelian-Higgs-model string has

$$(1/H_{core}) < R_{core}$$
.

cf. also Dolan/Draper/Kozaczuk/Patel '17

Magnetic WGC for axions – string solutions

• This provides a (rather exotic and not purely field-theoretic) UV completion of a string with $f > M_P$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Two conclusions are possible:
 - (A) We insist on a static, horizonless magnetic object. Then $f > M_P$ is forbidden.
 - (B) A topologically inflating region provides the magnetic object for axionic theories with $f > M_P$.

Part II:

The WGC through the eyes of Axionic Black Holes

- Most recent work (including Part I of this talk) was about interpreting the WGC
- Very little progress has been made towards a possible Weak Gravity Theorem.

see however Cottrell/Shiu/Soler '16

• Let us also try to make some progress in this direction, even if (at first) only in an 'exotic' case

cf. Montero/Uranga/Valenzuela '17 (technically related, but conceptually different)

Weak Gravity Conjecture for 2-forms

We will study the dual side of the 'natural inflation case':

$$\int \frac{1}{f^2} |dB_2|^2 + \int_{\text{string}} B_2 \quad \text{for} \quad f \ll M_P.$$

Formally extending the WGC to this case implies
(a) Electric: Light strings with tension σ < f M_P or

(b) Magnetic: A cutoff $\Lambda < \sqrt{f M_P}$.

Let us now consider

Axionic Black Holes

Bowick/Giddings/Harvey/Horowitz/Strominger '88

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 In the simplest case, these are just Schwarzschild BHs with a non-zero 'B₂-Wilson-line':

$$\bigcup_{S^2} \mathcal{B}_{S^2} = b$$

 Since the BH effectively induces a non-zero 2-cycle of space-time, such a non-zero (b) can be added at no cost to a standard BH solution. Axionic Black Holes (continued)

• The non-zero 'Wilson-line' *b* can in principle be measured by strings 'lassoing' the BH.

Illustration from recent paper by Dvali/Gußmann:

• There is some controversy concerning the observability of this effect, but we believe this does not affect our parameter ranges.

Preskill/Krauss '90; Coleman/Preskill/Wilczek '92

Axionic Black Hole evaporation – explosive

- Now let the BH Hawking-radiate, as usual.
- *R* goes down, *T* goes up, nothing unusual happens before they reach

 $R_c \equiv 1/\sqrt{\sigma}$ and $T_c \equiv \sqrt{\sigma}$

or, alternatively,

$$R_c \equiv 1/\Lambda$$
 and $T_c \equiv \Lambda$.

• Let us assume that, at this moment, the BHs life ends on a short time scale $\sim R_c$

(e.g. due to a KK or string tower-of-states). cf. 'Lattice WGC' of Heidenreich/Reece/Rudelius

Axionic Black Hole evaporation – explosive (continued)

• With the BH gone, the non-zero B_2 integral **must** be supported by field-strength (flux) of $H_3 = dB_2$

• Using $b = \oint B_2 = \int H_3$, we can estimate the energy of the resulting field configuration as

$$E \sim \frac{1}{f^2} \int |H_3|^2 \sim \frac{b^2}{f^2 R_c^3} \sim \frac{1}{f^2 R_c^3}.$$

Axionic Black Hole evaporation – explosive (continued)

 The necessary condition E < M(R_c) ~ R_cM_P² then immediately gives

$$\frac{1}{f^2 R_c^3} < R_c M_P^2 \qquad \text{and hence} \qquad \frac{1}{R_c^4} < f^2 M_P^2 \,.$$

• Recalling that $R_c = 1/\sqrt{\sigma}$, we now have

$$\sigma < f M_P$$
 or $\Lambda^2 < f M_P$,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

i.e. precisely what is expected from the WGC.

Axionic Black Hole evaporation – slow

• Next, let us assume that nothing dramatic happens when the BH reaches

$$R_c \equiv 1/\sqrt{\sigma}$$
 and $T_c \equiv \sqrt{\sigma}$.

• However, unavoidably, virtual strings will start lassoing the BH and hence the variable

$$b(r) \equiv \int_{S^2(r)} B_2(r,\theta,\varphi)$$

will start experiencing an effective force at $r \sim R_c$.

• b(r) will develop a non-trival profile in r, and $H_3 = dB_2$ will have time to spread until the BH is gone.

Axionic Black Hole evaporation – slow (continued)

• Crucially, the resulting *H*₃ can be much more dilute than in the 'explosive' case:

Axionic Black Hole evaporation – slow (continued)

• The evaporation time from critical radius to 'zero' is

$$t_{ev}\sim rac{M_c^3}{M_P^4}\sim R_c^3 M_P^2\sim rac{M_P^2}{\sigma^{3/2}}\,.$$

- Then H_3 can maximally spread to a radius $\sim t_{ev}$.
- Demanding that the corresponding energy satisfies $E < M(R_c)$, we now find

$$\sigma \sim \Lambda^2 \lesssim f^{2/5} \cdot M_P^{8/5}$$
.

- This is much weaker than the naive WGC bound $\sigma < f \cdot M_P$.
- We expect a more careful analysis to give a bound in between our 'explosive' and 'slow' limits.

What if the WGC is violated only in the effective theory?

 As is well-known, an axion with large f_{eff} can in principle follow from two small-f axions.

Kim/Nilles/Peloso '04 (Berg/Pajer/Sjors '09; Ben-Dayan/Pedro/Westphal '14)

• The possibly simplest way to achive such an effective small coupling is via gauging à la Dvali (cf. also KS/KLS), as in 'winding inflation'

AH/Mangat/Rompineve/Witkowski '14

 $|F_0|^2 \rightarrow |F_0 + \varphi_1 + N\varphi_2|^2$

• This can of course be done more generally, trying to evade e.g. the WGC for 1-forms in the effective theory.

What if the WGC is violated only in the effective theory? (continued)

- As pointed out by Saraswat, the magnetic WGC for 1-forms is fullfilled by composite monopoles (without a low cutoff!).
- Analogous composite instantons can catalyze the problematic ABH-decay in our case.
- However, the effect is not strong enough unless the new particles are light.
- Also in Part I, composite strings exist if our *f* is only 'effectively' large.

cf. also Higaki,...,Takahashi '16

• But, once again, they can not be static and our earlier negative conclusion can not be avoided.

Summary/Conclusions

Part I (Cosmic strings)

- Magnetic WGC for axions: large-*f* string should exist.
- If this implies static or horizon-free: $f > M_P$ forbidden.
- Else: Topological inflation provides such a string.

Part II (Axionic black holes)

- We suggested a new, dynamical argument for a WGC-like-bound for 2-forms.
- Very exotic remnants are needed to avoid this.

An idea for going beyond small-*f* axions: We need to make sure that topology change through shriking cycles is dynamically consistent.