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Chapter 1

Review of standard cosmology

Standard hot big bang cosmology is based on the cosmological principle, which states that the universe is
homogeneous and isotropic at least on large scales. This is supported by a number of observations, such as
the CMB photons coming from different parts of the sky with almost the same temperature. The past cosmic
expansion history is recovered by solving the Einstein equations in the background of the homogeneous and
isotropic universe. Of course we observe inhomogeneities and irregularities in the local region of the universe
such as stars and galaxies. These inhomogeneities have grown in time through gravitational instability from
a matter distribution that was more homogeneous in the past. Then the inhomogeneities can be regarded as
small perturbations evolving on the background (homogeneous) universe.

In this Chapter we provide the basic tools to understand the expansion history of the universe. No new
concept with respect to the standard Cosmology course is introduced.

1.1 Einstein-Hilbert Lagrangian
Einstein’s equations in vacuo can also be obtained by varying a gravitational action, called Hilbert-Einstein
action

A =

∫ √
−gRd4x (1.1)

In fact, we note that the metric determinant transforms as

g′ = gJ−2

where Jµν ≡ ∂yµ/∂xν is the Jacobian of the general transformation that brings us from g to g′. It is clear then
that

√
−g′d4x =

√
−gJ−2|J |d4y =

√
−gd4y is invariant under general transformations: this explains the factor√

−g in the action. By varying A with respect to the metric and using the relation

∂R

∂gµν
=
∂(gαβR

αβ)

∂gµν
= Rµν + gαβ

∂Rαβ

∂gµν

and also

δ
√
−g = −1

2

√
−g(δgµν)gµν

we obtain

δA =

∫ √
−gd4x[−1

2
gµνR+Rµν + gαβ

∂Rαβ
∂gµν

]δgµν = 0 (1.2)

We can now show that the term

δA =

∫ √
−gd4x[gαβ ∂Rαβ

∂gµν
]δgµν = 0 (1.3)

6



CHAPTER 1. REVIEW OF STANDARD COSMOLOGY 7

is a total differential (i.e. δA = 0 is an identity) and is therefore irrelevant for as concerns the equation of
motion. In fact one can write

Rµν = Γαµν;α − Γββµ;ν (1.4)

(where the covariant derivative is to be meant only wrt the upper index of the Christoffel symbols) and
√
−ggµνδRµν =

√
−g(gµνδΓαµν − gµαδΓββµ);α (1.5)

The term inside parentheses is the covariant derivative of the vector V α ≡ gµνδΓαµν − gµαΓββµ and can therefore
be written as

(V α
√
−g),α (1.6)

(notice now the derivative is the ordinary one) )i.e. as a total derivative.
Then the Einstein equations in vacuum follow

Rµν −
1

2
gµνR = 0

1.2 Friedmann equations
The line-element that describes a 4-dimensional homogeneous and isotropic spacetime is called Friedmann-
LemaÃ®tre-Robertson-Walker (FLRW) spacetime and is given by

ds2 = gµνdx
µdxν = −dt2 + a2(t)dσ2 , (1.7)

where gµν is a metric tensor, a(t) is a scale factor with cosmic time t, and dσ2 is the time-independent metric
of the 3-dimensional space with a constant curvature K:

dσ2 = γijdx
idxj =

dr2

1−Kr2
+ r2(dθ2 + sin2 θ dϕ2) . (1.8)

Here K = +1,−1, 0 correspond to closed, open and flat geometries, respectively. We have used polar coordinates
(x1, x2, x3) = (r, θ, ϕ) with γ11 = (1 − Kr2)−1, γ22 = r2, and γ33 = r2 sin2 θ. In Eq. (1.7) the Greek indices
µ and ν run from 0 to 3, whereas in Eq. (1.8) the Latin indices i and j run from 1 to 3; the same convention
applies to the whole book except when indicated otherwise. We follow Einstein’s convention that the terms
with same upper and lower indices are summed over. See the book of Weinberg [69] for the derivation of the
metric (1.7) from a maximally symmetric spacetime. In addition to the cosmic time t, we also introduce the
conformal time η defined by

η ≡
∫
a−1 dt . (1.9)

The dynamical equations of motion in the expanding universe can be derived from the Einstein equations by
the following steps. From the metric gµν we obtain the Christoffel symbol:

Γµνλ =
1

2
gµα(gαν,λ + gαλ,ν − gνλ,α) , (1.10)

where gαν,λ ≡ ∂gαν/∂x
λ. Note that gαν satisfies the relation gµαgαν = δµν , where δµν is Kronecker’s delta (δµν = 1

for µ = ν and δµν = 0 for µ ̸= ν). The Ricci tensor is defined by

Rµν = Γαµν,α − Γαµα,ν + ΓαµνΓ
β
αβ − ΓαµβΓ

β
αν . (1.11)

The contraction of the Ricci tensor gives the Ricci scalar (scalar curvature)

R = gµνRµν . (1.12)
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We can then evaluate the Einstein tensor

Gµν ≡ Rµν −
1

2
gµνR . (1.13)

The cosmological dynamics can be obtained by solving the Einstein equations

Gµν = 8πGTµν , (1.14)

where Tµν is the energy-momentum tensor of matter components. The l.h.s. of Eq. (1.14) characterizes the
geometry of spacetime, whereas the r.h.s. describes energies and momenta of matter components. In the
cosmological setting the cosmic expansion rate is determined by specifying the properties of matter in the
universe.

For the FLRW metric (1.7) the non-vanishing components of Christoffel symbols are

Γ0
ij = a2H γij , Γi0j = Γij0 = Hδij , (1.15)

Γ1
11 =

Kr

1−Kr2
, Γ1

22 = −r(1−Kr2) , Γ1
33 = −r(1−Kr2) sin2 θ , (1.16)

Γ2
33 = − sin θ cos θ , Γ2

12 = Γ2
21 = Γ3

13 = Γ3
31 =

1

r
, Γ3

23 = Γ3
32 = cot θ , (1.17)

where

H ≡ ȧ/a . (1.18)

A dot represents a derivative with respect to cosmic time t. The quantity H, called the Hubble parameter,
describes the expansion rate of the universe. The Christoffel symbols given in Eqs. (1.16) and (1.17) correspond
to those for the three-dimensional metric (1.8) with the curvature K.

From Eqs. (1.11) and (1.12) the Ricci tensor and the scalar curvature are

R00 = −3
(
H2 + Ḣ

)
, R0i = Ri0 = 0 , Rij = a2

(
3H2 + Ḣ + 2K/a2

)
γij , (1.19)

R = 6
(
2H2 + Ḣ +K/a2

)
. (1.20)

From Eq. (1.13) together with the relation Gµν = gµαGαν , the Einstein tensor is

G0
0 = −3

(
H2 +K/a2

)
, G0

i = Gi0 = 0 , Gij = −
(
3H2 + 2Ḣ +K/a2

)
δij . (1.21)

In the FLRW spacetime the energy-momentum tensor of the background matter is restricted to take the perfect
fluid form:

Tµν = (ρ+ P )uµuν + Pδµν , (1.22)

where uµ = (−1, 0, 0, 0) is the four-velocity of the fluid in comoving coordinates, and ρ and P are function of
t. The (00) and (ij) components of Tµν are T 0

0 = −ρ and T ij = Pδij . Then ρ and P have the meaning of an
energy density and a pressure, respectively. Since we are using the unit c = 1, the density ρ is not particularly
distinguished from the energy density ρc2. From the (00) and (ii) components of the Einstein equations (1.14)
we obtain

H2 =
8πG

3
ρ− K

a2
, (1.23)

3H2 + 2Ḣ = −8πGP − K

a2
. (1.24)

Eliminating the term K/a2 gives

ä

a
= −4πG

3
(ρ+ 3P ) . (1.25)

Multiplying Eq. (1.23) by a2, differentiating and using Eq. (1.25), we find

ρ̇+ 3H(ρ+ P ) = 0 . (1.26)
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The Einstein tensor satisfies the Bianchi identities

∇µG
µ
ν ≡ ∂Gµν

∂xµ
+ ΓµαµG

α
ν − ΓανµG

µ
α = 0 , (1.27)

where ∇µ denotes the covariant derivative. Sometimes we use also the symbol “ ;µ” to represent the covariant
derivative. From the Einstein equations (1.14) it follows that ∇µT

µ
ν = 0, which gives the same equation as

(1.26) in the FLRW background (see the problem [2.1]). Hence Eq. (1.26) is called conservation or continuity
equation.

Equation (1.23) can be written in the form:

ΩM +ΩK = 1 , (1.28)

where

ΩM ≡ 8πGρ

3H2
, ΩK ≡ − K

(aH)2
. (1.29)

We often refer to the present values of the density parameters. For relativistic particles, non-relativistic matter,
dark energy, and curvature, we have, respectively

Ω(0)
r =

8πGρ
(0)
r

3H2
0

, Ω(0)
m =

8πGρ
(0)
m

3H2
0

, Ω
(0)
DE =

8πGρ
(0)
DE

3H2
0

, Ω
(0)
K = − K

(a0H0)2
. (1.30)

When we wish to identify the electromagnetic radiation, rather than all the relativistic particles, we use the
subscript γ. When we need to distinguish between (cold) dark matter and baryons we use the subscripts c and
b, respectivelya. Finally, sometimes we use M to denote a generic matter component.

If the expansion of the universe is decelerated (i.e. ä < 0) then the curvature term |ΩK | continues to
increase (because the term aH (= ȧ) decreases), apart from the case where the universe is exactly flat (K = 0)
from the very beginning. The WMAP 5-year data [15] constrain the curvature of the present universe to be
−0.0175 < Ω

(0)
K < 0.0085 at the 95 % confidence level. We need a phase of cosmic acceleration (ä > 0) to reduce

|ΩK | in the past cosmic expansion history, unless the initial state of the universe is extremely close to the flat
one. In order to realize the present level of flatness of the universe, we require, prior to the radiation-dominated
epoch, a phase of cosmic inflation during which the scale factor changes by more than e70 times [70].

Let us consider the case in which the universe is dominated by a single component with an equation of state
defined by

w ≡ P/ρ . (1.31)

If w is a constant, one can analytically find the evolution of ρ and a for the flat universe (K = 0). Solving
Eqs. (1.23) and (1.26) in this case, we obtain the following solutions

ρ ∝ a−3(1+w) , a ∝ (t− ti)
2/(3(1+w)) , (1.32)

where ti is a constant. Since from statistical mechanics we know that radiation has the equation of state
w = 1/3 (as we will see later), it follows that the cosmic evolution during the radiation-dominated epoch is
given by ρ ∝ a−4 and a ∝ (t− ti)

1/2. Non-relativistic matter corresponds to the case with a negligible pressure
relative to its energy density, i.e. w ≃ 0. Then the evolution during the matter-dominated era is given by
ρ ∝ a−3 and a ∝ (t− ti)

2/3.
In order to give rise to the cosmic acceleration we require ä > 0 in Eq. (1.25), i.e.

P < −ρ/3 → w < −1/3 , (1.33)

where ρ is assumed to be positive. This implies that the power 2/(3(1 + w)) in the scale factor a(t) is larger
than 1. The fact that the negative pressure leads to the cosmic acceleration may look counter-intuitive. In
Newtonian gravity the pressure is related to a force associated with a local potential that depends on the
position in space. In the homogeneous and isotropic universe such a local potential is absent, which means
that there is no Newtonian-analog pressure. In other words, the time-dependent pressure P (t) in the FLRW

aSee Sec. 1.4 for the definition of cold dark matter.
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spacetime appears only in General Relativity. The mechanisms that generate this negative pressure and the
cosmic acceleration are the main topic of this book.

When w = −1, i.e. P = −ρ, it follows from Eq. (1.26) that ρ is a constant. This case corresponds indeed to
the so-called cosmological constant. Since H is constant in the flat universe (K = 0), the scale factor evolves
exponentially: a ∝ exp(Ht). The cosmological constant cannot be responsible for inflation in the early universe
because otherwise the accelerated expansion would not end. However, it is possible that the cosmological
constant is responsible for dark energy because the current cosmic acceleration might indeed continue without
end.

1.3 Hubble’s law
In 1920s Slipher and Hubble found that the observed wavelength λ0 of absorption lines of distant galaxies is
larger than the wavelength λ in the rest frame [71]. This is due to the fact that the wavelength is stretched
in proportion to the scale factor in an expanding universe. In order to quantify this effect, we introduce the
redshift

z ≡ λ0
λ

− 1 =
a0
a

− 1 , (1.34)

where the present epoch corresponds to z = 0. In the following we take the present scale factor a0 to be unity
unless otherwise stated. As we go back to the past, z gets larger. As long as the recessional velocity v of an
object is much smaller than the speed of light c we have λ0 ≃ (1 + v/c)λ from the Doppler effect, giving

z ≃ v/c . (1.35)

In an expanding universe a physical distance r from an observer (at the origin) to an object is given by
r = a(t)x, where x denotes the comoving distance. For objects moving with the Hubble flow, the comoving
distance remains constant. Taking the derivative of the equation r = a(t)x with respect to t, we obtain

ṙ = Hr + aẋ . (1.36)

The velocity vH ≡ Hr appears because of the presence of the cosmic expansion. On the other hand, the velocity
vp ≡ aẋ, called peculiar velocity, describes the movement of an object with respect to the local Hubble flow.
The speed of the object along the direction from the observer to the object is given by

v ≡ ṙ · r/r = Hr + vp · r/r , (1.37)

where r ≡ |r|.
In most cases the peculiar velocity of galaxies does not exceed 106 m/s. Under the condition that the term

vp · r/r is negligible relative to the term Hr, we obtain

v ≃ H0r . (1.38)

Here we have replaced H for the present value H0, which is justified in small redshift regions (z ≪ 1). In 1929,
Hubble reported the law (1.38) by plotting the recessional velocity v versus the distance r. His data were scarce,
shallow, and noisy, but Hubble concluded correctly that the universe was expanding.

