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Inflation in field theory is ‘easy’ . . .

• We just need V (ϕ) with
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Large-field method:

• If ϕ� 1 (in Planck units), simple (e.g. power-law) potentials
will do the job

• Suppressing (all!) higher-dim. operators can presumably be
realized with a shift symmetry

Linde ’83; Freese/Frieman/Olinto ’90



Small-field method:

• Motivation: Quantum-gravity-based ‘unease’ about ϕ� 1

• Advantage: Need only to worry about leading operators
(high powers of ϕ are tiny)

• Disadvantage: The coefficients of the first few operators (1,
ϕ2, ϕ4) need to be engineered/tuned to ensure flatness

cf. e.g. ‘hybrid infl.’, Linde ’91, . . . , talks by Buchmüller, Domcke, Dudas, . . .

Personal conclusion:

• In QEFT, things are as good as it gets w/o Quant.Grav.

• It is in the UV completion (i.e. mostly string theory) where
things become difficult and hence interesting

(cf. assumptions about higher-dim. operators)



...thus, from now on, focus on

Inflation in String Theory:

• Small-field models can presumably be realized through

– tuning (KKLMMT)

– model building (stringy ‘hybrid’ or ‘Kähler modulus’
inflation)

Dvali/Tye ’98, Garcia-Bellido/Rabadan/Zamora ’01,
Dasgupta/· · · /Kallosh ’02
Conlon/Quevedo ’05, Cicoli/Burgess/Quevedo ’09

• Large-field models have remained ‘more of a challenge’



...thus, from now on, focus on

Large-Field Inflation in String Theory:

More serious motivation:

• Large-field models are ‘robust’
(in the sense of not requiring very special potentials)

• If sizeable tensor modes are found (e.g. by BICEP2),
∆ϕ & 1 is more or less enforced

• If, furthermore, string-theoretic problems with large-field
inflation persist, this may rule out string theory



Origin of problems:

• The moduli space of string compactifications is (mostly)
compact and, in fact, small

• All fields of string compactifications can, in some way, be
derived from those (compact) moduli

• The known non-compact directions (such as
decompactification) quickly lead to V = 0.



Main Approaches to Large-Field Inflation in String Theory:

• Our main ingredient are always axions
Four our purposes: periodic real scalars with
(approximate) shift symmetry

• Simplest example: ϕ =
∫
S1 A5dx

5

(Wilson line, with an S1-field space)

(1) Extend axion range by (judiciously) combining several axions

Kim/Nilles/Peloso ’04, Dimopoulos/Kachru/McGreevy/Wacker ’05

(2) Break periodicity by introducing a monodromy in axion field space

Silverstein/Westphal, McAllister/Silverstein/Westphal ’08



Our focus here: Axion Monodromy

‘Old’ Axion Monodromy Models:

Silverstein/Westphal, McAllister/Silverstein/Westphal ’08

• Want to build on recent progress in moduli stabilization
(‘flux landscape’)

• This is understood best in type IIB

• (One) natural idea: Use ϕ =
∫
S2 B2 ,

with monodromy introduced by pullback to D7-brane:

SDBI ∼
∫ √

−det(gµν + Fµν + Bµν)

• Unfortunately, this has a supergravity η-problem since,

symbolically, K ⊃ |G − G |2 ; G ∼ C2 + iB2



• By contrast, the crucial shift symmetry can be maintained if

ϕ =

∫
S2

C2 ,

But this requires D7 → NS5,
which in turn requires an anti-NS5 (for tadpole cancellation).

• As a result, SUSY is broken explicitly and the desired 4d
effective supergravity description of moduli stabilization is lost.

(See, however, recent progress in the F-theory context:
Palti/Weigand, 1403.7507 )

• The ‘canonical’ way out is to appeal to special types of
warped throats (the existence of which is difficult to establish)
to control the anti-NS5 backreaction



A New Class Axion Monodromy Models

• This situation may have fundamentally improved with a recent
series of papers:

Marchesano/Shiu/Uranga, 1404.3040
Blumenhagen/Plauschinn 1404.3542
AH/Kraus/Witkowski 1404.3711

as well as:
Ibanez/Valenzueala
Arends,AH,. . . , Lüst, Mayrhofer, Weigand
McAllister/Silverstein/Westphal/Wrase
Franco/Galloni/Retolaza/Uranga

Executive Summary:

• Let the Kähler potential be shift-symmetric, K ⊃ |G − G |2,
with Re(G ) an axionic (periodic) direction

• Let W = W (G ) introduce a monodromy

• Crucial: This arises frequently in string compactifications !



Marchesano/Shiu/Uranga:

• One crucial aspect: ‘Massive Wilson Lines’

• Idea: Let the D-brane geometry be an S1 fibration

• ‘Twist’ this fibration such that the S1-cycle becomes globally
trivial (as in twisted tori)

Blumenhagen/Plauschinn:

• Use C0 of S = 1/gs + iC0.

