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with Dynamical Phase Decomposition



Preliminary Remarks

• We are all used to the statement that
‘Inflation is the natural place to test string theory’.

• But this is only half-true:
Indeed, already during inflation we expect to be deeply in the
domain of low-energy EFT.

• Clearly, this does not get better after inflation.

• Thus, the topic of this conference
is a very important but also very difficult one!

• Still, you gotta keep trying...



Preliminary Remarks (continued)

An incomlete list of options is...

• Dark matter from string theory

• Axions and other superlight fields
(various, non-dark-matter effects thereof)

• Phase transitions, topological defects
(e.g. gravitational wave effects thereof)

• Landscape considerations of various sorts

• etc. etc.



Introduction

• A classic source of (cosmological, post-inflationary)
gravitational waves are thermal phase transitions.

(such as the once so popular elctroweak phase transition)

Temperatures: T1 > T2 > T3 ↔ Times: t1 < t2 < t3 .



Introduction (continued)

• Another classic source of of such gravitational waves are
vacuum phase transitions (T = 0 ).

For a recent example in the context of
Klebanov-Strassler-Throats / Randall-Sundrum models
see Garcia Garcia/Krippendorf/March-Russell ’16 .

• However, in either case one may feel that either very
special models or very special parameters (e.g. barrier height)
are needed.



Introduction (continued)

• Yet another option are domain wall networks:

⇒

Figure from
Hiramatsu/Kawasaki/Saikawa/Sekiguchi ’12

• Here, both minima are randomly occupied after inflation.

• Not to be ruled out, the network must collapse
(either due to bias or due to boundary strings).

• The collapse leaves a gravitational wave signal.



Dynamical Phase Decomposition

• I would like to think of

Dynamical Phase Decomposition ( DPD )

as of lying somwhere in between the three ‘standard’
dynamical processes:

vacuum transitions thermal transitions

DPD

domain walls



Dynamical Phase Decomposition (Motivation)

• Consider an axion-monodromy-type potential
(recently popular in string-inflation and ‘relaxiology’).

Φ

V

• How does Rehating in this potential work?

for related considerations see papers by
Daido/Kitajima/Takahashi ’15, Higaki et al. ’16;
Kaloper/Padilla ’16; Jaeckel/Mehta/Witkowski ’16

for preheating in this context see Brandenberger et al. ’16
(see also talks of Amin, Muia, Krippendorf, Kang, ... )



• The field oscillates and eventually
‘gets stuck’ in one of the local minima

• It then continues to oscillate in that minimum
(where it later decays to light particles, i.e. reheats)



• Crucially, at each ‘turning point’, an uncertainty due to field
fluctuations exists

• Hence, with a certain probability, two different minima
are populated inside one Hubble patch



• Consider the situation where, in most of the universe, the field
gets caught in a metastable minimum.

• As described, there may also exist some patches where it ends
up in the stable minimum.

• Those small patches will evolve into bubbles, grow and
eventually collide and produce gravitational waves.



Gravitational wave analysis

(highly simplified)

• In analogy to thermal phase transitions:

ρGW
ρtot

' θ
(
H∗
δ

)2 η2

(1 + η)2
.

• H∗/δ – Hubble scale and bubble separation at time of
transition

• η ≡ ε/ρ∗rad – relative strength of transiton
(in our case: ρ∗rad → ρ∗osc )

• θ ∼ 0.01 from detailed dynamics.



• To relate this to model parameters (e.g. of axion monodromy
inflation), recall the basic potential

Φ

V

V (φ) =
1

2
m2φ2 + Λ4 cos

(
φ

f
+ γ

)

• Here m ∼ 10−5 from CMB perturbations;
Λ4 � m2 from non-observation of oscillations;
f � 1 to have any metastable minima



• The number of minima is estimated by κ ≡ Λ4

f 2m2
.

• The strength of the transition, η =
ε

ρ∗osc
=

ε

Λ4
,

can be as large as O(1).



• Finally, the crucial parameter H∗/δ can vary widely.

• δ can be as large as the mass scale near the bottom of the
potential: δ ∼ M with M ≡ Λ2/f . Then H∗/δ � 1.

• However, if the phase decomposition is unlikely, very few
bubbles may form.

Then H∗/δ can easily be a large as O(1) (or even beyond!)



Gravitational wave analysis – Peak frequency

• Peak frequency at phase transition decomposition:

ωpeak ' 0.1 δ .

• Peak frequancy today:

ω0 ' 107Hz ·
[

TRH

1015GeV

]
·
(
δ

H∗

)
· νw · νnr .

• The factors νw =

(
ρNR
ρ∗

)1/(3+3w)

and νnr =

(
ρRH
ρNR

)1/3

are peculiar to our setting; they describe
a highly inhomogeneous period after the transition
and a subsequent matter domination period.



• Combining the above, we can give some example signals at
the margin of expected observability:

• Values used: κ = 5, f = 0.1MP , TRH = 1012GeV
κ = 10, f = 0.01MP , TRH = 1011GeV
κ = 70, f = 0.001MP , TRH = 1011GeV



Problem of the likelihood of phase decomposition

• Unfortunately, we can not choose our parameters (κ, f , · · · )
at will and expect to see a graviational wave signal.

• In some regimes, one has to be lucky with model parameters.

• Indeed, the uncertainty band has to hit one of the local
maxima to realize phase decomposition.



Problem of the likelihood of phase decomposition (continued)

• Note that the ‘randomness’ of the vertical positions of the
bands is not due to unknon initial conditions.

It comes from fine details of the inflationary potential.

• Relying solely on primordial fluctuations, the quantity which
needs to be O(1) to get a very likely phase decomposition is

δρinf

∆ρ
∼ κ−1/3

(
m

Mp

)(
Mp

f

)5/3

.

• We clearly see that fairly small f is needed to overcome the
suppression by m/Mp ∼ 10−5.

• But, as an axion monodromy model builder, why would one
start with f = 10−3 when f = 0.1 is also available?



• Fortunately, resonant enhancement of both primordial and
late-time quantum fluctuations of φ generically occurs.

• It is driven by the continued oscillations of the field in its
‘washboard potential’.



• The dynamics is governed by the Hill differential equation,
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2
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)

= 0,

supplemented by cosmic friction effects.

• While a full analytic understanding of the resonance is
difficult, we roughly observe two regimes:

• f � 0.01MP – no resonance, no dynamical phase
decomposition.

• f � 0.01MP – resonance leads to non-linearities on many
scales, dynamical phase decomposition occurs
(but may be much more complicated than described above).

• What we described before is just the simple
‘borderline regime’.



Summary and Conclusions

• In potentials with several minima,
‘dynamical phase decomposition’ can arise
and produce a strong gravitational wave signal.

• The details can be very diverse

and we only analysed one particular, ‘monodromy-inflation
-motivated’ case.

• While our findings are encouraging, they also rely on a
(possibly unnatural) small value of f /MP .



Summary and Conclusions (continued)

• But many more parametric regimes remain to be analysed....

• In between the ‘monodromy-inflation’ case discussed here and
the related ‘domain-wall-type’ (axion-roulette) scenarios of

Daido/Kitajima/Takahashi ,

further interesting options certainly exist.

• Interesting questions are whether some of them are completely
‘natural’ and whether the gravitational-wave-signal is specific
enough to teach us about the dynamics.


