Axionic Field Ranges, Weak Gravity,

and Euclidean Wormholes

Arthur Hebecker (Heidelberg)

including work with

P. Henkenjohann, P. Mangat, F. Rompineve, S. Theisen, L. Witkowski,

and work in progress with P. Soler and T. Mikhail

<u>Outline – Part I</u>

- Extending axionic field ranges by gauging
- Interplay with the Swampland (Distance) Conjecture

<u>Outline – Part I</u>

- Conjecture-independent constraints from gravitational instantons / wormholes ?
- General importance of wormholes (a reminder)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation

- Inflation (and cosmology more generally) might produce evidence for large field displacements: $\Delta \varphi \gg M_P$.
- This is hard to realize in string theory and may be constrained by general no-go theorems in quantum gravity ...

Banks, Dine, Fox, Gorbatov '03

The swampland conjecture

Vafa '05, Ooguri/Vafa '06

The weak gravity conjecture

Arkani-Hamed/Motl/Nicolis/Vafa '06

- However, even accepting (certain forms of) these conjectures, the implications for large Δφ are far from clear
- A unique opportunity to confront quantum gravity and reality!

Introduction: Weak Gravity Conjecture

- Roughly speaking: 'Gravity is always the weakest force.'
- More technically: As a 4d U(1) gauge coupling goes to zero, $g \rightarrow 0$, the low-energy EFT develops a global symmetry.
- This should be censored. The censoring occurs by new physics at the scale $\Lambda \sim gM_P$, which also goes to zero.

(It could involve one or many charged particles, a cutoff, ... \rightarrow different forms of the conjecture.)

cf. talks by Rudelius, Ibanez, Shiu, Cottrell, ...

Introduction: Weak Gravity Conjecture for axions

• For axions, the charged 'particles' are the instantons:

$$S \sim \int f^2 (\partial \varphi)^2 + S_{inst} + i \varphi(x_{inst.})$$

• With the substitution $g \rightarrow 1/f$ and $m \rightarrow S_{inst}$ one finds

$$m < gM_P \quad \Rightarrow \quad S < M_P/f$$
.

Thus, for $f > M_P$, the instanton-induced potential

$$V(\varphi) \sim e^{-S_{inst}} \cos(\varphi) + e^{-2S_{inst}} \cos(2\varphi) + \cdots$$

becomes uncontrolled and large f appears to be censored.

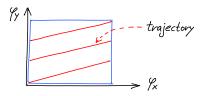
Introduction: The Swampland Conjecture

- Roughly speaking: 'If one moves a long distance in field space, the cutoff comes down exponentially.'
- Here, the relation to inflation (not axionic but rather modulus-inflation) is immediate.
- Note however that, phenomenologically, $H \ll M_P$, so the above is not necessarily a problem.

For recent work developing

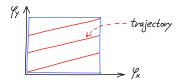
Vafa '05, Ooguri/Vafa '06

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <


see, e.g.

Palti/Baume, Palti/Klaewer '16, Blumenhagen/Valenzuela/Wolf, AH/Henkenjohann/Witkowski '17, Heidenreich/Reece/Rudelius, Grimm/Palti/Valenzueala '18

Winding Inflation


- Now, let us see how far one gets in terms of 'counterexamples':
- Even in a small field space a long trajectory can be realized if the potential is appropriate.

Kim/Nilles/Peloso '04

• However, getting such an 'instantonic' potential is hard and may in particular be forbidden by the WGC.

Winding Inflation (continued)

- But there is a simple, perturbative way of enforcing the desired trajectory: By gauging à la Dvali.
- We will refer to this as 'Winding Inflation'.

AH/Mangat/Rompineve/Witkowski '14

$$|F_0|^2 \rightarrow |F_0 + \varphi_x + N\varphi_y|^2$$

• This is can be realized very explicitly in the flux landscape, with *N* being the flux number.

