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• Attempt at ‘deriving’ a Weak Gravity Conjecture



Motivation

• The Weak Gravity Conjecture,

Arkani-Hamed/Motl/Nikolis/Vafa ’06

m < gMP or Λ < gMP ,

has recently been revisited by many authors:

Cheung/Remmen; Rudelius; de la Fuente/Saraswat/Sundrum . . . ’14

Ibanez/Montero/Uranga/Valenzuela; Brown/Cottrell/Shiu/Soler;
Bachlechner/Long/McAllister; AH/Mangat/Rompineve/Witkowski;
Junghans; Heidenreich/Reece/Rudelius; Kooner/Parameswaran/Zavala;
Harlow; AH/Rompineve/Westphal; . . . ’15

Conlon/Krippendorf; Ooguri/Vafa; Freivogel/Kleban; Banks;
Danielsson/Dibitetto; . . . . . . ’16



Motivation (continued)

• A particularly timely aspect of it is the axionic case,

g ≡ 1/f ,

relevant for natural inflation.

• The standard (‘electric’) logic is

m < g MP ⇒ Sinst < MP/f ,

such that the instanton-induced potential

Vinst ∼ e−Sinst cosϕ

is unsuppressed. This threatens slow-roll inflation.



Motivation (continued)

• An important concern is that the underlying ‘black hole
stability argument’ can not be made for instantons.

• Another is a set of loopholes related to the prefactors of the
instanton terms and the ‘mild vs. strong’ forms of the WGC.

de la Fuente/Saraswat/Sunderum; Rudelius; Brown/Cottrell/Shiu/Soler;

(cf. AH/Mangat/Rompineve/Witkowski for a stringy realization)

• Thus, it might be worthwhile to approach the problem from
the ‘magnetic side’ ....



What is the magnetic WGC for axions?

• The basic underlying assumption is that “The minimally
charged magnetic objects should exist in field theory,”
(i.e. not yet be a black hole).

• This can be insured if the monople UV-completes at a scale

Λ < g MP

or, in a p-form gauge theory in d dimensions,

Λ <
(
g2Md−2

P

)1/(2p)
.

• It is useful to rewrite this in terms of the ‘electric
strong-coupling-scale’ Λe of the p-form gauge theory:

g2 ≡ g2
e ≡ Λ

2(p+1)−d
e .



What is the magnetic WGC for axions?

• The parametric situation
is shown on the right.

• One finds

Λ

MP
<

(
MP

Λe

)d−2(p+1)
2p

• In our case of interest,

Λe ≡ f > MP , p → 0 .

• Thus, one is tempted to conclude:

Λ = 0, i.e. the theory does not exist!



Magnetic WGC for axions – another naive argument

• This ‘analytic continuation in p’ is clearly somewhat naive.

• Another (also naive) argument supports the conclusion:

• Indeed, p = 0 means the magnetic object has codimension
two (a string in d = 4).

• But the gauge-field contribution to the tension of a string
diverges logarithmically (both near the string and at infinity):

σ ∼ f 2 ln(ΛUV /ΛIR) .

• The deficit angle is

∆ϕ = σ/M2
P ,

such that for f > MP one does not expext a sensible
string-spacetime to exist.



Magnetic WGC for axions – string solutions

• Now, by the standard logic,
not having a field-theoretic magnetic object

means
the theory should not exist.

• This can be made more precise by studying the
Cohen-Kaplan string spacetime

=⇒

• The latter can indeed not be extended to f > MP ,
since the outer singularity moves inwards and
meets the region where ∆ϕ > 2π.



Magnetic WGC for axions – string solutions

• The Gregory string spacetime avoids the outer singularity by
allowing for an expansion along the string worldsheet (the
transverse part of the solution remains static).

• However, this solution also breaks down for f > MP .

• Thus, the only way out appears to be the (completely
non-static) topological-inflation-spacetime.

Linde/Vilenkin ’94

• In our case, one takes Φ ∈ C and

L ∼ |∂Φ|2 + m2|Φ|2 − λ|Φ|4 ,

and demands that the resulting abelian-Higgs-model string has

(1/Hcore) < Rcore .

cf. also Dolan/Draper/Kozaczuk/Patel ’17



Magnetic WGC for axions – string solutions

• This provides a (rather exotic and not purely field-theoretic)
UV completion of a string with f > MP .

• Two conclusions
are possible:

(A) We insist on a static, horizonless magnetic object.
Then f > MP is forbidden.

(B) A topologically inflating region provides the magnetic
object for axionic theories with f > MP .



Part II:

The WGC through the eyes of Axionic Black Holes

• Most recent work (including Part I of this talk) was about
interpreting the WGC

• Very little progress has been made towards a possible
Weak Gravity Theorem.

see however Cottrell/Shiu/Soler ’16

• Let us also try to make some progress in this direction,
even if (at first) only in an ‘exotic’ case ....

cf. Montero/Uranga/Valenzuela ’17
(technically related, but conceptually different)



Weak Gravity Conjecture for 2-forms

• We will study the dual side of the ‘natural inflation case’:∫
1

f 2
|dB2|2 +

∫
string

B2 for f � MP .