The Hubble parameter H0 (Hubble constant) is usually written as

H0 = 100h km sec−1 Mpc−1 = 2.1332h× 10−42 GeV , (1.39)

where

1 Mpc = 3.08568× 1024 cm = 3.26156× 106 light years . (1.40)

Note that h describes the uncertainty on the value H0. The observations of the Hubble Key Project constrain
this value to be [72]

h = 0.72± 0.08 . (1.41)

Originally Hubble derived a much larger value, H0 ∼ 500 km s−1 Mpc−1, due to the uncertainty of the measure-
ment of distances at that time. We define the Hubble time

tH ≡ 1/H0 = 9.78× 109 h−1 years , (1.42)



CHAPTER 1. REVIEW OF STANDARD COSMOLOGY 11

which is a rough measure of the age of the universe. The present Hubble radius is defined by

DH ≡ c

H0
= 2998h−1 Mpc , (1.43)

which corresponds roughly to the largest scale we can observe now.
It is also convenient to introduce the critical density

ρ(0)c ≡ 3H2
0

8πG
= 1.88h2 × 10−29 g cm−3 , (1.44)

which represents the averaged cosmological density in the universe today. Note that we have used Eqs. (1.39)
and (1.40) together with the value G = 6.67 × 10−8 cm3 g−1 sec−2 to obtain the numerical value in Eq. (1.44).
The critical density (1.44) is very small compared to densities in the local structure of the universe (ρ ≃ 5 g/cm3

for Earth and ρ ≃ 10−24 g/cm3 for the homogeneous baryon/dark matter density in our galaxy). An even
smaller fraction is responsible for the present accelerated expansion of the universe.

1.4 Matter species in the universe
Let us consider matter species in the universe. They are broadly classified into relativistic particles, non-
relativistic matter, and dark energy. Another component, presumably a scalar field, dominated during the
period of inflation in the early universe. In the following we shall first review the equilibrium thermodynamics
of relativistic and non-relativistic particles and then proceed to the brief thermal history of the universe.

Let us consider a particle with momentum p and mass m. From Special Relativity the energy of this particle
is E =

√
p2 +m2, where p ≡ |p|. The phase space occupancy f(p) in equilibrium at temperature T is given by

the following distribution function

f(p) =
1

exp(E − µ)/T ± 1
, (1.45)

where µ is the chemical potential of each species. The plus and minus signs represent the Fermi-Dirac distribution
and the Bose-Einstein distribution, respectively. Generally the distribution function f depends on the position
x of the species, but Eq. (1.45) only depends on p ≡ |p| because of the homogeneity of the universe. Since
the minimum volume of phase space in terms of x and p is given by (2πℏ)3 due to Heisenberg’s principle, the
number of phase space elements is d3xd3p/(2πℏ)3. Then the energy density ρ and the pressure P with g∗
internal degrees of freedom are [73, 74]

ρ = g∗

∫
d3p

(2πℏ)3
E(p) f(p) =

g∗
2π2

∫ ∞

m

dE
(E2 −m2)1/2

exp[(E − µ)/T ]± 1
E2 , (1.46)

P = g∗

∫
d3p

(2πℏ)3
pv

3
f(p) = g∗

∫
d3p

(2πℏ)3
p2

3E
f(p) =

g∗
6π2

∫ ∞

m

dE
(E2 −m2)3/2

exp[(E − µ)/T ]± 1
. (1.47)

Note that there is no integral over d3x because ρ and P are defined as quantities per unit volume. In the first
equality of Eq. (1.47) we have used the fact that the pressure per unit number density of particles is given by
pv/3 (where v is the speed of the particle), and in the second equality of Eq. (1.47) the relation v = p/E has been
used in unit of c = 1 (recall that the energy and the momentum in Special Relativity are E = mc2/

√
1− v2/c2

and p = mv/
√

1− v2/c2, respectively). In the final expressions of Eqs. (1.46) and (1.47) we have adopted the
unit ℏ = 1. In what follows we consider relativistic and non-relativistic particles separately.

(i) Relativistic species

The relativistic limit corresponds to T ≫ m, i.e. taking the limit m → 0 in Eqs. (1.46) and (1.47). For
non-degenerate particles (T ≫ µ) we obtain

ρ =

{
(π2/30)g∗T

4 , (Bosons)

(7/8)(π2/30)g∗T
4 , (Fermions)

(1.48)

P = ρ/3 , (1.49)
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where we have used
∫∞
0

d3xx3/(ex − 1) = π4/15 and
∫∞
0

d3xx3/(ex + 1) = 7π4/120. The result (1.49) shows
that the equation of state of relativistic particles without degeneracies is given by w = 1/3.

The photons are bosonic species and it is also known that the chemical potential µ for the CMB photons is
much smaller than the temperature T (µ/T < 9× 10−5 [75]). Since the photon has two spin states (g∗ = 2), its
energy density is

ργ =
π2

15
T 4 . (1.50)

The COBE satellite measured the present temperature of CMB photons to be T = 2.725 ± 0.002K [12]. On
using the conversion 1 K4 =1.279×10−35 g cm−3, the energy density of CMB photons in the present universe is
ρ
(0)
γ = 4.641× 10−34 g cm−3. This corresponds to the density parameter

Ω(0)
γ ≡ 8πGρ

(0)
γ

3H2
0

=
ρ
(0)
γ

ρ
(0)
c

= 2.469× 10−5 h−2 . (1.51)

If we take the value h = 0.72, then Ω
(0)
γ = 4.763 × 10−5. Since the energy density ργ evolves as ργ ∝ a−4 (see

Eq. (1.32) with w = 1/3), the comparison with Eq. (1.50) gives the relation T ∝ 1/a (= 1 + z). Hence the
temperature is inversely proportional to the scale factor.

Neutrinos also behave like relativistic particles provided that their masses are small. They are fermionic
particles with zero chemical potentials and there are three types of species in standard models (electron neutrino
νe, muon neutrino νµ, and tau neutrino ντ ). Each species has one spin degree of freedom. Note also that
neutrinos have anti-particles (anti-neutrinos). Using Eq. (1.48) in the fermionic case, the energy density of
neutrinos, including anti-particles, is given by

ρν = Neff
7π2

120
T 4
ν , (1.52)

where Neff is the effective number of neutrino species and Tν is the temperature of neutrinos. Note that Neff = 3
for standard models of neutrinos, but in the fermionic case we have introduced the effective number Neff in
order to allow for other relativistic degrees of freedom.

The Big Bang Nucleosynthesis (BBN) occurred around the energy scale ∼0.1 MeV to form light elements
such as deuterium and helium. The decoupling of neutrinos from the rest of the cosmic plasma, immediately
followed by the annihilation of electrons (e−) and positrons (e+), occurred earlier than the BBN epoch. The
presence of extra relativistic degrees of freedom changes the amount of the light elements predicted by the BBN,
which allows to put a bound on Neff . The current standard value is Neff = 3.04 [76], which is slightly larger than
3. The neutrino temperature Tν is linked to the photon temperature Tγ via the relation Tν/Tγ = (4/11)1/3.
This comes from the conservation of entropy before and after the annihilation of electrons and positrons (see the
problem [2.2]). From Eqs. (1.50) and (1.52), the relation between the neutrino density and the photon density
is ρν = Neff(7/8)(4/11)

4/3ργ . Hence the present density parameter of radiation, which is the sum of photons
and relativistic neutrinos, yields

Ω(0)
r =

ρ
(0)
γ + ρ

(0)
ν

ρ
(0)
c

= Ω(0)
γ (1 + 0.2271Neff) , (1.53)

where Ω
(0)
γ is given in Eq. (1.51). If we take the values h = 0.72 and Neff = 3.04, then we obtain Ω

(0)
r =

8.051× 10−5.

(ii) Non-relativistic matter

In the case of non-relativistic particles (T ≪ m), Eqs. (1.46) and (1.47) reduce to

ρ = g∗m

(
mT

2π

)3/2

exp [−(m− µ)/T ] , (1.54)

P = g∗ T

(
mT

2π

)3/2

exp [−(m− µ)/T ] =
T

m
ρ , (1.55)

which are valid for both bosonic and fermionic particles. See the problem [2.3] for the derivation of (1.54) and
(1.55). This means that the pressure P is suppressed relative to the energy density ρ by the factor T/m ≪ 1.
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Hence the equation of state for non-relativistic matter is w ≃ 0, as expected. The above result shows that the
energy density ρ is not described by a function of the temperature T only (unlike the case of photons). Hence we
need to measure the density of non-relativistic particles (baryons and dark matter) directly from observations.

Let us consider baryons first. During the BBN epoch the light elements such as deuterium and helium were
formed from neutrons and protons. Most of the neutrons decayed to protons (through the β-decay) before the
formation of deuterium, while neutrons that did not decay to protons were eventually trapped in helium. If
we increase the baryon density, the process of the BBN occurs faster and hence more neutrons remain without
decaying to protons. This leads to an increase of the abundance of helium, whereas the abundance of deuterium
decreases. Thus the amount of light elements produced during the BBN epoch is sensitive to the baryon density.
The abundance of deuterium is known by observing absorption lines in the high-redshift quasars. According
to the measurement of distant quasars, Tytler and his collaborators derived the primeval deuterium abundance
relative to the hydrogen to be D/H= (3.0± 0.4)× 10−5 [77]. From this bound, Burles, Nollett and Turner [78]
obtained the following constraint on the present density parameter of baryons:

Ω
(0)
b h2 = 0.020± 0.002 (BBN constraint), (1.56)

at the 95% confidence level.
The CMB observations also place tight bounds on the density parameter Ω

(0)
b . If we increase the baryon

density ρb, this leads to a smaller sound speed cs for the combined fluid system of baryons, photons, and
electrons. Crudely speaking the perturbations in CMB anisotropies with comoving wavenumber k satisfy the
equation for the harmonic oscillator, d2x

dη2 + k2c2sx = 0, with some corrections. For smaller cs, the frequency kcs
decreases so that the height of the first CMB acoustic peak gets larger (because the amplitude of the harmonic
oscillator with a smaller spring constant gets larger). One can constrain the amount of the baryon density by
using this property. From the WMAP 5-year data combined with SN Ia and BAO data, the constraint on the
the present density parameter of baryons is [15]

Ω
(0)
b h2 = 0.02267+0.00058

−0.00059 (WMAP 5year constraint) , (1.57)

at the 68 % confidence level. If we take the value h = 0.72, then we have Ω
(0)
b = 0.0437 for the central value in

Eq. (1.57). This means that the baryonic contribution is only 4 % in the present universe.
In addition to baryons, astrophysical observations require the existence of dark matter as another non-

relativistic component in the universe. Since dark matter interacts very weakly with standard model particles,
its existence can be only probed by gravitational effects on visible matter. More specifically, if dark matter
was non-relativistic at the time it decoupled from photons, it is called Cold Dark Matter (CDM). Alternatively,
dark matter that was relativistic at the photon decoupling epoch is called Hot Dark Matter (HDM), whose
representative candidate is the neutrino. The present paradigm of structure formation is based on the gravita-
tional clustering of CDM. The baryonic matter alone is not sufficient to lead to structure formation consistent
with observations of galaxy clustering [74]. Also the pure HDM model is ruled out as a viable model. This
comes from the fact that neutrinos tend to stream out of any overdense region so that the CMB spectrum in
the neutrino-dominated universe has an insufficient power on small scales to be consistent with observations. In
the mixed dark matter models of CDM and HDM, the observations limit the amount of hot dark matter to at
most a few percent. In the following we shall focus on the pure CDM model (plus dark energy) unless otherwise
stated.

The CMB anisotropy data show that the present abundance of dark matter is about 5 times larger than
that of baryons. The WMAP 5-year data constrain the density parameter of the CDM to be [15]

Ω(0)
c h2 = 0.1131± 0.00034 (WMAP 5year constraint) , (1.58)

at the 68 % confidence level. For the value h = 0.72 we have Ω
(0)
c = 0.2182 for the central value in Eq. (1.58).

The origin of dark matter has not been identified yet. There are basically two classes of dark matter–(i) the
astrophysical candidates, or (ii) the particle candidates. Examples of the class (i) are black holes, neutron stars,
and white dwarfs. However, since these originate from baryons, it is not possible to explain all dark matter
components without taking into account non-baryonic dark matter.