Concrete realization at (partially) large complex stucture

 Let z₁, · · · , z_n, u, v be complex structure moduli of a type-IIB orientifold, let Im(u) ≫ Im(v) ≫ 1.

$$K = -\log \left(\mathcal{A}(z, \overline{z}, u - \overline{u}, v - \overline{v}) + \cdots e^{2\pi i v} + \text{c.c.} \right)$$

$$W = w(z) + f(z)(u - Nv) + \cdots e^{2\pi i v}$$

- Without exponential terms, it is clear that W leaves one of the originally shift-symmetric directions Re(u) and Re(v) flat
- In supergravity, generically: fluxes ↔ gauging
- Remarkably, the subleading cosine-potentials 'conspire' to fulfil at least the so called 'mild form' of the WGC

An Aside:

• Recently, the same gauging idea has been discussed as a way to evade the WGC for 1-forms.

Saraswat '16

• My personal feeling is that

(a) This is very interesting to explore further.

(b) It may fail since the UV theory may not permit $N \gg 1$ together with $\Lambda \sim M_P$, as required.

• The technical reason might be as follows:

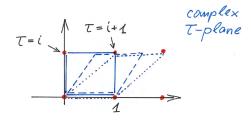
 $N \gg 1 \Rightarrow$ Ratio of certain radii is large (e.g. $R_A/R_B \gg 1$) $\Rightarrow \Lambda \ll M_P$.

(This logic is not applicable in the axionic case since Λ does not enter. See, however, below....)

A simple, torus-based model for transplanckian axions

(toy-model for winding inflation)

- Type IIB on T^6/\mathbb{Z}_2 with 64 O3 planes.
- Using standard technology, we can generate


 $W = (M\tau_1 - N\tau_2)(\tau - \tau_3)$

Kachru/Schulz/Trivedi '02 Gomis/Marchesano/Mateos '05

(The explicit F_3/H_3 is easy to state.)

In the interests of time, the rest will be described in pictures...

 Recall that a torus can be viewed as a lattice in C and its shape is parametrized by *τ* ∈ C.

- There are many identifications
 (e.g. τ = i and τ = i + 1 correspond to the same torus)
- Moreover, the metric in the *τ*-plane (both in math in the 4d EFT with a complex modulus field *τ*) reads

$$ds^2 = rac{d au \ d\overline{ au}}{4 \ (\mathrm{Im} au)^2}$$

'Hyperbolic plane'

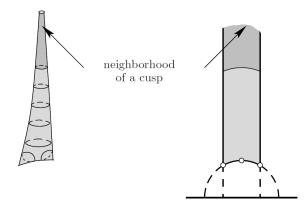
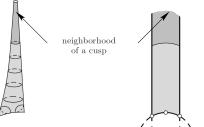


Fig. from A. Zorich, 'Flat surfaces'

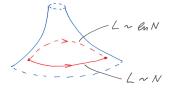

 The fundamental domain is an infinitely long, vertical strip with *i* × ∞ corresponding to a very thin torus.

イロト 不得 トイヨト イヨト

э

- The modulus space has an infinite extension, but the cutoff comes down exponentially fast if one goes there (due to light winding strings).
- The 'axionic' horizontal direction is at most O(1) in size (f ≤ M_p)

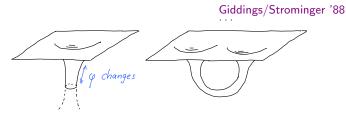
• Now, if the torus carries flux (think of rubber bands marking the cycles), the picture changes.


 Some of the identifications are lost and the fundamental domain increases

(\equiv fund. domain of congruence subgroups of $SL(2,\mathbb{Z})$).

