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• Personal motivation

• The WGC without (useful) extremal objects

• The use of dualitites

• The geometric WGC

if time permits:

• Constraining monodromy by the WGC for domain walls

1/17



The WGC is interesting as ...
Arkani-Hamed/Motl/Nicolis/Vafa ’06

1) A possible fundamental feature of quantum gravity

• It quantifies the non-existence of global symmetries

(If g → 0 is impossible, we need to know gmin.
The WGC states gmin = m.)

• It may define a non-trivial boundary between landscape and
swampland.

• Since it’s always respected by string theory, it may teach us
about the string’s interplay with ‘generic’ quantum gravity.

• It may relate very directly to phenomenology....
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The WGC is interesting because ...

2) The inflationary tensor-to-scalar ratio is...

r ≡
∆2

T

∆2
R

= 16ε ' 8

∣∣∣∣dϕdN
∣∣∣∣2 ⇒ ∆ϕ ' 20

√
r ,

assuming N ' 60. (This is known as the Lyth bound).

• Thus, even though the BICEP ‘discovery’ of r ' 0.15 went
away, the need to consider large-field models may return.

• Note: The Planck/BICEP analysis still sees a (∼ 1.8σ) hint for

r ' 0.05 . Much better values/bounds are expected soon.

Cheung/Remmen; de la Fuente/Saraswat/Sundrum . . . ’14
Rudelius; Ibanez/Montero/Uranga/Valenzuela; Brown/Cottrell/Shiu/Soler;
Bachlechner/Long/McAllister; AH/Mangat/Rompineve/Witkowski;
Junghans; Heidenreich/Reece/Rudelius; Kooner/Parameswaran/Zavala;
Harlow; AH/Rompineve/Westphal; . . . ’15; Conlon/Krippendorf . . . ’16
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The WGC is interesting because ...

3) It has the potential to constrain Relaxion models...

Ibanez/Montero/Uranga/Valenzuela ’15

• Such models fine-tune the Higgs mass-squared dynamically
(during inflation), but require a large field range of an axionic
scalar to do so...

Graham/Kaplan/Rajendran ’15

Crucially, one needs to con-
strain monodromy models

Brown/Cottrell/Shiu/Soler,
Ibanez/Montero/Uranga/Valenzuela ’15
cf. also this and A. Westphal’s talk

Fig. from Jaeckel/Metha/Witkowski ’15
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The (generalized) weak gravity conjecture

• The basic underlying lagrangian is
(for p-dim. objects in d dims.; with MP ≡ 1)

S ∼ 1

g2

∫
(Fp+1)2 + T

∫
p−dim.

dV +

∫
p−dim.

Ap

with
Fp+1 = dAp .

• To avoid stable extremal black branes, one requires charged
objects with sub-extremal mass (tension):

q/T ≥ γ1/2
p,d , where γp,d =

p(d − p − 2)

d − 2
.

• As one clearly sees, this fails for instantons and objects with
codimension 1 & 2 (domain walls and cosmic ‘strings’).

Heidenreich/Reece/Rudelius ’15
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Note:

• This failure outside the range 0 < p < d−2
is not unexpected:

• Indeed, the argument that
‘the WGC protects us from too many stable objects’
fails also intuitively outside this range.

see e.g. Susskind ’95(E.g., strings and domain walls induce

no long-range gravitational force.)

However:

• The arguments that
‘the WGC protects us from the global-symmetry limit’
and
‘string theory always obeys the WGC’
support the conjecture even outside the above range.
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• Arguments supporting/quantifying the WGC
outside the ‘canonical range’ of 0 < p < d−2 include

• string dualities
Brown/Cottrell/Shiu/Soler ’15

• consistency of generic KK-reductions
• consideration of dilatonic black branes.

Heidenreich/Reece/Rudelius ’15

• Example for duality argument:

IIB on CY3 × R3 × S1 — brane wrapped to give instantons

⇐ T-duality ⇒

IIA on CY3 × R3 × S1′ — brane wrapped to give particle

(at large R ′ and large coupling; hence M-theory in 5d;
WGC applicable to 5d Reissner-Nordstroem-BHs).

⇒ WGC is carried back to IIB axion decay constant.
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• In fact, the key is not in the dualities, but rather in
the same CY underlying both the M-theory and the IIB model.

• Hence, there ought to be a

Geometric WGC

• Consider a IIA-CY X with D2-branes wrapped on 2-cycles.

• Let wi be a basis of H2(X ,Z).

The metric on X induces a metric for 2-forms,

Kij ≡
∫

X
wi ∧ ?wj ,

and on the (dual) space of 2-cycles, K ij .

• We make the standard ansatz

C3 = Ai
1(x) ∧ wi (y) .
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• Focus on 4d particles coming from D2s on a particular cycle Σ

• The relevant 4d action reads (ls = 1)

S4 ∼ (VX/g
2
s )

∫ √
g R +

∫
Kij F

i
2 ∧ ?F

j
2 + qΣ

i

∫
world-line

Ai
1

with the charges
qΣ

i =

∫
Σ
w i .