The class (ii) is of the non-baryonic type. Some examples of this class are axions and Weakly Interacting
Massive Particles (WIMPs, including neutralinos). The axion was originally introduced by Peccei and Quinn
[79] as a solution to the strong CP problem in quantum chromodynamics (QCD). It has a weak coupling with
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a small mass ma = 10−6-10−2 eV. The initial momentum of the axion when it gains a mass through non-
perturbative QCD effects is of the order of pa = 10−9 eV≪ ma, Hence the axion can be a good candidate for
CDM. The WIMPs are usually motivated by supersymmetric theories. For examples, neutralinos are formed
as four eigenstates of a mass operator as a result of the mixing of superpartners of Z-bosons, the photon, and
the neutral higgs (zino, photino, and higgsino, respectively). The lightest of the four neutralinos turns out to
be the lightest supersymmetric particles with typical masses mn = 100 GeV-1 TeV. The lightest neutralinos
couple to other particles with the strength characteristic of the weak interaction and hence they can be a good
candidate for CDM. Direct or indirect dark matter searches and future LHC experiments will hopefully detect
dark matter from space or from high-energy collisions of particles (see Refs. [19, 20, 21] for recent reviews).

(iii) Dark energy

From Eqs. (1.53), (1.57), and (1.58) the sum of the density parameters of radiation, baryons, and dark
matter does not exceed 0.3 in the present universe. Since present observational bounds on the spatial curvature
are very strong, |Ω(0)

K | ≲ 0.01, we still need to identify the remaining 70% of the cosmic matter. This unknown
component, called dark energy, is supposed to be responsible for the present cosmic acceleration. The combined
data analysis using WMAP, SN Ia, and BAO have provided the following constraint for the present density
parameter of dark energy:

Ω
(0)
DE = 0.726± 0.015 (WMAP 5year constraint) . (1.59)

1.5 Cosmic distances
In order to discuss observational constraints on dark energy, it is important to introduce cosmic distances
directly related to observations in the FLRW spacetime (1.7). In fact, a large part of the evidence for dark
energy comes from measurements of cosmological distances. Setting r = sinχ (K = +1), r = χ (K = 0) and
r = sinhχ (K = −1) in Eq. (1.8), the 3-dimensional space line-element is expressed as

dσ2 = dχ2 + (fK(χ))2
(
dθ2 + sin2 θ dϕ2

)
, (1.60)

where

fK(χ) =

 sinχ (K = +1) ,
χ (K = 0) ,
sinhχ (K = −1) .

(1.61)

The function (1.61) can be written in a unified way:

fK(χ) =
1√
−K

sinh
(√

−Kχ
)
, (1.62)

where the case of the flat universe is recovered by taking the limit K → −0.

1.5.1 Comoving distance
Let us first compute the comoving distance dc. The light travelling along the χ direction satisfies the geodesic
equation: ds2 = −c2dt2 + a2(t)dχ2 = 0, where we have recovered the speed of light c for clarification. Let us
consider the case in which light emitted at time t = t1 with χ = χ1 (redshift z) reaches an observer at time
t = t0 with χ = 0 (corresponding to z = 0). Integrating the equation, dχ = −cdt/a(t), the comoving distance
reads

dc ≡ χ1 =

∫ χ1

0

dχ = −
∫ t1

t0

c

a(t)
dt . (1.63)

From Eq. (1.34) it follows that dt = −dz/[H(1 + z)]. Then the comoving distance is given by

dc =
c

a0H0

∫ z

0

dz̃

E(z̃)
, (1.64)
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where

E(z) ≡ H(z)/H0 . (1.65)

The function,
∫ z
0
dz̃/E(z̃), can be expanded around z = 0:∫ z

0

dz̃

E(z̃)
= z − E′(0)

2
z2 +

1

6

{
2E′(0)2 − E′′(0)

}
z3 +O(z4) , (1.66)

where a prime represents a derivative with respect to z. For a redshift z much smaller than unity, the comoving
distance is approximately given by

dc ≃
c

a0H0
z , for z ≪ 1 . (1.67)

On using the relation (1.35), we find

v ≃ (a0H0)dc . (1.68)

This shows that the recessional velocity v of the object is proportional to dc with the proportionality constant
a0H0. For the physical distance r = adc we find r ≃ (c/H0)z/(1 + z) ≃ v/H0, which means that Hubble’s law
(1.38) is satisfied. Hubble’s law written as in Eq. (1.38) is valid therefore only in the low-redshift region z ≪ 1.
For z ≳ 1 the higher-order terms in Eq. (1.66) become important so that Hubble’s law is subject to be modified.

1.5.2 Luminosity distance
The luminosity distance dL is used in SN Ia observations in order to link the supernova luminosity with the
expansion rate of the universe. It is defined by

d2L ≡ Ls
4πF

, (1.69)

where Ls is the absolute luminosity of a source and F is an observed flux. Note that the observed luminosity
L0 (detected at χ = 0 and z = 0) is different from the absolute luminosity Ls of the source (emitted at the
comoving distance χ with the redshift z) . The flux F is defined by F = L0/S, where S = 4π(a0fK(χ))2 is the
area of a sphere at z = 0. Then the luminosity distance (1.69) yields

d2L = (a0fK(χ))2
Ls
L0

. (1.70)

We need now to derive the ratio Ls/L0.
If we write the energy of light emitted at the time-interval ∆t1 to be ∆E1, the absolute luminosity is defined

by Ls = ∆E1/∆t1. Similarly the observed luminosity is given by L0 = ∆E0/∆t0, where ∆E0 is the energy of
light detected at the time-interval ∆t0. Since the energy of a photon is inversely proportional to its wavelength λ
we have that ∆E1/∆E0 = λ0/λ1 = 1+ z, where we have used Eq. (1.34). Moreover, the constancy of c = λ/∆t
implies λ1/∆t1 = λ0/∆t0, where λ1 and λ0 are the wavelength of light at the points of emission and detection
respectively. This leads to the relation ∆t0/∆t1 = λ0/λ1 = 1 + z. Hence we find

Ls
L0

=
∆E1

∆E0

∆t0
∆t1

= (1 + z)2 . (1.71)

From Eqs. (1.70) and (1.71) the luminosity distance reduces to

dL = a0fK(χ)(1 + z) . (1.72)

Recall that the function fK(χ) is given in Eq. (1.62) with the comoving distance

χ = dc =
c

a0H0

∫ z

0

dz̃

E(z̃)
. (1.73)

Then dL can be expressed as

dL =
c(1 + z)

H0

√
Ω

(0)
K

sinh

(√
Ω

(0)
K

∫ z

0

dz̃

E(z̃)

)
, (1.74)
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where Ω
(0)
K = −Kc2/(a0H0)

2. Note that this definition of Ω(0)
K is identical to the last one given in Eq. (1.30) in

the unit c = 1. It is clear that the luminosity distance is directly related to the expansion rate of the universe.
Expanding the function sinh(x) in the form sinh(x) = x+ x3/6 +O(x5) and using Eq. (1.66), we find that

dL can be expanded around z = 0 as follows:

dL =
c

H0

[
z +

{
1− E′(0)

2

}
z2 +

1

6

{
2E′(0)2 − 3E′(0)− E′′(0) + Ω

(0)
K

}
z3 +O(z4)

]
. (1.75)

In the small redshift region (z ≪ 1) we have dL ≃ c z/H0. Using Eq. (1.35) we obtain

v ≃ H0dL , for z ≪ 1 . (1.76)

This shows that Hubble’s law holds for the luminosity distance as well.

1.5.3 Angular diameter distance
The angular diameter distance dA is defined by

dA ≡ ∆x

∆θ
, (1.77)

where ∆θ is the angle that subtends an object of actual size ∆x orthogonal to the line of sight. This distance
is often used for the observations of CMB anisotropies.

Since the source lies on the surface of a sphere with radius χ with the observer at the center, the size ∆x at
time t1 in the FLRW spacetime (1.7) with (1.60) is given by

∆x = a(t1)fK(χ)∆θ . (1.78)

Hence the diameter distance is

dA = a(t1)fK(χ) =
a0fK(χ)

1 + z
=

1

1 + z

c

H0

√
Ω

(0)
K

sinh

(√
Ω

(0)
K

∫ z

0

dz̃

E(z̃)

)
, (1.79)

where we have used z = a0/a(t1)− 1 and fK = c/(a0H0

√
Ω

(0)
K ) sinh(

√
Ω

(0)
K

∫ z
0
dz̃/E(z̃)). Comparing Eq. (1.79)

with Eq. (1.74), we notice the following relation

dA =
dL

(1 + z)2
. (1.80)

This is called reciprocity or duality or Etherington relation [80]. Its validity extends far beyond the FLRW
metric: it is valid in fact for any metric as long as flux is conserved.

In the limit z ≪ 1 all the distances discussed above reduce to the Euclidean distance in the Minkowski
spacetime.

1.5.4 Degeneracy of the distance-redshift relation
All the distance definitions given above depend on the cosmological parameters through the integral χ =
(c/(a0H0))

∫ z
0
dz̃/E(z̃) in flat spaces and on fK(χ) in curved spaces. It is therefore clear that all the mea-

sures of expansion that we can obtain through measurements of distances, from standard candles to the CMB
acoustic peaks, will constrain only the cosmological parameters contained in E(z) and only in those particular
combinations that appear in χ and in fK(χ). If we had distance information only for a given z then all the com-
binations of cosmological parameters that produce the same fK(χ) would be equally acceptable: the constraints
would therefore be fully degenerate along lines (or surfaces) of constant fK(χ). For instance the closed ΛCDM
cosmological model defined by (Ω

(0)
Λ ,Ω

(0)
m ) = (1, 1) and the open model defined by (Ω

(0)
Λ ,Ω

(0)
m ) = (0.1, 0.6) give

practically identical distances at z = 1. In Fig. 1.1 we plot the lines of constant fK(χ) in the plane (Ω
(0)
Λ ,Ω

(0)
m )

for redshifts that roughly corresponds to a typical distant supernova and to CMB.
If we have information only in a small range of redshifts the degeneracy will be partially broken but still

the constraints will appear elongated along the lines of equal distances. It is only by combining measures at
widely different redshifts or by employing indicators other than distances that we may hope to pin down the
cosmological parameters.
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Figure 1.1: Contours of constant fK(χ) for z = 1 and z = 1100. The straightl ine represents the flat model.
In the left panel the contours range from 1400 to 2800 h−1 Mpc in steps of 200, from right to left. In the right
panel they range from 300 to 5100 h−1 Mpc in steps of 600, from top to bottom (the last two contours are for
15000 and 30000 h−1 Mpc, respectively).

1.6 The equation of state of dark energy
Let us consider the universe filled by radiation (density ρr and pressure Pr = ρr/3), non-relativistic matter
(density ρm and pressure Pm = 0), and dark energy (density ρDE and pressure PDE). Since ρr and ρm evolves
as ρr ∝ a−4 and ρm ∝ a−3, respectively, they can be expressed in the forms

ρr = ρ(0)r (a0/a)
4 = ρ(0)r (1 + z)4 , (1.81)

ρm = ρ(0)m (a0/a)
3 = ρ(0)m (1 + z)3 . (1.82)

The redshift zeq that corresponds to the radiation-matter equality (ρr = ρm) is

1 + zeq =
ρ
(0)
m

ρ
(0)
r

=
Ω

(0)
m

Ω
(0)
r

, (1.83)

where Ω
(0)
r is given by Eq. (1.53) with Eq. (1.51). The density parameter Ω

(0)
m is the sum of the baryon

contribution Ω
(0)
b and the CDM contribution Ω

(0)
c , i.e. Ω

(0)
m = Ω

(0)
b + Ω

(0)
c . The WMAP 5-year constraints on

Ω
(0)
b and Ω

(0)
c are given by Eqs. (1.57) and (1.58), respectively.

For the effective number of neutrino species Neff = 3.04 we obtain

1 + zeq = 2.396× 104 Ω(0)
m h2 . (1.84)

If we take the value Ω
(0)
m h2 = 0.136, we have zeq = 3258. Note that the CMB decoupling epoch corresponds to

zdec ≃ 1090 [15], therefore later than the radiation-matter equality.
Let us consider dark energy with an equation of state wDE = PDE/ρDE, satisfying the continuity equation

ρ̇DE + 3H(ρDE + PDE) = 0 . (1.85)

Integrating this equation by using the relation dt = −dz/[H(1 + z)], we obtain

ρDE = ρ
(0)
DE exp

[∫ z

0

3(1 + wDE)

1 + z̃
dz̃

]
, (1.86)
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which can also be written by introducing an average ŵDE as

ρDE = ρ
(0)
DE (a/a0)

−3(1+ŵDE) , ŵDE(z) =
1

ln(1 + z)

∫ z

0

wDE(z̃)

1 + z̃
dz̃ . (1.87)

From the Friedmann equation (1.23) we have

H2 =
8πG

3
(ρr + ρm + ρDE)−

K

a2
. (1.88)

From Eq. (1.88) we see that the present density parameters defined in Eq. (1.30) obey the following relation

Ω(0)
r +Ω(0)

m +Ω
(0)
DE +Ω

(0)
K = 1 . (1.89)

Then Eq. (1.88) can be written in the form

H2(z) = H2
0

[
Ω(0)
r (1 + z)4 +Ω(0)

m (1 + z)3 +Ω
(0)
DE exp

{∫ z

0

3(1 + wDE)

1 + z̃
dz̃

}
+Ω

(0)
K (1 + z)2

]
. (1.90)

Differentiating this equation with respect to z, we find that the equation of state of dark energy can be expressed
as

wDE(z) =
(1 + z)(E2(z))′ − 3E2(z)− Ω

(0)
r (1 + z)4 +Ω

(0)
K (1 + z)2

3
[
E2(z)− Ω

(0)
r (1 + z)4 − Ω

(0)
m (1 + z)3 − Ω

(0)
K (1 + z)2

] , (1.91)

where E(z) is defined in Eq. (1.65) and a prime represents a derivative with respect to z. From Eq. (1.74) the
quantity E(z) can be written in terms of dL:

E2(z) =
c2(1 + z)2

[
(1 + z)2 +Ω

(0)
K H2

0dL(z)
2
]

[(1 + z)H0d′L(z)−H0dL(z)]2
. (1.92)

For the flat universe (Ω(0)
K = 0) this relation reduces to the following simple form

E(z) =
c

H0

[
d

dz

(
dL(z)

1 + z

)]−1

. (1.93)

If the luminosity distance dL(z) is measured observationally, we can determine the evolution of E(z) from
Eq. (1.92) and hence wDE(z) from Eqs. (1.91).

