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Outline

• IR divergences in the curvature correlator

• Defining an IR-safe correlator

• Tensor modes / Higher correlators / Explicit calculability

• Implications for late geometry



Introduction

• Single-field slow-roll inflation with potential V (ϕ)

V � 1 V (n)/V � 1 (MP = 1)

• The geometry is almost-de-Sitter: 3H2 = V

• Equation-of-motion: ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0



Introduction (continued)

• It is sufficient to treat δϕ as a massless scalar in the geometry

ds2 = −dt2 + e2Htd~x2

• With the ansatz

δϕ(x) ∼
∫

d3k
{
a~k f~k(x) + a†~k

f ∗~k (x)
}

and f~k ∼ −
iH√
k3

e i
~k~x at t →∞ one finds:

δϕ(x) ∼
∫

d3k
iH√
k3

e i
~k~x (a†

−~k
− a~k)



• In other words, outside the horizon δϕ is a classical Gaussian
random variable:

δϕ(x) ∼
∫

d3k
H√
k3

e i
~k~xb~k

where 〈b~kb~q〉 ∼ δ
3(~k + ~q).

• Its expectation value is logarithmically divergent:

〈δϕ(x)2〉 ∼ H2

∫
d3k

k3

... Starobinsky ’85 ... Allen, Folacci ’87 .... Weinberg ’05

......
Burgess, Leblond, Holman, Shandera ’10
Rajaraman, Kumar, Leblond ’11
......



Introduction (continued)

• The UV divergence is easy to understand and remove

What is the origin of the IR divergence?

Allen, Folacci ’87
Kirsten, Garriga ’93

• de Sitter space is ‘effectively’ compact

• Hence, the zero mode of δϕ is dynamical

• It ‘diffuses’ like a QM-particle without potential

• However, this is irrelevant since reheating ‘measures’
the value of the zero-mode

• But: The effect ‘returns’ through loop corrections



IR divergences in δN formalism

Starobinsky ’85, Sasaki/Stewart ’95
....
Lyth/Rodriguez ’05

• Consider some late, constant-energy-density surface
(reheating surface):

ds2 = e2ζ (eγ)ij dx
idx j .

• Ignoring γij for the moment, one has

ζ(x) = N(ϕ+ δϕ(x))− N(ϕ)

where

N(ϕ) =

∫ ϕ

dϕ̃
V (ϕ̃)

V ′(ϕ̃)



IR divergences in δN formalism (continued)

• Expanding in δϕ we have

ζ(x) = Nϕδϕ(x) +
1

2
Nϕϕδϕ(x)2 + · · ·

and, for the curvature correlator:

〈ζkζp〉 = N2
ϕ〈δϕkδϕp〉+

1

4
N2
ϕϕ〈(δϕ2)k(δϕ2)p〉+ · · ·

• IR-divergent corrections ∼
∫
d3q/q3 result



Intuitive physical picture:

• Long-wavelength modes affect measured short-wavelength
fluctuations (e.g. L1).

• Modes outside the ‘box size’ can be absorbed in constant
ζ-background and are irrelevant (e.g. L2).

Lyth ’07



Fluctuations of the Hubble scale

• Obviously, the technical origin of the effect is the dependence
of Nϕ(ϕ) on δϕq with q � k.

• Hence, the Hubble scale H should be modified analogously:

δϕ(x) ∼
∫
k

e−ikx√
k3

H(ϕ(tk) + δϕ̄(x)) bk ,

where

δϕ̄(x) ∼
∫
q�k

e−iqx

q3/2
bq .



Fluctuations of the Hubble scale (continued)

• Collecting all subleading terms one finds

Pζ(k) ∼ N2
ϕH

2 +
1

2
〈δϕ̄2〉 d2

dϕ2
(N2

ϕH
2)

• or, equivalently,

Pζ(k) =

(
1 +

1

2
〈ζ̄2〉 d2

d(ln k)2

)
P0
ζ (k)

see also Giddings, Sloth ’10
Senatore ’10

Giddings, Sloth ’11



IR-safe correlation functions

• Recall our gauge choice

ds2 = e2ζ (eγ)ij dx
idx j .

• The conventional power spectrum can be defined as

Pζ(k) ∼ k3

∫
y
e iky 〈 ζ(x)ζ(x + y) 〉 .

• This is sensitive to the box-size L since the physical meaning
of y depends on the (strongly varying) background ζ̄.

• To avoid this, use invariant distance z = y e ζ̄ .
The z-dependence of the correlator

〈 ζ(x)ζ(x + ze−ζ̄(x)) 〉

is then a background-independent and hence IR-safe object.

related to Urakawa/Tanaka ’10 ?



• Its Fourier transform is our desired IR-safe power spectrum:

P0
ζ (k) ∼ k3

∫
z
e ikz 〈 ζ(x)ζ(x + ze−ζ̄(x)) 〉 .

• The original IR-sensitive power spectrum follows as

Pζ(k) ∼ k3

∫
y
e iky 〈 ζ(x) ζ(x + y) 〉

∼ k3

∫
y
e iky 〈 ζ(x) ζ(x + (ye ζ̄)e−ζ̄) 〉

∼ 〈 (ke−ζ̄)3

∫
z

exp(ike−ζ̄z) ζ(x) ζ(x + ze−ζ̄) 〉

∼ 〈P0
ζ (ke−ζ̄) 〉

in agreement with our previous result.



Tensor modes / Higher correlators

• Our IR-safe power spectrum immediately generalizes to the
case of background tensor modes,

P0
ζ (k) ∼ k3

∫
z
e ikz〈ζ(x)ζ(x + e−ζ̄(e−γ̄/2z))〉 ,

and to higher correlation functions,

P0
(n)(k1...kn) ∼

∫
z1

· · ·
∫
zn

e i(k1z1+···+knzn)〈ζ(x)ζ(x+y1) · · · ζ(x+yn)〉 ,

where

yi = yi (z , ζ̄, γ̄) = e−ζ̄−γ̄/2z .



Explicit averaging over the background

• For scalar modes, the IR-enhancement can be worked out
explicitly:

Pζ(k) =
1

σ
√

2π

∫
d ζ̄e−ζ̄

2/2σ2P0
ζ (ke−ζ̄) ,

with

σ2 ≡ 〈ζ̄2〉 ∼
∫

1/L�q�k
(NϕH)2(q)

d3q

q3
.

• The breakdown of convergence at large L can be analytically
understood



• This breakdown implies a peculiar geometry of the reheating
surface at large length scales:

• It is ‘locally’ approximately flat, but deviates from flatness if
one looks at very large regions with very high resolution.



Summary

• An interesting class of IR divergences in correlation functions
comes from long-wavelength background modes.

• This can be quantified in an (appropriately modified)
δN formalism

• One can define IR-safe correlators.

• One can return to usual correlators and recover their
IR-corrections.

• Are there observable effects (given our relatively small L)?

• Are there interesting implications for quantum gravity in
de Sitter space? (cf. Arkani-Hamed et al., Giddings, ...)