• The cusp or 'throat' becomes much wider (super-planckian f),

...but the geodesic distances remain short ($\sim \ln(1/\text{cutoff})$)



• We formulate this in a 'moduli space size conjecture' which tries to unify the axionic WGC and Swampland Conjecture

- It appears that the swampland conjecture extends in a non-trival way to axions.
- This extension does not preclude transplanckian f.
- Implications for large-field inflation are not a priori negative.
- One needs more detailed explicit stringy models and/or finer conjectures (work in Progress Palti, Junghans, Schachner...)
- In the meantime, let us return to 'generic quantum gravity' and how it breaks shift symmetry in a 'conjecture-independent' way

No-go argument II: (Gravitational) instantons

• In Euclidean Einstein gravity, supplemented with an axionic scalar φ , instantonic solutions exist:

- The 'throat' is supported by the kinetic energy of $\varphi = \varphi(r)$, with r the radial coordinate of the throat/instanton.
- The relevance for inflation arises through the induced instanton-potential for the originally shift-symmetric field φ.

Montero/Uranga/Valenzuela~'15

Gravitational instantons (continued)

• The underlying lagrangian is simply

 $\mathcal{L} \sim \mathcal{R} + f^2 |d\varphi|^2$, now with $\varphi \equiv \varphi + 2\pi$.

• This can be dualized $(dB_2 \equiv f^2 * d\varphi)$ to give

$$\mathcal{L} \sim \mathcal{R} + rac{1}{f^2} |dB_2|^2$$
 .

• The 'throat' exists due the compensation of these two terms. Reinstating M_P , allowing *n* units of flux (of $H_3 = dB_2$) on the transverse S^3 , and calling the typical radius *R*, we have

$$M_P^2 R^{-2} \sim \frac{n^2}{f^2} R^{-6} \quad \Rightarrow \quad M_P R^2 \sim \frac{n}{f}$$

• Returning to units with $M_P = 1$, their instanton action is

 $S \sim n/f$ (with *n* the instanton number).

• Their maximal curvature scale is $\sqrt{f/n}$, which should not exceed the UV cutoff:

$$f/n < \Lambda^2$$

 This fixes the lowest n that we can trust and hence the minimal size of the instanton correction to the potential V(φ):

$$\delta V \, \sim \, e^{-S} \, \sim \, e^{-n/f} \, \sim \, e^{-1/\Lambda^2}$$

Gravitational instantons (continued)

• For gravitational instantons not to prevent inflation, the relative correction must remain small:

$$rac{\delta V}{V}\sim rac{e^{-1/\Lambda^2}}{H^2}\ll 1$$

- For a Planck-scale cutoff, $\Lambda \sim 1$, this is never possible
- However, the UV cutoff can in principle be as low as H
- Then, if also H
 1, everything might be fine....

$$rac{\delta V}{V}\sim rac{e^{-1/H^2}}{H^2}$$

AH, Mangat, Rompineve, Witkowski '15

• At least for high-cutoff models:

Can one obtain a reasonably model-independent bound from gravitational instantons?

AH/Mangat/Theisen/Witkowski '16

Note:

• Our analysis also includes the closely related issue of (singular) 'cored instantons', which have been brought up by

Heidenreich, Reece, Rudelius '15

• For recent work on the emedding in string theory see...

Hertog/Trigiante/Van Riet '17

Very rough summary of results

- Look at the case where we expect the strongest bound: A string model with $g_s = 1$ on T^6 at self-dual radius.
- Need to decide when to trust a wormhole / extremal instanton

(i.e., what is the smallest allowed S^3 -radius r_c)

The following two choices appear 'natural':

 $2\pi^2 r_c^3 = \mathcal{V}_{self-dual}^{1/2} \implies r_c M_P \simeq 1.3 \implies e^{-S} \simeq 10^{-68}$ $2\pi r_c = \mathcal{V}_{self-dual}^{1/6} \implies r_c M_P \simeq 0.56 \implies e^{-S} \simeq 10^{-13}$

Surprisingly weak bounds!

...However, beyond inflation, wormholes remain very interesting, both conceptually and phenomenologically

Gravitational instantons - Small-f axions

see e.g. Alonso/Urbano '17

• For example, for a QCD axion with (relatively) high *f*, the wormhole effect might be relevant:

$$V(\varphi) = \Lambda_{QCD}^4 \cos(\varphi) + r_c^{-4} e^{-S_w/2} \cos(\varphi + \delta).$$

- It turns out that for $f \gtrsim 10^{16}$ GeV the solution to the strong CP problem is lost.
- Interesting positive observational consequences exits in the context of black-hole superradiance and ultralight dark matter.