The cosmic expansion history for the redshift z ≲ O(1) can be reconstructed from the SN Ia observations.
In this regime the energy density of radiation is negligible compared to those of non-relativistic matter and dark
energy. The present observational bound on the cosmic curvature is −0.0175 < Ω

(0)
K < 0.0085 [15], showing

that the universe is close to the flat geometry. In the flat universe with a negligible contribution of radiation,
Eq. (1.91) reduces to

wDE(z) =
(1 + z)(E2(z))′ − 3E2(z)

3
[
E2(z)− Ω

(0)
m (1 + z)3

] . (1.94)

This relation is often used when we place observational constraints on the equation of state of dark energy.
While the effect of the cosmic curvature on the estimate of wDE(z) can be negligible in the region z ≲ 1, a small
uncertainty on the curvature can produce a significant bias in wDE in the high-redshift regime z ≳ 1 [81, 82].
In such a case we need to use the relation (1.91) rather than (1.94).

It is important to remark however that the basic observable quantity is E(z), not wDE(z). In fact, wDE(z)
cannot be determined entirely from E(z), i.e. from measurements of the background expansion. From Eq. (1.94)
it appears in fact that one needs Ω

(0)
m , i.e. the present density of pressureless matter, and this can only be

obtained from large scale structure methods. However one must notice that the density parameter obtained
from e.g., the cluster mass estimation does not necessarily coincide with the quantity Ω

(0)
m in Eq. (1.94), since in

general clustered matter and pressureless matter do not need to be the same. This is particularly important to
notice in coupled dark energy models [17] in which matter acquires an effective pressure through an interaction
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Figure 1.2: The luminosity distance dL versus the redshift z for three cases: (a) a flat universe without dark
energy, (b) an open universe (Ω(0)

K = 0.0085) without dark energy, and (c) a flat universe with the cosmological
constant (Ω(0)

DE = 0.7 and wDE = −1). The presence of dark energy leads to a larger luminosity distance relative
to the case without it. In the open universe the luminosity distance also gets larger than that in the flat universe.

with dark energy. Of course if wDE(z) is assumed to be constant or is parametrized in some form, as is usually
done, then the knowledge of E(z) at several z’s can fix both the equation of state and Ω

(0)
m .

Finally, let us notice that the bound on the equation state of dark energy from the WMAP 5-year data
combined with other observational data is −1.097 < wDE < −0.858 at the 95 % confidence level [15]. Hence
we cannot rule out the possibility that wDE is smaller than −1. These cases are generally called “phantoms” or
“ghosts” [83]. Since P + ρ < 0 in this case, Eq. (1.26) shows that ρ increases with time. From Eq. (1.23) the
Hubble parameter H grows toward the future. When wDE is constant and smaller than −1, the solution of the
scale factor corresponding to the expanding universe is given by

a ∝ (trip − t)2/(3(1+wDE)) , (1.95)

where t is smaller than the constant trip. As t approaches trip, the scale factor goes to infinity. One can easily
show that the scalar curvature R and the Hubble parameter H also diverge at t = trip. The universe ends
up with a finite-time singularity in the (distant!) future (see the problem [2.4]). This finite-time singularity is
called big-rip singularity [84].

1.7 Accelerated expansion b

In 1998 Riess et al. and Perlmutter et al. released observational data of the apparent luminosity of high-redshift
Type Ia supernovae (0.2 ≲ z ≲ 0.8). The data of low-redshift regions (z < 0.1) reported previously was also
used in their analysis. Let us pick up a few examples of data to understand how the luminosity distance is
known observationally. First, consider two data of the apparent magnitudes in the low redshift region of SN
Ia: (i) 1990O: m = 16.26 (z = 0.03) and (ii) 1992bg: m = 16.66 (z = 0.036). Since the luminosity distance
in the region z ≪ 1 is well approximated by dL ≃ cz/H0, the absolute magnitude M is known. We take the
value h = 0.7 for the Hubble constant. We then obtain M = −19.29 and M = −19.28 for 1990O and 1992bg,
respectively. This shows that the absolute luminosity of SN Ia is nearly constant (M ≃ −19), as we already
mentioned.

bAdapted from Amendola & Tsujikawa, Dark Energy. Theory and Observations, CUP 2010.
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Figure 1.3: The effective apparent luminosity mB versus the redshift z for 42 high-redshift SN Ia from the
SCP and 18 low-redshift SN Ia from the Calan/Tololo Supernova Survey. The solid curves are the theoretical
prediction for mB for a number of cosmological models without the cosmological constant: (Ω

(0)
m ,Ω

(0)
Λ ) = (0, 0)

(top), (1, 0) (middle), and (2, 0) (bottom). The dashed curves correspond to a number of flat cosmological
models: (Ω(0)

m ,Ω
(0)
Λ ) = (0, 1) (top), (0.5, 0.5) (second from top), (1, 0) (third from top), and (1.5,−0.5) (bottom).

From Perlmutter et al. 1998.
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Let us next use the high-redshift data reported by Perlmutter et al. . Consider the two SN Ia data of the
apparent magnitudes: (a) 1997R: m = 23.83 (z = 0.657), (b) 1995ck: m = 23.57 (z = 0.656). Employing the
value M = −19.15 for the absolute magnitude, we find that the luminosity distance is given by H0dL/c = 0.920
for 1997R and H0dL/c = 0.817 for 1995ck. Notice that the approximation dL ≃ cz/H0 is no longer valid in the
high-redshift regime. Let us consider a flat universe with a dark energy equation of state wDE = −1 (i.e. the
cosmological constant). Since E(z) = [Ω

(0)
m (1 + z)3 +Ω

(0)
DE]

1/2 in this case, the luminosity distance reads

dL(z) =
c(1 + z)

H0

∫ z

0

dz̃

[(1− Ω
(0)
DE)(1 + z̃)3 +Ω

(0)
DE]

1/2
, (1.96)

which can be evaluated numerically for given Ω
(0)
DE. In order to satisfy the observational data (H0/c)dL(z =

0.657) = 0.920 for 1997R, we require that Ω
(0)
DE = 0.70. Similarly we get Ω

(0)
DE = 0.38 from the 1995ck data.

Both data indicate the existence of dark energy.
Since observational data are prone to statistical and systematic errors, a few data points are not enough

to conclude that the present universe is accelerating. Using 42 high-redshift SN Ia at redshifts between 0.18
and 0.83 together with 18 low-redshift SN Ia data from the Calan/Tololo Supernova Survey, Perlmutter et al.
(1998) showed that the cosmological constant is present at the 99 % confidence level. They also found that the
open universe without the cosmological constant does not fit the data well. The apparent luminosity m gets
larger for increasing luminosity distance dL. Figure 1.3 shows that the observational data in the high redshift
regime favor the luminosity distance larger than the one predicted by the CDM model (Ω(0)

m = 1 and Ω
(0)
Λ = 0).

This means that the SN are on average dimmer than expected in pure flat CDM. Dimmer sources imply, in
turn, a larger luminosity distance and, therefore, a smaller value of H in the past: the conclusion is then that
the Universe is accelerating.

From a full statistical analysis of the SN Ia data accumulated by the year 1998, Perlmutter et al. found that
the density parameter of non-relativistic matter is constrained to be Ω

(0)
m = 0.28+0.09

−0.08 (1σ statistical) in the flat
universe with the cosmological constant. After 1998 more SN Ia data have been collected by a number of high-
redshift surveys–including SuperNova Legacy Survey (SNLS), Hubble Space Telescope (HST), and “Equation
of State: SupErNovae trace Cosmic Expansion” (ESSENCE) survey. The SNLS project, which is based on
the Canada-France-Hawaii Telescope, consists of two components: (i) a large imaging survey to detect about
2000 supernovae and monitor their light curves, and (ii) a large spectroscopic survey to obtain supernovae
identification and redshift. The HST survey is based on the image subtraction to search the SN Ia data in the
high redshift region z > 1 by including search depth, efficiency, timing and false-positive discrimination. The
ESSENCE project is a ground-based survey designed to detect about 200 SN Ia in the redshift range z = 0.2-0.8
to measure the equation of state of dark energy to better than 10 %. In Fig. 1.5 the observational contours
on (Ω

(0)
m , wDE) are plotted from the Union2 catalog of SN Ia by Amanullah et al. . Note that the equation

of state of dark energy is assumed to be constant. While the SN Ia data alone are not yet sufficient to place
tight bounds on wDE, Fig. 1.5 clearly shows the presence of dark energy responsible for the late-time cosmic
acceleration (wDE < −1/3). A modern publicly available catalog that includes most of the known supernovae
is called JLA (Betoule et al. 2014, arXiv:1401.4064).

When combined with the results from CMB and from galaxy clustering on the plane ΩΛ,Ωm, the three
probes intersect in a point Ωm = 0.3,ΩΛ = 0.7, which is denoted “concordance cosmology” (Fig. 1.6)

If the equation of state of dark energy varies in time, we need to parametrize wDE as a function of the
redshift z. A popular parametrization is the Chevalier-Polarski-Linder parametrization

wDE = w0 + wa(1− a) = w0 + wa
z

1 + z
(1.97)

which can be thought as a Taylor expansion of an unknown wDE(a) around a = 1. The present value is then
w0 and the asymptotic future one is w0 + wa. Now from the conservation equation of ρDE we have

ρ̇DE + 3HρDE(1 + wDE(a)) = 0 (1.98)

which can be integrated as∫
dρDE
ρDE

= −3

∫
da

a
(1+wDE) = −3

∫
da

a
(1+w0+wa(1−a)) = −3(1+w0+wa) log a+3wa(a− 1) (1.99)
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Figure 1.4: Union2 combined catalog of 557 SNIa. Here µ = 5 log dL + const. From Amanullah et al. 2010
ApJ...716..712A (Â© AAS. Reproduced with permission). Bottom panel: residuals.

Figure 1.5: 68.3 %, 95.4 % and 99.7 % confidence level contours on (Ω
(0)
m , wDE) from the SN Ia observations

(denoted as ΩM and w in the figure) compiled in Amanullah et al. 2010ApJ...716..712A (Â© AAS. Reproduced
with permission).
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Figure 1.6: Combined results from supernovae, CMB and clustering of galaxies (BAO). The point where the
three probes intersect is called “Concordance cosmology”. (From Amanullah et al. 2010ApJ...716..712A, Â©
AAS. Reproduced with permission).

so that

ρDE ∼ a−3(1+w0+wa)e3wa(a−1) (1.100)

If the SN Ia data are accurate enough to measure the luminosity distance dL(z) in terms of z, it is possible to
determine the evolution of any function wDE(z) by using

H2 = H2
0 (Ωm0(1 + z)3 +ΩDE,0f(z) + (1− Ωm0 − ΩDE,0)(1 + z)2) (1.101)

where, in general

f(z) = exp

∫ z

0

3(1 + wDE(z))

1 + z
dz (1.102)

However there is very little information on wDE at z > 0.5 so wDE(z) cannot be well reconstructed beyond this.
Any specific model of dark energy will in general provide a particular form of wDE(z) that will depend on the
theoretical parameters.



Chapter 2

Cosmological constanta

The simplest candidate for dark energy is the cosmological constant Λ, which is called so because its energy
density is constant in time and space. In fact the ΛCDM model has been systematically proved consistent with
a large number of observations. The Lagrangian density for the ΛCDM model is simply given by the linear
term in R plus Λ, see Eq. (2.2). Despite its simplicity it is generally difficult to explain why the energy scale of
the cosmological constant required for the cosmic acceleration today is very small relative to that predicted by
particle physics.

The problem of a large value of Λ was present long before the observational discovery of the late-time
cosmic acceleration. In fact, even if we had no observational evidence of dark energy we would still need to
understand why the cosmological constant vanishes. Models of dark energy alternative to ΛCDM are based
on the assumption that Λ is zero or negligible. So the problem of the cosmological constant is to find some
mechanism that either make it vanish or render it a very small value compatible with the present cosmological
density. In the former case the origin of dark energy needs to be explored further, but in the latter case the
problems of cosmological constant and dark energy are solved at the same time.

In this section we first present the action for the ΛCDM model. We then proceed to the history of the
cosmological constant and its fine-tuning problem. We review a number of attempts to solve the cosmological
constant problem in the framework of supergravity and superstring theories. We also discuss several topics
related to the cosmological constant–such as the anthropic selection, observing vacuum energy in the laboratory,
and the decoupling of Λ from gravity.