• Formally extending the WGC to this case implies

(a) Electric: Light strings with tension σ < f MP

or

(b) Magnetic: A cutoff Λ <
√
f MP .



Let us now consider

Axionic Black Holes

Bowick/Giddings/Harvey/Horowitz/Strominger ’88

• In the simplest case, these are just Schwarzschild BHs with
a non-zero ‘B2-Wilson-line’:

• Since the BH effectively induces a non-zero 2-cycle of
space-time, such a non-zero 〈b〉 can be added at no cost to a
standard BH solution.



Axionic Black Holes (continued)

• The non-zero ‘Wilson-line’ b can in principle be measured by
strings ‘lassoing’ the BH.

Illustration from recent paper by Dvali/Gußmann:

• There is some controversy concerning the observability of this
effect, but we believe this does not affect our parameter
ranges.

Preskill/Krauss ’90; Coleman/Preskill/Wilczek ’92



Axionic Black Hole evaporation – explosive

• Now let the BH Hawking-radiate, as usual.

• R goes down, T goes up,
nothing unusual happens before they reach

Rc ≡ 1/
√
σ and Tc ≡

√
σ

or, alternatively,

Rc ≡ 1/Λ and Tc ≡ Λ .

• Let us assume that, at this moment, the BHs life ends on a
short time scale ∼ Rc

(e.g. due to a KK or string tower-of-states).
cf. ‘Lattice WGC’ of Heidenreich/Reece/Rudelius



Axionic Black Hole evaporation – explosive

(continued)

• With the BH gone, the non-zero B2 integral must be
supported by field-strength (flux) of H3 = dB2

• Using b =
∮
B2 =

∫
H3 , we can estimate the energy of the

resulting field configuration as

E ∼ 1

f 2

∫
|H3|2 ∼

b2

f 2R3
c

∼ 1

f 2R3
c

.



Axionic Black Hole evaporation – explosive

(continued)

• The necessary condition E < M(Rc) ∼ RcM
2
P then

immediately gives

1

f 2R3
c

< RcM
2
P and hence

1

R4
c

< f 2M2
P .

• Recalling that Rc = 1/
√
σ, we now have

σ < f MP or Λ2 < f MP ,

i.e. precisely what is expected from the WGC.



Axionic Black Hole evaporation – slow

• Next, let us assume that nothing dramatic happens when the
BH reaches

Rc ≡ 1/
√
σ and Tc ≡

√
σ .

• However, unavoidably, virtual strings will start lassoing the
BH and hence the variable

b(r) ≡
∫

S2(r)
B2(r , θ, ϕ)

will start experiencing an effective force at r ∼ Rc .

• b(r) will develop a non-trival profile in r ,
and H3 = dB2 will have time to spread until the BH is gone.



Axionic Black Hole evaporation – slow

(continued)

• Crucially, the resulting H3 can be much more dilute than in
the ‘explosive’ case:



Axionic Black Hole evaporation – slow

(continued)

• The evaporation time from critical radius to ‘zero’ is

tev ∼
M3

c

M4
P

∼ R3
c M

2
P ∼

M2
P

σ3/2
.

• Then H3 can maximally spread to a radius ∼ tev .

• Demanding that the corresponding energy satisfies
E < M(Rc ), we now find

σ ∼ Λ2 . f 2/5 ·M8/5
P .

• This is much weaker than the naive WGC bound σ < f ·MP .

• We expect a more careful analysis to give a bound in between
our ‘explosive’ and ‘slow’ limits.



What if the WGC is violated only in the effective theory?

• As is well-known, an axion with large feff can in principle
follow from two small-f axions.

Kim/Nilles/Peloso ’04 (Berg/Pajer/Sjors ’09; Ben-Dayan/Pedro/Westphal ’14)

• The possibly simplest way to achive such an effective small
coupling is via gauging à la Dvali (cf. also KS/KLS),
as in ‘winding inflation’

AH/Mangat/Rompineve/Witkowski ’14

|F0|2 → |F0 + ϕ1 + Nϕ2|2

• This can of course be done more generally, trying to evade
e.g. the WGC for 1-forms in the effective theory.

Saraswat ’16



What if the WGC is violated only in the effective theory?

(continued)

• As pointed out by Saraswat, the magnetic WGC for 1-forms is
fullfilled by composite monopoles (without a low cutoff!).

• Analogous composite instantons can catalyze the problematic
ABH-decay in our case.

• However, the effect is not
strong enough unless
the new particles are light.

• Also in Part I, composite strings
exist if our f is only ‘effectively’ large.

cf. also Higaki,...,Takahashi ’16

• But, once again, they can not be static and our earlier
negative conclusion can not be avoided.



Summary/Conclusions

Part I (Cosmic strings)

• Magnetic WGC for axions: large-f string should exist.

• If this implies static or horizon-free: f > MP forbidden.

• Else: Topological inflation provides such a string.

Part II (Axionic black holes)

• We suggested a new, dynamical argument for a
WGC-like-bound for 2-forms.

• Very exotic remnants are needed to avoid this.

An idea for going beyond small-f axions:
We need to make sure that topology change through shriking
cycles is dynamically consistent.