• Since K = − ln(S + S) and W = A(z) + SB(z), tuning for a
small mass of S is easy

• Stabilizing Re(S) remains a challenge



Finally (and for the rest of the talk):

‘Our’ Chaotic-D7-brane scenario

(with Kraus/Witkowski)

• Start with older ‘D7-brane’ proposal (‘fluxbrane inflation’)

AH, Kraus, Lüst, Steinfurt, Weigand ’11
. . . + Küntzler ’12

• Central point: In type IIB at at ‘large complex structure’,
certain D7-brane position moduli have shift symmetry

• In addition: They are part of the flux superpotential, which
may induce a (small!) monodromy



Origin of Shift symmetry

(A) Via D6 branes in type IIA mirror dual

• complex D6-brane moduli combine a (real) position modulus
with a (real) Wilson line

• By mirror symmetry, both become D7-brane position moduli

• The (shift-symmetric) Kähler potential ‘remembers’ which
direction of D7-brane motion comes from a Wilson line:

K ⊃ f (c − c)



Origin of Shift symmetry

(A) Via D6 branes in type IIA mirror dual

• The ‘Wilson-line-type’ modulus corresponds to
moving the D7-brane in the fibre-T 3 of
the SYZ picture of the type IIB Calabi-Yau

• This ‘Wilson-line-type’ modulus is our axion/inflaton



Origin of Shift symmetry

(B) Via F-theory / Mirror symmetry of 4-folds

• D7 brane moduli and complex structure moduli are part of the
complex structure of the F-theory 4-fold: {c , u} ≡ {z} ≡ {t}.

• For the mirror dual 4-fold, these are all (shift-symmetric)
Kähler moduli:

K ⊃ − ln[κijkl(t − t)i (t − t)j(t − t)k(t − t)l ]

• Hence (symbollically):

K ⊃ − ln[(u − u)4 + (u − u)2(c − c)2]



Superpotential and flux-tuning

• The F-theory superpotential takes the general form

W = NA ΠA(ui , c i )

• By flux tuning, we assume

W = W0 + αc +
β

2
c2

with

α = α(ui , c i )� 1

β = β(ui , c i )� 1



Complete Model and Inflationary Potential

• Our 4d-supergravity analysis is based on

K = −2 ln Ṽ − ln

(
A + iB(c − c)− D

2
(c − c)2

)
and

W = W0 + αc +
β

2
c2 + e−2πTs

• Here Ts is the ‘blowup-cycle’ of the Large-Volume moduli
stabilization proposal (which, together with Tb and the
α′-correction, also appears in Ṽ)

• The full scalar potential follows from the standard supergravity
formula and lead to a ‘chaotic’ potential for ϕ ∼ Re(c)



In some more detail:

V = eK
(
KTiTjDTi

WDTj
W − 3|W |2 + K cc |DcW |2

)
• The first two terms stabilize Tb and Ts as in the standard LVS

(at any given value of c)

• The last term provides the chaotic inflaton potential for Re(c)

(which is small, but large enough to justify treating c as
constant in the LVS terms)

This appears to be consistent with the ‘non-SUSY way out’
mentioned in the talk of E. Dudas



Phenomenology

• The leading-order scalar potential (for canonically
normalized inflaton ϕ ∼ Re(c)) thus reads

V =
1

2
m2
ϕϕ

2 with m2
ϕ =
|β|2

V2

• To get a ‘maximal’ tensor/scalar ratio r ' 0.16,
we need mϕ ' 0.5 · 10−5

• The inflaton field excursion is ϕ60 ' 14

• To ensure stability of Kähler moduli, the inflaton potential
needs to stay below the LVS stabilization scale:

m2
ϕϕ

2
60 ' 0.5 · 10−8 � |W0|2

V3

• This works e.g. for V ' 103, |W0| ' 10, and β ' 0.5 · 10−2



Phenomenology (continued)

• Next, we need to worry about stability of Im(c), which
becomes light in the large complex structure limit Im(z)� 1

• A sufficient condition is

ϕ60 |β| Im(z)2

|W0|
< 1

• The resulting limit Im(z) < 12 is fortunately consistent with
keeping corrections ∼ exp(2πiz) tiny

• Finally, we have both loop corrections (suppressed by volume
and π-factors) and ‘instanton’ corrections (∼ exp(2πiz))

• They induce oscillations on top of the ϕ2 potential.
While small, they could be a ‘smoking gun’ for such models



Summary/Conclusions

• Inflation (and especially large-field inflation) is a challenge and
an opportunity for string theory

• Considerable progress towards moduli stabilization in
monodromy models has recently been made

• In particular, the dynamics of D7-branes in flux
compactifications provides a ground where explicit exampes
appear within reach (‘Chaotic D7-brane inflation’)

Challenges:

• Explicitly realize the required large complex structure limit

• Is tuning a necessity or just a drawback of large-field models?