2.1 Einstein equations with the cosmological constant
The energy-momentum tensor Tµν on the r.h.s. of the Einstein equations obeys the conservation law Tµν

;ν = 0.
Since the metric gµν satisfies the relation gµν ;ν = 0, it is possible to add the term Λgµν to the Einstein equations:

Rµν −
1

2
gµνR+ Λgµν = 8πGTµν , (2.1)

where Λ is the cosmological constant. It is interesting to note that these are the most general equations
second-order in the metric in four dimensions. In scalar-tensor metric theories an additional term coupled to a
Gauss-Bonnet term is also allowed.

The Einstein equations (2.1) can be derived by the action principle. It is based on the linear action in terms
of the Ricci scalar R = gµνRµν and the matter action Sm:

S =
1

16πG

∫
d4x

√
−g (R− 2Λ) + Sm . (2.2)

Repeating the steps we have already seen in the previous chapter, the variation of the action (2.2) with respect
to gµν gives

δS =
1

16πG

∫
d4x

[
δ(
√
−g)(gµνRµν − 2Λ) +

√
−g δgµνRµν +

√
−g gµνδRµν

]
+ δSm . (2.3)

aAdapted from Amendola & Tsujikawa, Dark Energy. Theory and Observations, CUP 2010.

24



CHAPTER 2. COSMOLOGICAL CONSTANT 25

Since δRµν = (δΓαµν);α − (δΓαµα);ν we have gµνδRµν = (gµνδΓαµν − gµαδΓνµν);α and hence∫
d4x

√
−g gµνδRµν =

∫
d4x

√
−g(gµνδΓαµν − gµαδΓνµν);α = 0 , (2.4)

where we have employed Gauss’s theorem in the last equality. This shows that the last term in the square
bracket of Eq. (2.3) vanishes. Now we also use the relation δ(

√
−g) = −(1/2)

√
−ggµνδgµν . This can easily

be derived by differentiating with respect to gµν the determinant g written as gµνM(µν) where M(µν) is the
determinant of the first minor matrix, which does not depend on the element gµν itself, and then replacing
M(µν) = ggµν . Then Eq. (2.3) reads

δS =
1

16πG

∫
d4x

√
−g
(
Rµν −

1

2
Rgµν + Λgµν

)
δgµν + δSm . (2.5)

The energy-momentum tensor Tµν is defined from the variation of δSm in terms of gµν :

δSm = −1

2

∫
d4x

√
−g Tµνδgµν . (2.6)

Then Eq. (2.5) reduces to

δS =
1

16πG

∫
d4x

√
−g
(
Rµν −

1

2
Rgµν + Λgµν − 8πGTµν

)
δgµν . (2.7)

The Einstein equations (2.1) follow from the action principle, δS = 0.

2.2 History of the cosmological constant
After Einstein constructed General Relativity in 1915-1916 [128], he tried to apply his theory to the universe
in 1917 [23]. In the absence of the cosmological constant it is obvious that the scale factor a can dynamically
change in time (except in the case of a fluid at rest with a specific equation of state: w = P/ρ = −1/3). In
the 1910s, however, Einstein believed that the universe was static and introduced the cosmological constant to
realize such a universe.

For the FLRW metric (1.7) the Einstein equations (2.1) read

H2 =
8πG

3
ρ− K

a2
+

Λ

3
, (2.8)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (2.9)

From Eq. (2.9) it is clear that Λ works as a repulsive force against gravity at the background level. In the
universe dominated by a pressureless matter (P = 0), we find that the static universe (ȧ = ä = 0) corresponds
to

ρ =
Λ

4πG
,

K

a2
= Λ . (2.10)

This equation, the first relativistic cosmology ever, shows that the density ρ in the universe is determined by
Λ. Einstein believed that this solution (a “crazy idea” according to his own words in a letter to de Sitter)
was a way to embody Mach’s idea of linking mass (ρ) to inertia, here represented by space-time geometry
gµν . He thought that he could eventually show that matter was necessary to define a non-Minkowskian metric.
However, the above static solution is unstable against perturbations of the density ρ as was later demonstrated
by LemaÃ®tre. In fact, if Λ/3 > (4πGρ)/3, Eq. (2.9) shows that the universe departs from the static point
given in Eq. (2.10) with the growth of a. If Λ/3 < (4πGρ)/3 the universe is also away from the static point with
the decrease of a. Einstein did not realize this instability since he did not write down the differential equation
for a(t). Shortly after, in the same year 1917, de Sitter [129] found his accelerated solution H =

√
Λ/3 in empty

space, paving the way to the dismissal of Mach’s principle in cosmology.
At the same time, from 1910 to the mid-1920s, Slipher was observing the spectra of galaxies (spiral nebulae)

and found most of them to be red-shifted. In 1922 Friedmann found the evolving solution that represents the
expanding universe [130]. In 1927 LemaÃ®tre [131] studied the relation between the observed results of the
redshift and the homogeneous universe dominated by a pressureless dust. In LemaÃ®tre’s model there are
three distinct periods for the evolution of the universe:
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• (i) A period of cosmic expansion (a ∝ tn with 0 < n < 1) from a point source during which the basic
elements were formed. This corresponds to the expanding universe dominated by matter (either the
pressureless matter or the radiation).

• (ii) A period of a very slow expansion (a ∝ constant) during which nebulae were formed. This resembles
the static universe proposed by Einstein.

• (iii) A period of a fast expansion (a ∝ tn with n > 1) during which the recession of the nebulae is
accelerating. This period can be realized by the de Sitter solution (H =

√
Λ/3) in the presence of the

cosmological constant.

LemaÃ®tre’s model is the first “hot Big Bang” model, in which the matter density ρ goes to infinity as a→ 0.
Apart from the existence of the period (ii) LemaÃ®tre’s model describes well the evolution of the universe
even in the modern context. The loitering period (ii) should be replaced by a short transient period from the
matter era to the accelerated epoch during which the system crosses the point ä = 0, while the nebulae formed
during the matter-dominated epoch [the period (i)]. The period (iii) is exactly the phase of the late-time cosmic
acceleration realized by the presence of Λ. We can say that LemaÃ®tre, influenced by de Sitter’s accelerated
solution, produced the first consistent dark energy model.

In 1929 Hubble formulated Hubble’s law, today called Hubble-LemaÃ®tre’s law, (1.38) by combining his
measurements of galaxy distances with Slipher’s measurements of the redshifts associated with the galaxies [71].
This was the first direct quantitative evidence for the expansion of the universe. The existence of the cosmological
constant was clearly not required to give rise to a (decelerated) cosmic expansion. In the book “The Meaning
of Relativity” written by Einstein in 1945 [132], he stated that “if Hubble’s expansion had been discovered at
the time of the creation of the general theory of relativity, the cosmological member (the cosmological constant)
would never have been introduced”. In 1970 Gamov [133] recalls that “when I was discussing cosmological
problems with Einstein, he remarked that the introduction of the cosmological term was the biggest blunder he
ever made in his life.” In spite of Einstein’s regret, the cosmological constant returned at the end of the century
to account for the late-time cosmic acceleration.

2.3 The fine tuning problem
In order to realize the cosmic acceleration today, we require that the cosmological constant Λ is of the order of
the square of the present Hubble parameter H0 [see Eq. (2.8)]:

Λ ≈ H2
0 = (2.1332h× 10−42 GeV)2 . (2.11)

If we interpret this as an energy density, it is equivalent to

ρΛ ≈
Λm2

pl

8π
≈ 10−47 GeV4 ≈ 10−123m4

pl , (2.12)

where we have used h ≈ 0.7 and mpl ≈ 1019 GeV.
Suppose that the energy density (2.12) comes from the vacuum energy ⟨ρ⟩ of an empty space. The zero-point

energy of some field of mass m with momentum k and frequency ω is given by E = ω/2 =
√
k2 +m2/2 (in the

units of ℏ = c = 1). Summing over the zero-point energies of this field up to a cut-off scale kmax (≫ m), we
obtain the vacuum energy density

ρvac =

∫ kmax

0

d3k

(2π)3
1

2

√
k2 +m2 . (2.13)

Since the integral is dominated by the mode with large k with k ≫ m, we find that

ρvac =

∫ kmax

0

4πk2dk

(2π)3
1

2

√
k2 +m2 ≈ k4max

16π2
. (2.14)

General Relativity is believed to be valid up to the Planck scale mpl. Taking the cut-off scale kmax to be mpl,
the vacuum energy density can be estimated as

ρvac ≃ 1074 GeV4 . (2.15)
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Figure 2.1: Plot of dΩΛ/dN versus log10 a, assuming flat space with Ω
(0)
Λ = 0.7. The spike is very close to the

present epoch: this is the coincidence problem.

This is about 10121 times larger than the observed value (2.12). Note that this situation is not improved much
by taking other energy scales appearing in particle physics. For the QCD scale kmax ≈ 0.1 GeV we have
ρvac ≈ 10−3 GeV4, which is still much larger than ρΛ.

The above problem was present even before the observational discovery of dark energy in 1998. At that
time most people believed that the cosmological constant was exactly zero and tried to explain why it was so.
The vanishing of a constant usually implies the existence of some symmetry. In supersymmetric theories, for
example, the bosonic degree of freedom has its Fermi counter part that contributes to the zero point energy
with an opposite sign. If supersymmetry is unbroken, there exists an equal number of bosonic and fermionic
degrees of freedom such that the total vacuum energy vanishes [134]. However it is known that supersymmetry
is broken at sufficient high energies (around the scale MSUSY = 103 GeV if it is relevant to the hierarchy problem
of gravitational interaction and weak interaction). Hence the vacuum energy is generally non-zero in the world
of broken supersymmetry. Nevertheless, it is not impossible to obtain a vanishing Λ or a tiny amount of Λ even
if supersymmetry is broken.

2.4 The coincidence problem
The second problem of the cosmological constant as dark energy is that its value is not only at odds with
all possible fundamental energy scales and requires therefore fine tuning, but also that this particular value is
almost identical to a totally unrelated number, the present matter energy density. In other words, Ω(0)

Λ is doubly
unlikely: because it is too small in absolute terms and because its value coincides (to a factor of two or three)
with Ω

(0)
m , for no obvious reason. The matter density ρm = ρ

(0)
m (1 + z)3 coincides with the cosmological density

ρ
(0)
Λ at

zcoinc =

(
Ω

(0)
Λ

1− Ω
(0)
Λ

)1/3

− 1 , (2.16)

which, for Ω
(0)
Λ = 0.7, amounts to zcoinc ≈ 0.3. This problem is called the coincidence problem.

To illustrate the issue, we plot the evolution of the derivative dΩΛ/dN (where N = lna) in Fig. 2.1. We
find that the only epoch in which this quantity is not close to zero is the present. If ρ(0)Λ /ρ

(0)
m was just 10 or

100 times smaller, we would not see any accelerated expansion. If it were a few orders of magnitude larger than
unity, the spike would occur at a large redshift and probably we would not call it a coincidence at all.

The coincidence problem is not specific to the cosmological constant. Almost all acceptable dark energy
models we will see in the next chapters behave similarly to the cosmological constant and their zcoinc also turn
out to be very close to zero. Therefore we discuss this problem in terms of a general dark energy density ρDE.

Barring the case that this coincidence is after all just a coincidence, or that all the observational evidence in
favor of acceleration is systematically wrong, cosmologists have proposed several ways out of this problem. The
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first class of explanations is based on models in which ρDE responds to the trend of ρm and catches up with it
irrespective of the initial conditions of ρDE. In this case ΩDE is non-zero for a considerable duration and this
alleviates the coincidence problem. However, the acceleration starts very recently and therefore a coincidence
arises again. The problem is in fact that this behavior is based on attractor-like solutions such as the so-called
tracker models, see Sec. 3.2.3.

The second class of explanation argues that there is no coincidence and in fact Ωm and ΩDE have always,
or most of the time, been similar. In principle this is not difficult to realize: it is sufficient to postulate two
components, one that clusters, the other that does not because of a large sound speed, and to regulate their
equations of state so that they are always similar. The main problem here is that either (i) the common
equation of state always satisfies the condition for cosmic acceleration and hence it is difficult or impossible to
be consistent with many observations such as the growth of large-scale structure, or (ii) the equation of state
changes right when it is needed, i.e. today, and therefore another coincidence arises – this time between the
epoch of acceleration and the present. Models that belong to this class are for instance the scaling attractors. A
related possibility is to build a model with several epochs of acceleration; it is then just a matter of reasonable
chance to be witnessing one. Here again the difficulty is to realize a sufficient period of structure formation.

The third class is the anthropic one. According to it we live in a universe with ρDE ≈ ρm because this is
the highest dark energy density allowed by the requisite of sufficient structure formation and, in general, higher
energy vacua are more likely than lower ones. So our universe is the most likely among the “life-sustaining”
universes.

The fourth class is the “backreaction” argument. The coincidence between ρDE and ρm may appear as a
by-product of another more fundamental one, the coincidence between acceleration and structure formation.
This can be explained if one causes the other: in particular, if the growth of structures causes acceleration
through cumulative non-linear effects. A related way out is that actually there is no real acceleration and no
dark energy. The acceleration is only an apparent consequence of adopting the wrong background cosmological
model, the FLRW spacetime. If instead we interpret observations with a strongly inhomogeneous model like
the LemaÃ®tre-Tolman-Bondi void, the acceleration of the recession rate between nearby and distant sources
becomes a distance-dependent, but practically always decelerated, Hubble rate.