Gravitational instantons / wormholes - conceptual issues

• Motivated by the above, it is worthwhile revisiting some very fundamental conceptual issues of (euclidean) wormholes.

Hawking '78..'88, Coleman '88, Preskill '89 Giddings/Strominger/Lee/Klebanov/Susskind/Rubakov/Kaplunovsky/.. Fischler/Susskind/...

Review by AH, P. Soler, T. Mikhail, ...to appear...

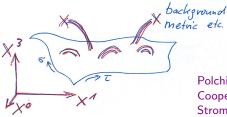
• First, once one allows for wormholes, one has to allow for baby universes.

Second, with baby universes comes a 'baby universe state'

 (α vacuum) encoding information on top of our 4d geometry.

+//1

 Crucially, α-parameters remove the disastrous-looking bilocal interaction.



$$\exp\left(\int_{x_1}\int_{x_2}\Phi(x_1)\Phi(x_2)\right) \quad \rightarrow \quad \int_{\alpha}\exp\left(-\frac{1}{2}\alpha^2 + \alpha\int_{x}\Phi(x)\right)$$

- In our concrete (single-axion) case, an α parameter now governs the naively calculable $e^{-S} \cos(\varphi/f)$ -term.
- But, what is worse, all coupling constants are 'renormalized' by α parameters are hence not predictable in principle.

- Most naively, 4d measurements collapse some of the many α parameters to known constants.
- But in a global perspective, both different 4d geomtries and α parameters have to be integrated over.
- But this leads to the 'Fischler-Susskind-Kaplunovsky catastrophy'.
- The problem is that, through certain higher operators, high densities of even very large wormholes are rewarded;
 → exponential suppression overcome.
- Finally, just integrating over the α parameters is clearly not sufficient one needs to consider their full quantum dynamics.

- Indeed, consider the case of 1+1 dimensions with a number of scalar fields (in addition to gravity).
- This is, of course, well known as string theory and the *α* parameters characterize the geometry the target space.

Polchinski, Banks/Lykken/O'Loughlin, Cooper/Susskind/Thorlacius, Strominger '89...'92

- The latter has a quantum dynamics of its own, the analogue of which in case of 3+1 dimensions is completely unknown.
- All this raises so many complicated issues, that one might want to dismiss wormholes altogether.

- But this is not easy, for example because we know that in string theory wormholes correspond to string loops and are a necessary part of the theory.
- Thus, forbidding for example topology change in general does not appear warranted.
- Is there a good reason to forbid topology change just in d > 2?
- Arguments have been given that the euclidean Giddings-Strominger solution has negative modes and should hence be dismissed.

Rubakov/Shvedov '96, Maldacena/Maoz '04, see however Alonso/Urbano '17, ...

 But, while this is even technically still an open issues, it does not appear to be a strong enough objection

• Indeed, once a non-zero amplitude

universe \rightarrow universe + baby-universe

is accepted, the reverse process is hard to forbid.

- As a result, one gets all the wormhole effects.
- The negative mode issue may be saying: 'Giddings-Strominger' does not approximate the amplitude well.

..hard to see, how it would dispose of the problem altogether..

For further problems (and possible resolutions) see e.g. Bergshoeff/Collinucci/Gran/Roest/Vandoren/Van Riet '04, Arkani-Hamed/Orgera/Polchinski '07, Hertog/Trigiante/Van Riet '17

Summary/Conclusions

- Axionic directions may be extended in fluxed geometries, violating a possible 'subplanckian *f* conjecture'
- But the corresponding moduli-space-size does not grow faster than logarithmic. Consequences for inflation remain open....

- Euclidean wormholes are the universal, semiclassical counterpart of instantons
- They do not constrain inflation strongly, but may have other pheno applications 'at small f'
- They come at the price of α vacua (and other disasters)
- Worthwhile reviving this fundamental unresolved issue?