• Note that only a particular combination of Ai
1’s is sourced by

particles ‘from Σ’:

Ai
1 ≡ A1 K

ijqΣ
j (this defines A1) .

• Thus, one arrives at the standard action

S4 ⊃
1

2e2

∫
F2 ∧ ?F2 +

∫
world-line

A1 ,

with e2 given by.....
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• With e2 given by

e2 = 2π |qΣ|2 with |qΣ|2 ≡ K ijqΣ
i q

Σ
j .

Here we reinstanted O(1) factors.

Note: Metric on X → natural norm on p-form space
→ natural norm |qΣ| on p-cycle space.

• Finally, use M
2
P = VX/κ

2
10g

2
s together with MΣ = (µ2/gs)VΣ

and impose the WGC:

eMP

MΣ
≥ 1√

2
⇒

|qΣ|V 1/2
X

VΣ
≥ 1

2
.

Thus a particular, purely geometric (rescaling- and
gs -independent) quantity characterizing X is constrained.
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• Crucially, the same function appears in WGC constraints on
other objects obtained from other branes wrapped on 2-cycles.

• For example, D4s give domain walls with

eDWMP

TDW
=

(2VX )1/2|qΣ|
VΣ

.

• Thus, using the ‘particle-WGC’, we constrain V
1/2
X |qΣ|/VΣ,

obtaining a precise ‘domain-wall-WGC’:

eDWMP

TDW
≥ 1

2
.

• This goes through for any dimension of the cycle Σ and any
dimension of the brane. Hence, any object in 4d is
constrained by the imposition of the WGC for particles.
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• Thus, allowing also for multiple gauge fields,

Cheung/Remmen ’14; Rudelius ’14/’15,
Brown/Cottrell/Shiu/Soler, Bachlechner/Long/McAllister ’15

we find in full generality:

Geometric conjecture:

The convex hull spanned by the vectors (V
1/2
X /VΣ) qΣ

(with Σ ∈ Hp(X ,Z)) contains the ball of radius 1/2.

Implication for (q+1)-dimensional objects in 4d:

The convex hull spanned by the vectors (MP/Tq) q̃Σ

contains the ball of radius 1/
√

2.

• Note: We did not use SUSY, the CY-condition, or the existence of a

SUSY-brane on Σ. So this may be much stronger then the ‘not too

surprising’ BPS-like result.
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Constraining axion monodromy with the WGC

Disclaimer:

Only brief summary; for deeper analysis and relation to earlier work...

Kaloper/Lawrence/Sorbo ’08..’11 (see also Dvali ’05)

Brown/Cottrell/Shiu/Soler; Ibanez/Montero/Uranga/Valenzuela ’15

see talks by I. Valenzuela and A. Westphal.

• Let’s assume, based on the above, that
all 4d objects, in particular DWs, are constrained.

• Note: the ‘light’ stringy objects fulfilling the WGC above
are nevertheless always heavier than the KK-scale MKK = Λ.

• Thus, one might conjecture that the magnetic WGC

Λ3 . e2MP

always holds.
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• Start from the ‘standard’ monodromy potential
(with ‘instantonic wiggles’)

AH/Rompineve/Westphal ’15

L = (∂ϕ)2 − 1

2
m2ϕ2 − α cos(ϕ/f ) .

Φ

V

The low-energy effective theory
of this model has no scalar but
just a set of discrete vacua

(as in the
Bousso-Polchinski landscape).

(Effective) domain walls are automatically present, but are too
light to give any useful WGC constraint.
(In fact, one may argue that they make the electric WGC useless.)
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• Nevertheless, the effective action

S ∼
∫

1

2(e2)2
F 2

4 +

∫
DW

A3

is there and, using the quantization F4 = n e2
2 ,

allows for matching the discrete effective potential

V (F4)eff =
1

2
(e2)2n2

to the previous effective potential

V (ϕ)eff =
1

2
m2(2πnf )2 .

• This implies e2 = 2πmf and hence

Λ3 . e2MP = 2πmf MP .
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• In the context of inflation, one has

H ∼ mϕmax . Λ

and hence

Λ3 ∼ m f MP ⇒ ϕmax

MP

.

(
MP

m

)2/3(
2πf

MP

)1/3

.

To be better explained in A. Westphal’s talk....
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Summary

• Let’s assume that string compactifications with form-fields /
wrapped objects always obey the particle WGC.

• Then a geometric WGC follows.

• From this, one obtains a generalized WGC including axions,
cosmic strings and DWs etc.

• The KK scale is always so low that also the
generalized magnetic WGC is holds.
Let’s accept this latter form also more generally.

• The magnetic WGC for DWs provides for a very direct way of
constraining axion-monodromy-type scalar potentials.
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