A quick summary of this section is that the coincidence problem is far from solved. It is difficult to imagine
a convincing explanation of the nature of dark energy which does not at the same time provide a solution to
the coincidence problem. Until then, we can use the coincidence problem, just as the fine-tuning problem, as a
guide to select interesting directions of research.



Chapter 3

Dark energy modelsa

If the cosmological constant problem is solved in a way that Λ completely vanishes, we need to find out alternative
models of dark energy. As we already mentioned in Introduction, there are basically two approaches for the
construction of dark energy models. The first approach is based on “modified matter models” in which the
energy-momentum tensor Tµν on the r.h.s. of the Einstein equations contains an exotic matter source with a
negative pressure. The second approach is based on “modified gravity models” in which the Einstein tensor Gµν
on the l.h.s. of the Einstein equations is modified.

It is however important to realize that within General Relativity this division is mostly a practical way
to classify the variety of dark energy models but does not carry a fundamental meaning. One can always
write down Einstein’s equations in the standard form Gµν = 8πGTµν by absorbing in Tµν all the gravity
modifications that one conventionally put on the l.h.s.. In other words, one can define a covariantly conserved
energy-momentum tensor that equals the Einstein tensor. There is no way, within General Relativity, i.e. by
using only gravitational interactions, to distinguish modified matter from modified gravity. At first-order in
perturbation theory, for instance, one can define the equation of state and the sound speed of a dark energy
field so that it reproduces any modified gravity model [180]. Of course, from the viewpoint of quantum field
theory the situation is different and the field content of the two classes are in general different and in principle
distinguishable.

Caldwell et al. [35] named quintessence a canonical scalar field ϕ with a potential V (ϕ) responsible for
the late-time cosmic accelerationb. Unlike the cosmological constant, the equation of state of quintessence
dynamically changes with time. The cosmological dynamics for quintessence in the presence of matter and
radiation has a long history–already in the 1980s the cosmological consequences for such a system have been
discussed by a number of authors [26, 28, 29, 30]. The cosmological evolution can be easily understood by a
dynamical system approach, as we will see in this Chapter.

The energy density of quintessence does not need to be very small with respect to radiation or matter in
the early universe unlike the cosmological constant scenario. The existence of the so-called “tracker” field [39]
is important to alleviate the coincidence problem of dark energy. The tracker fields correspond to attractor-
like solutions in which the field energy density tracks the background fluid density for a wide range of initial
conditions. We shall discuss conditions under which such tracking behavior occurs. The constraint on the
quintessence energy density in the early cosmological epoch will be also discussed.

There have been many attempts to construct particle physics models of quintessence. In so doing one needs
to find field potentials flat enough to lead to the slow-roll inflation today with an energy scale ρDE ≃ 10−123m4

pl

and a mass scale mϕ ≲ 10−33 eV. Although this is an obstacle for the model building, it is not impossible to
construct viable models of quintessence in the framework of particle physics. We shall discuss this issue in
considerable detail.

aAdapted from Amendola & Tsujikawa, Dark Energy. Theory and Observations, CUP 2010.
bAccording to ancient Greek science, the quintessence (from the latin “fifth element”) denotes a fifth cosmic element after earth,

fire, water, and air. See the Introduction.

29
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3.1 Quintessence
Many scalar fields are present in particles physics–including string theory and supergravity. We use the term
“quintessence” to denote a canonical scalar field ϕ with a potential V (ϕ) that interacts with all the other
components only through standard gravity. The quintessence model is therefore described by the action

S =

∫
d4x

√
−g

[
1

2κ2
R+ Lϕ

]
+ SM , Lϕ = −1

2
gµν∂µϕ∂νϕ− V (ϕ) , (3.1)

where κ2 = 8πG and R is the Ricci scalar. Note that we have taken into account the matter action SM .
We consider a perfect fluid with the energy density ρM , the pressure PM , and the equation of state wM =

PM/ρM . Here the subscript “M ” is used for a general perfect fluid (including the case of a total fluid) without
specifying non-relativistic matter or radiation. Later we shall use the subscript “m” to specify non-relativistic
matter. The fluid satisfies the continuity equation (1.26), i.e.

ρ̇M + 3H(ρM + PM ) = 0 . (3.2)

The energy-momentum tensor of quintessence is [73]

T (ϕ)
µν = − 2√

−g
δ(
√
−gLϕ)
δgµν

(3.3)

= ∂µϕ∂νϕ− gµν

[
1

2
gαβ∂αϕ∂βϕ+ V (ϕ)

]
. (3.4)

In a FLRW background, the energy density ρϕ and the pressure Pϕ of the field are

ρϕ = −T 0
0
(ϕ)

=
1

2
ϕ̇2 + V (ϕ) , Pϕ =

1

3
T ii

(ϕ)
=

1

2
ϕ̇2 − V (ϕ) , (3.5)

which gives the equation of state

wϕ ≡ Pϕ
ρϕ

=
ϕ̇2 − 2V (ϕ)

ϕ̇2 + 2V (ϕ)
. (3.6)

In the flat universe (K = 0) the following equations of motion follow from Eqs. (1.23) and (1.24):

H2 =
κ2

3

[
1

2
ϕ̇2 + V (ϕ) + ρM

]
, (3.7)

Ḣ = −κ
2

2

(
ϕ̇2 + ρM + PM

)
, (3.8)

where κ2 = 8πG. The variation of the action (3.1) with respect to ϕ gives

ϕ̈+ 3Hϕ̇+ V,ϕ = 0 , (3.9)

where V,ϕ ≡ dV/dϕ. The Klein-Gordon equation (3.9) can be also derived by using the continuity equation
ρ̇ϕ + 3H(ρϕ + Pϕ) = 0 or by combining Eqs. (3.2), (3.7) and (3.8).

During radiation or matter dominated epochs, the energy density ρM of the fluid dominates over that of
quintessence, i.e. ρM ≫ ρϕ. We require that ρϕ tracks ρM so that the dark energy density emerges at late
times. Whether this tracking behavior occurs or not depends on the form of the potential V (ϕ). If the potential
is steep so that the condition ϕ̇2/2 ≫ V (ϕ) is always satisfied, the field equation of state is given by wϕ ≃ 1
from Eq. (3.6). In this case the energy density of the field evolves as ρϕ ∝ a−6, which decreases much faster
than the background fluid density.

We require the condition wϕ < −1/3 to realize the late-time cosmic acceleration, which translates into the
condition ϕ̇2 < V (ϕ). Hence the scalar potential needs to be shallow enough for the field to evolve slowly along
the potential. This situation is similar to that in inflationary cosmology and it is convenient to introduce the
following slow-roll parameters [94]

ϵs ≡
1

2κ2

(
V,ϕ
V

)2

, ηs ≡
V,ϕϕ
κ2V

. (3.10)
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If the conditions ϵs ≪ 1 and |ηs| ≪ 1 are satisfied, the evolution of the field is sufficiently slow so that ϕ̇2 ≪ V (ϕ)
and |ϕ̈| ≪ |3Hϕ̇| in Eqs. (3.7) and (3.9).

From Eq. (3.9) the deviation of wϕ from −1 is given by

1 + wϕ =
V 2
,ϕ

9H2(ξs + 1)2ρϕ
, (3.11)

where ξs ≡ ϕ̈/(3Hϕ̇). This shows that wϕ is always larger than −1 for a positive potential. In the slow-roll
limit, |ξs| ≪ 1 and ϕ̇2/2 ≪ V (ϕ), we obtain 1 + wϕ ≃ 2ϵs/3 by neglecting the matter fluid in Eq. (3.7), i.e.
3H2 ≃ κ2V (ϕ). The deviation of wϕ from −1 is characterized by the slow-roll parameter ϵs.

So far many quintessence potentials have been proposed. Crudely speaking they have been classified into
(i) “freezing models” and (ii) “thawing” models [181]. In the class (i) the field was rolling along the potential in
the past, but the movement gradually slows down after the system enters the phase of cosmic acceleration. The
representative potentials that belong to this class are

(i) Freezing models

• V (ϕ) =M4+nϕ−n (n > 0) ,

• V (ϕ) =M4+nϕ−n exp(αϕ2/m2
pl) .

The first potential does not possess a minimum and hence the field rolls down the potential toward infinity
[30, 38]. This appears, for example, in the fermion condensate model as a dynamical supersymmetry breaking
[48]. The second potential has a minimum at which the field is eventually trapped (corresponding to wϕ = −1).
This potential can be constructed in the framework of supergravity [50].

In the class (ii) the field (with mass mϕ) has been frozen by Hubble friction (i.e. the term Hϕ̇) until recently
and then it begins to evolve once H drops below mϕ. The equation of state of dark energy is wϕ ≃ −1 at early
times, which is followed by the growth of wϕ. The representative potentials that belong to this class are

(ii) Thawing models

• V (ϕ) = V0 +M4−nϕn (n > 0) ,

• V (ϕ) =M4 cos2(ϕ/f) .

The first potential is similar to the one of chaotic inflation (n = 2, 4) used in the early universe (with V0 = 0)
[182], while the mass scale M is very different. Note that the model with n = 1 was originally proposed in
Ref. [183] to replace the cosmological constant by a slowly varying field and was revised in Ref. [184] in connection
with the possibility to allow for negative values of V (ϕ). The universe will collapse in the future if the system
enters the region with V (ϕ) < 0. The second potential appears as a potential for the Pseudo-Nambu-Goldstone
Boson (PNGB). This was introduced by Frieman et al. [47] in response to the first tentative suggestions that
the universe may be dominated by the cosmological constant. In this model the field is nearly frozen at the
potential maximum during the period in which the field mass mϕ is smaller than H, but it begins to roll down
around the present, i.e. when

mϕ ≡
(
∂2V

∂ϕ2

)1/2

≃ H0 (3.12)

3.2 Dynamical system approach
In order to study cosmological dynamics in the presence of a scalar field and a background fluid with EoS wM
(which could be 0 for matter or 1/3 for radiation), it is convenient to introduce the following dimensionless
variables:

x1 ≡ κϕ̇√
6H

, x2 ≡ κ
√
V√

3H
. (3.13)
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Then Eq. (3.7) can be written as

ΩM ≡ κ2ρM
3H2

= 1− x21 − x22 . (3.14)

We also define the energy fraction of dark energy

Ωϕ ≡ κ2ρϕ
3H2

= x21 + x22 , (3.15)

which satisfies the relation ΩM +Ωϕ = 1. From Eq. (3.8) we obtain

Ḣ

H2
= −3x21 −

3

2
(1 + wM )(1− x21 − x22) = −3

2
(1 + weff), (3.16)

where we define an effective equation of state weff (not necessarily a constant) for a model with several compo-
nents as

weff =
ptot
ρtot

=
∑
i

wiΩi (3.17)

In the present case, the effective equation of state is given by

weff = wM + (1− wM )x21 − (1 + wM )x22 . (3.18)

Clearly, since the total energy density is conserved and therefore obeys the equation ä/a = −(4π/3)ρtot(1+3weff),
one has that if weff < −1/3 the expansion is accelerated. The equation of state of dark energy (3.6) can be
expressed as

wϕ =
x21 − x22
x21 + x22

. (3.19)

Differentiating the variables x1 and x2 with respect to the number of e-foldings N = lna together with the use
of Eqs. (3.9) and (3.16), we obtain the following equations

dx1
dN

= −3x1 +

√
6

2
λx22 +

3

2
x1
[
(1− wM )x21 + (1 + wM )(1− x22)

]
, (3.20)

dx2
dN

= −
√
6

2
λx1x2 +

3

2
x2
[
(1− wM )x21 + (1 + wM )(1− x22)

]
, (3.21)

where

λ ≡ −V,ϕ
κV

. (3.22)

The quantity λ characterizes the slope of the field potential, which obeys the following equation
dλ

dN
= −

√
6λ2(Γ− 1)x1 , (3.23)

where

Γ ≡ V V,ϕϕ
V 2
,ϕ

. (3.24)

If λ is constant, the integration of Eq. (3.22) yields an exponential potential

V (ϕ) = V0e
−κλϕ . (3.25)

From Eq. (3.24) this potential corresponds to Γ = 1. In this case the autonomous equations (3.20) and (3.21)
are closed. The cosmological dynamics can be well understood by studying fixed points of the system [37], as
we will see below.

If Γ is constant but λ is not, we have to solve Eq. (3.23) as well as Eqs. (3.20) and (3.21). For the power-law
potential, V (ϕ) = M4+nϕ−n (n > 0, ϕ > 0), we have that Γ = (n + 1)/n > 1 and x1 > 0, in which case the
quantity λ (> 0) decreases from Eq. (3.23). Of course, for general field potentials, Γ is not necessarily constant.
In such cases we need to obtain the field ϕ as a function of N by solving Eqs. (3.16) and (3.21) together with
the use of the relation κ

√
V =

√
3Hx2. Then the evolution of the variable λ = λ(ϕ) is known accordingly.

In the following we first discuss cosmological dynamics for the exponential potential given in Eq. (3.25) and
then proceed to the case of non-constant λ.
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3.2.1 Exponential potential
We can derive fixed points of the system by setting dx1/dN = dx2/dN = 0 in Eqs. (3.20) and (3.21). The
fixed points are in general the solution of the dynamical system and give a first qualitative description of the
phase space. As we discuss below they can be classified according to their stability properties. If there are no
singularities or strange attractors, the trajectories with respect to x1(N) and x2(N), in general to be obtained
numerically, run from unstable fixed points to stable points, coasting along “saddle” points.

When λ is constant they are given by

• (a) (x1, x2) = (0, 0), Ωϕ = 0, weff = wM , wϕ: undefined.

• (b1) (x1, x2) = (+1, 0), Ωϕ = 1, weff = 1, wϕ = 1.

• (b2) (x1, x2) = (−1, 0), Ωϕ = 1, weff = 1, wϕ = 1.

• (c) (x1, x2) = (λ/
√
6, [1− λ2/6]1/2), Ωϕ = 1, weff = −1 + λ2/3, wϕ = −1 + λ2/3.

• (d) (x1, x2) = (
√
3/2(1+wM )/λ, [3(1−w2

M )/2λ2]1/2), Ωϕ = 3(1+wM )/λ2, weff = wM , wϕ = wM .

The point (a) is a fluid-dominated solution (ΩM = 1). The kinetic energy of quintessence is dominant for the
points (b1) and (b2), in which case ρϕ decreases rapidly (ρϕ ∝ a−6) relative to the background density. The
point (c) corresponds to a scalar-field dominated solution, which exists for λ2 < 6. The cosmic acceleration is
realized if weff < −1/3, i.e. λ2 < 2. In the limit that λ→ 0 (i.e. V (ϕ) → V0) we recover the equation of state of
cosmological constant (weff = wϕ = −1). The point (d) is the so-called scaling solution [37] in which the ratio
Ωϕ/ΩM is a non-zero constant. The existence of the scaling solution demands the condition λ2 > 3(1+wM ) from
the requirement Ωϕ < 1. Since wϕ = wM for scaling solutions, it is not possible to realize cosmic acceleration
unless the matter fluid has an unusual equation of state (wM < −1/3).

In order to find the stability about the fixed points (x(c)1 , x
(c)
2 ) derived above, we consider linear perturbations

(δx1, δx2) as follows:

x1 = x
(c)
1 + δx1 , x2 = x

(c)
2 + δx2 . (3.26)

Linearizing Eqs. (3.20) and (3.21) leads to the first-order differential equations

d

dN

(
δx1
δx2

)
= M

(
δx1
δx2

)
, (3.27)

where M is a 2× 2 matrix whose components depend upon x(c)1 and x(c)2 . The eigenvalues of the matrix M are
given by

µ1,2 =
1

2

[
a11 + a22 ±

√
D
]
, (3.28)

where aij are the components of the matrix and

D ≡ (a11 + a22)
2 − 4(a11a22 − a12a21) (3.29)

. The general linearized solution around each fixed point can be written then as

xi = x
(c)
i + αi 1e

µ1N + αi 2e
µ2N , (3.30)

where αi 1 and αi 2 are coefficients obtained from the eigenvectors. The eigenvalues determine therefore the
behavior of solutions near the fixed points.

The stability of the fixed points can be generally classified in the following way:

• (i) Stable node: D > 0 and µ1 < 0, µ2 < 0.

• (ii) Unstable node: D > 0 and µ1 > 0, µ2 > 0.

• (iii) Saddle point: D > 0 and µ1 < 0, µ2 > 0 (or µ1 > 0 and µ2 < 0).

• (iv) Stable spiral: D < 0 and the real parts of µ1 and µ2 are negative.
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• (v) Unstable spiral: D < 0 and the real parts of µ1 and µ2 are positive.

If matrix M is singular, the system becomes effectively one-dimensional around the fixed point. This classifi-
cation can be extended to more dimensions: a fixed point is stable if all the real parts of the eigenvalues are
negative, unstable if they are all positive, and a saddle when there are negative and positive real parts. If an
eigenvalue vanishes then the stability can be established expanding to higher orders. We will use this dynamical
system approach repeatedly in the course of this book.

We now restrict our attention to wM = 0. The eigenvalues of the above fixed points are given by (see the
problem [7.1])

• Point (a): µ1 = − 3
2 , µ2 = 3

2 .

• Point (b1): µ1 = 3−
√
6
2 λ, µ2 = 3.

• Point (b2): µ1 = 3 +
√
6
2 λ, µ2 = 3.

• Point (c): µ1 = 1
2 (λ

2 − 6), µ2 = λ2 − 3.

• Point (d): µ1,2 = − 3
4

[
1±

√
1− 8(λ2−3)

λ2

]
.

Then the stability of the fixed points is summarized as follows.

• Point (a): Saddle.

• Point (b1): Unstable node for λ <
√
6 and saddle point for λ >

√
6.

• Point (b2): Unstable node for λ > −
√
6 and saddle point for λ < −

√
6.

• Point (c): Stable node for λ2 < 3 and saddle point for 3 < λ2 < 6.

• Point (d): Saddle for λ2 < 3, stable node for 3 < λ2 < 24
7 and stable spiral for λ2 > 24

7 .

A matter dominated epoch can be realized either by the point (a) or (d). For any λ, there is only one final
stable point, either (c) or (d). When λ2 > 3 the solutions approach the stable scaling fixed point (d) instead of
the point (a). In this case, however, the solutions do not exit from the scaling era (Ωϕ =constant) to connect
to the accelerated epoch. In order to give rise to tracking behavior in which Ωϕ evolves to catch up with ΩM ,
we require that the slope of the potential gradually decreases. This can be realized by the field potential in
which λ gets smaller with time (such as V (ϕ) =M4+nϕ−n). We will discuss this case in Sec. 3.2.2. It is worth
mentioning that the exponential potential corresponds to the border that separates regions where such tracking
behavior occurs from those where it does not.

The point (c) is the only fixed point giving rise to a stable accelerated attractor for λ2 < 2. When λ2 < 2, a
physically meaningful solution (d) does not exist because Ωϕ > 1 for both radiation and matter fluids. In this
case the radiation and matter dominated epochs are realized by the point (a). Note that when λ is close to 0 the
solution starting from the point (a) and approaching the point (c) is not much different from the cosmological
constant scenario. Nevertheless, since the equation of state of the attractor is given by wϕ = −1+λ2/3, we can
still find a difference from wϕ = −1.

In Fig. 3.1 we plot the trajectories of solutions in the (x1, x2) plane for λ = 1 and wM = 0. Since ΩM ≥ 0
in Eq. (3.14), the allowed region corresponds to 0 ≤ x2 ≤

√
1− x21. The kinetic energy dominated points (b1)

and (b2) are unstable in this case. Since the matter point (a) is a saddle, the solutions starting from x2 ≪ 1
temporarily approach this fixed point. The trajectories finally approach the accelerated fixed point (c), because
this is stable for λ2 < 3.

3.2.2 Other potentials
If λ is not constant, we need to solve Eq. (3.23) to know the evolution of λ. In this case, the fixed points derived
in the constant λ case can be regarded as “instantaneous” fixed points changing in time [185, 186], provided
that the time scale for the variation of λ is much less than H−1.
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Figure 3.1: The trajectories of solutions for the exponential potential (3.25) with model parameters λ = 1 and
wM = 0. In this case the attractor is the accelerated point (c) (x1, x2) = (0.4082, 0.9129). The matter point (a)
is a saddle, whereas the points (b1) and (b2) are unstable nodes. The thick curve is the border of the allowed
region characterized by x2 =

√
1− x21.

Let us consider the “freezing” models of quintessence without a potential minimum (such as V (ϕ) =
M4+nϕ−n). We then have λ > 0 and x1 > 0 for V,ϕ < 0 and λ < 0 and x1 < 0 for V,ϕ > 0. If the
condition

Γ =
V V,ϕϕ
V 2
,ϕ

> 1 , (3.31)

is satisfied, the absolute value of λ decreases toward 0 irrespective of the sign of V,ϕ. This means that the
solutions finally approach the accelerated “instantaneous” point (c) even if λ2 is larger than 2 during radiation
and matter eras. The condition (3.31) is the so-called tracking condition under which the field density eventually
catches up that of the background fluid.

The condition (3.31) can be also derived in the following way [39]. We first define the following quantity

x ≡ 1 + wϕ
1− wϕ

=
ϕ̇2

2V
. (3.32)

Taking the derivative of x in terms of N and using the definition (3.15), we find

V,ϕ
κV

= ±

√
3(1 + wϕ)

Ωϕ

(
1 +

1

6

d lnx

dN

)
, (3.33)

where the plus and minus signs correspond to the cases ϕ̇ < 0 and ϕ̇ > 0, respectively. Differentiating Eq. (3.33)
with respect to ϕ, we get the following relation:

Γ = 1 +
3(1− Ωϕ)(wM − wϕ)

(1 + wϕ)(6 + y′)
− y′

(1 + wϕ)(6 + y′)(1 + x)
− 2y′′

(1 + wϕ)(6 + y′)2
, (3.34)

where y′ ≡ d lnx/dN = 2(dwϕ/dN)/(w2 − 1). Let us consider the evolution during the radiation and matter
dominated epochs where Ωϕ can be negligible relative to 1. If Γ varies slowly in time, Eq. (3.34) implies that
there is a solution in which wϕ is nearly constant and its derivatives (y′ and y′′) are negligible. Hence the
equation of state of quintessence is nearly constant:

wϕ ≃ wM − 2(Γ− 1)

1 + 2(Γ− 1)
. (3.35)
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The exponential potential corresponds to Γ = 1, giving the scaling solution with wϕ = wM . If Γ > 1, we have
wϕ < wM so that the quintessence energy density evolves more slowly than the background energy density. Hence
the tracking solution can be realized under the condition (3.31) for Γ nearly constant (|d(Γ−1)/dN | ≪ |Γ−1|).

Let us consider the inverse power-law potential V (ϕ) = M4+nϕ−n (n > 0). Since Γ = (n + 1)/n in this
case, the tracking condition (3.31) is automatically satisfied. The epoch of the late-time cosmic acceleration is
quantified by the condition λ2 = V 2

,ϕ/(κ
2V 2) < 2, i.e.

ϕ >
n

4
√
π
mpl , (3.36)

which is independent of the mass scale M . The field value at the onset of the accelerated expansion is of the
order of the Planck mass for n = O(1). From the Friedmann equation (3.7) one can estimate the present
potential energy of quintessence to be V (ϕ0) ≈ H2

0m
2
pl, where ϕ0 ≈ mpl. Then the mass M is constrained to be

M ≈
(
H0

mpl

) 2
4+n

mpl ≈ 10−
46−19n

4+n GeV , (3.37)

where we have used H0 ≈ 10−42 GeV. For n = 2 and n = 4 we have that M ≈ 10−1 GeV and M ≈ 104 GeV,
respectively. These energy scales can be compatible with those appearing in particle physics.

Let us consider the thawing models of quintessence in which the field was frozen in the past and started to
move only recently. For example, in the case of the potential V (ϕ) =M4−nϕn (n > 0), we have Γ = (n−1)/n < 1
and hence the model does not satisfy the tracking condition (3.31). Since |λ| = (n/

√
8π)(mpl/|ϕ|), the late-time

acceleration occurs only in the region |ϕ| > nmpl/4
√
π. This shows that the initial field displacement ϕi and

the field mass mϕ about the potential minimum are crucially important to get the cosmic acceleration. As
long as |ϕi| ≳ mpl and mϕ ≲ H0, the universe enters a temporary phase of accelerated expansion. The cosmic
acceleration ends after the field |ϕ| drops down to the order of mpl. The potential V (ϕ) = M4 cos2(ϕ/f) also
exhibits similar cosmic expansion history. The situation is different for the model in which the potential has a
non-vanishing energy V0 at the potential minimum, e.g., V (ϕ) = V0 +M4−nϕn with V0 > 0. In this case |λ|
eventually approaches 0 so that the potential energy at ϕ = 0 can be responsible for dark energy.

3.2.3 Tracker solutions
Beside fixed points, phase spaces can be characterized also by special trajectories that “attract” other trajectories.
Tracker solutions have approximately constant wϕ and Ωϕ along these special attractors. A wide range of initial
conditions converge to a common, cosmic evolutionary tracker.

In this section we shall discuss tracker solutions in details. To be concrete we consider the inverse power-law
potential

V (ϕ) =M4+nϕ−n , (n > 0) . (3.38)

We study the evolution of the scalar field in the region ϕ > 0, i.e. V,ϕ < 0 and ϕ̇ > 0. We take into account both
radiation (energy density ρr) and non-relativistic matter (energy density ρm) together with the quintessence
field. In this case the total energy density ρM and the pressure PM of fluids in Eqs. (3.7) and (3.8) are given
by ρM = ρr + ρm and PM = ρr/3, respectively. In addition to the variable x1 and x2 defined in Eq. (3.13) we
introduce another variable: x3 ≡ κ

√
ρr/(

√
3H). Then the density parameters for quintessence, radiation, and

non-relativistic matter are

Ωϕ = x21 + x22 , Ωr = x23 , Ωm = 1− x21 − x22 − x23 . (3.39)

The effective equation of state reads

weff = x21 − x22 + x23/3 . (3.40)

The equation of state of quintessence is the same as Eq. (3.6).
The equations for x1, x2, and x3 are

dx1
dN

= −3x1 +

√
6

2
λx22 +

1

2
x1(3 + 3x21 − 3x22 + x23) , (3.41)

dx2
dN

= −
√
6

2
λx1x2 +

1

2
x2(3 + 3x21 − 3x22 + x23) , (3.42)

dx3
dN

= −2x3 +
1

2
x3(3 + 3x21 − 3x22 + x23) . (3.43)
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Using the fact that Γ = (n+ 1)/n for the potential (3.38), the equation for λ reads

dλ

dN
= −

√
6
λ2

n
x1 . (3.44)

Note that λ > 0 because we are considering the case V,ϕ < 0. Since x1 > 0 (because ϕ̇ > 0), the r.h.s. of
Eq. (3.44) is negative so that λ decreases with time. The equations (3.41)-(3.44) are the autonomous equations
to be solved numerically.

From Eq. (3.35) the equation of state of quintessence in the tracking regime is given by

wϕ ≃ nwM − 2

n+ 2
. (3.45)

If the tracking occurs during the matter-dominated epoch (wM = 0), then wϕ ≃ −2/(n + 2). From Eq. (3.33)
the following relation holds

1

6

d lnx

dN
= ∆(t)− 1 , where ∆(t) ≡ λ

√
Ωϕ

3(1 + wϕ)
. (3.46)

From the definition of x in Eq. (3.32) we also obtain

1

6

d lnx

dN
=

1

3(1− w2
ϕ)

dwϕ
dN

. (3.47)

Since wϕ is nearly constant for tracker solutions, it follows from Eqs. (3.46) and (3.47) that ∆ ≃ 1. Hence the
tracker solution is characterized by

Ωϕ ≃ 3(1 + wϕ)

λ2
, (3.48)

where wϕ is given in Eq. (3.45). Recall that the scaling fixed point (d) for constant λ corresponds to Ωϕ =
3(1+wM )/λ2 and wϕ = wM . In this case the tracker solution (3.48) recovers the scaling solution in the regime
λ2 > 3(1 + wM ) (under which the scaling solution is stable). The accelerated fixed point (c) for constant λ
corresponds to Ωϕ = 1 and wϕ = −1+λ2/3. The tracker solution (3.48) also covers this case and the accelerated
solution is stable for λ2 < 3(1 + wM ). Hence the tracker solution can be regarded as a stable attractor. For
constant λ the stable scaling solution (d) does not exit to the accelerated attractor (c), but for decreasing λ the
transition to the stable accelerated phase occurs through the tracking solution.
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Figure 3.2: Evolution of Ωϕ, Ωm, and Ωr for the model V (ϕ) = M5ϕ−1 versus the redshift z. Initially Ωϕ
rapidly decreases because the field equation of state is given by wϕ ≃ 1. This is followed by the phase with a
nearly frozen scalar field so that Ωϕ begins to grow. Finally the solution enters the tracking regime in which
the field energy density tracks the background fluid density. Initial conditions are chosen to be x1 = 5.0× 10−5,
x2 = 1.0× 10−8, x3 = 0.9999, and λ = 109 at log10(z + 1) = 7.21.
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Figure 3.3: Evolution of wϕ for the model V (ϕ) =M5ϕ−1 with two different initial conditions. The solid curve
corresponds to the case shown in Fig. 3.2. The dashed curve corresponds to the case with initial conditions
x1 = 1.0× 10−8, x2 = 1.0× 10−8, x3 = 0.9999, and λ = 109 at log10(z+1) = 7.23. Both curves finally converge
to the tracking solution whose equation of state is given by wϕ ≃ −2/3 during the matter-dominated epoch
(10 ≲ z ≲ 103).



Chapter 4

Coupled dark energy

The fact that the energy density of dark energy is the same order as that of dark matter in the present universe
suggests that there may be some relation between them. We discuss such coupled dark energy scenarios in this
subsection.

Several different forms of the coupling between dark energy and dark matter have been proposed. One
possibility is to consider an interaction between a quintessence field ϕ and dark matter with an interaction
of the form Qρmϕ̇ [16, 17]. In fact this type of interaction appears in the context of scalar-tensor theories
(including Brans-Dicke theory) [56, 270, 40, 271], f(R) gravity [272], and dilaton gravity [210] after a conformal
transformation to the Einstein frame. In Brans-Dicke theory, for example, a coupling between a scalar field ϕ
and a Ricci scalar R gives rise to a constant coupling Q between ϕ and a non-relativistic matter in the Einstein
frame [273]. Another approach is to introduce an interaction of the form Γρm on the r.h.s. of the continuity
equations (ρm is the dark matter energy density) with the normalization of Γ in terms of the Hubble parameter
H, i.e. Γ/H = δ, where δ is a dimensionless coupling [274, 275, 276, 277, 278, 279, 280]. This is basically a fluid
description of coupled dark energy.

In the following we start from the coupled quintessence scenario and then proceed to coupled dark energy
models with an interaction of the form Hδρm.

4.1 Coupled quintessence with an exponential potential
Let us consider an interaction between a scalar field ϕ and a non-relativistic matter in the form

∇µT
µ
ν(ϕ) = −QTM∇νϕ , ∇µT

µ
ν(M) = +QTM∇νϕ , (4.1)

where Tµν(ϕ) and Tµν(M) are the energy momentum tensors of ϕ and non-relativistic matter, respectively, with a
trace TM = −ρM + 3PM of the matter. Since the radiation is traceless (ρM = 3PM ), the coupling-dependent
terms vanish in Eq. (4.1). Meanwhile non-relativistic matter such as dark matter and baryons have direct
couplings with the scalar field ϕ.

Generally the coupling strength Q of baryons is different from that of dark matter [17, 281, 282, 271]. If
we assume the baryons to be completely uncoupled they follow geodesics (i.e. they are free of any long-range
force beside gravity) and we can directly compare the results with observations, since generally speaking in any
(classical) experiment we assume our equipment (rods, clocks, etc) not to possess long-range interactions beside
gravity. We say that the frame in which baryons follow geodesics is the “physical” frame, meaning simply that
we can directly compare results with observations. If on the contrary the baryons are coupled then the physical
frame has to be obtained through a conformal transformation.

Although we assume the baryons to be uncoupled, for as concerns cosmology this makes generally only a
small difference, since baryons are subdominant. Therefore for simplicity we discuss here a single matter fluid
with an universal coupling. We discuss in the next section a case in which uncoupled baryons can lead to a
considerable difference, e.g., the presence of a baryon-dominated epoch. We also assume that the coupling Q is
constant. A constant coupling Q arises in Brans-Dicke theory after a conformal transformation to the Einstein
frame, as we will see later on. In this section we shall use the unit κ2 = 1 unless otherwise stated.

39
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The field Lagrangian density of the coupled quintessence is Lϕ = −(1/2)gµν∂µϕ∂νϕ − V (ϕ) + Lint, where
the part Lint gives rise to the interacting energy-momentum tensor given in Eq. (4.1) a. For the field potential
V (ϕ) we can take the exponential type

V (ϕ) = V0e
−λϕ , (4.2)

although of course other choices can be made [271]. Without losing generality the constant λ can be assumed
to be positive. For the interaction given in Eq. (4.1), the field ϕ, non-relativistic matter, and radiation obey the
following equations of motion, respectively, in the flat FLRW background:

ρ̇ϕ + 3H(ρϕ + Pϕ) = −Qρmϕ̇ , (4.3)

ρ̇m + 3Hρm = Qρmϕ̇ , (4.4)
ρ̇r + 4Hρr = 0 , (4.5)

together with the usual Friedmann equation

3H2 = ρϕ + ρm + ρr . (4.6)

Since ρϕ = (1/2)ϕ̇2 + V (ϕ) and Pϕ = (1/2)ϕ̇2 − V (ϕ), Eq. (4.3) can be written as

ϕ̈+ 3Hϕ̇+ V,ϕ = −Qρm . (4.7)

In order to study the dynamics of the system we introduce the following variables

x1 ≡ ϕ̇√
6H

, x2 ≡
√
V√
3H

, x3 ≡
√
ρr√
3H

. (4.8)

Taking the derivative of Eq. (4.6) in terms of the number of e-foldings N together with the use of Eqs. (4.3)-(4.5),
we obtain

1

H

dH

dN
= −1

2

(
3 + 3x21 − 3x22 + x23

)
. (4.9)

The effective equation of state is

weff = x21 − x22 + x23/3 . (4.10)

The equation of state of the scalar field wϕ and the density parameter Ωϕ are

wϕ =
x21 − x22
x21 + x22

, Ωϕ = x21 + x22 . (4.11)

Note that from Eq. (4.6) we obtain the relation Ωm = 1− x21 − x22 − x23.
The autonomous equations for x1, x2 and x3 are given by

dx1
dN

= −3x1 +

√
6

2
λx22 − x1

1

H

dH

dN
−

√
6

2
Q
(
1− x21 − x22 − x23

)
, (4.12)

dx2
dN

= −
√
6

2
λx1x2 − x2

1

H

dH

dN
, (4.13)

dx3
dN

= −2x3 − x3
1

H

dH

dN
. (4.14)

There are eight fixed points in total, see Table 4.1. The stability of the fixed points can be analyzed by
considering three eigenvalues of the Jacobian matrix of perturbations δx1, δx2 and δx3 about each point (see
the problem [8.3]).

Among the eight fixed points presented in Table 4.1, we now identify the points responsible for radiation,
matter, and accelerated eras.

aAlthough we focus on the coupled quintessence, it is possible to consider a coupling between dark matter and a k-essence field.
See Ref. [283] for cosmological dynamics of coupled k-essence fields.
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Name x1 x2 x3 Ωϕ Ωr wϕ weff

(a) −
√
6Q
3 0 0 2Q2

3 0 1 2Q2

3

(b1) 1 0 0 1 0 1 1
(b2) −1 0 0 1 0 1 1
(c) λ√

6
(1− λ2

6 )1/2 0 1 0 −1 + λ2

3 −1 + λ2

3

(d)
√
6

2(Q+λ) [ 2Q(Q+λ)+3
2(Q+λ)2 ]1/2 0 Q(Q+λ)+3

(Q+λ)2 0 −Q(Q+λ)
Q(Q+λ)+3

−Q
Q+λ

(e) 0 0 1 0 1 − 1
3

(f) − 1√
6Q

0 (1− 1
2Q2 )

1/2 1
6Q2 1− 1

2Q2 1 1
3

(g) 2
√
6

3λ
2
√
3

3λ (1− 4
λ2 )

1/2 4
λ2 1− 4

λ2
1
3

1
3

Table 4.1: The fixed points for the coupled quintessence model with an exponential potential.

• (i) Radiation era

The radiation-dominated epoch can be realized either by the points (e), (f), or (g) because they correspond
to weff = 1/3. However the nucleosynthesis bound places the constraint Q2 > 3.7 and λ2 > 88.9 for the
points (f) and (g), respectively. The former case is not compatible with the presence of the matter-
dominated epoch, whereas in the latter case λ is too large to have a late-time accelerated solution (as we
will see later). Hence the point (e) is the only plausible radiation solution. The eigenvalues of the 3×3
Jacobian matrix for perturbations about the point (e) are

µ = −1, 1, 2 . (4.15)

This means that the point (e) is a saddle followed by a matter era.

• (ii) Matter era

The matter-dominated epoch can be realized either by the points (a) or (d). Both (a) and (d) correspond
to scaling solutions with constant Ωϕ and wϕ. The point (a) is called the “ϕ-matter-dominated epoch
(ϕMDE)” [17]. In order for the ϕMDE to be responsible for the matter era we require that Q2 ≪ 1 from
the condition Ωϕ = 2Q2/3 ≪ 1. The eigenvalues of the Jacobian matrix for perturbations about the point
(a) is

µ =
3

2
+Q(Q+ λ), −3

2
+Q2, −1

2
+Q2 . (4.16)

As long as Q2 ≪ 1, two of the eigenvalues are negative. One of them is positive for Q(Q + λ) > −3/2,
which is satisfied unless Q < 0 and λ≫ 1. Hence the ϕMDE is a saddle followed by a late-time accelerated
point.

Since the effective equation of state for the point (d) is given by weff = −Q/(Q+ λ), it is possible to have
weff ≃ 0 for |λ| ≫ |Q|. The eigenvalues of the Jacobian matrix for perturbations about the point (d) are

µ = − 4Q+ λ

2(Q+ λ)
, −3(2Q+ λ)

4(Q+ λ)

[
1±

√
1 +

8[3− λ(Q+ λ)][3 + 2Q(Q+ λ)]

3(2Q+ λ)2

]
. (4.17)

This means that the point (d) is stable for |λ| ≫ |Q| (either a stable node or a stable spiral). Hence the
solutions do not exit from the matter era to the accelerated epoch.

• (iii) Accelerated era

The late-time cosmic acceleration can be realized either by the point (c) or (d). When λ2 < 2 the point
(c) satisfies the condition for acceleration. The eigenvalues of the Jacobian matrix of perturbations about
the point (c) are

µ =
1

2
(λ2 − 4),

1

2
(λ2 − 6), λ(Q+ λ)− 3 . (4.18)
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Under the condition λ2 < 2, this point is stable for

λ(Q+ λ) < 3 . (4.19)

The energy fraction of the field for the point (d) satisfies Ωϕ > 1 under the condition (4.19). For the point
(d) the condition for the acceleration, weff < −1/3, corresponds to Q > λ/2 or Q < −λ (recall that λ
is assumed to be positive). In both cases the inside of the root of Eq. (4.17) is larger than unity under
the condition (4.19) with − 4Q+λ

2(Q+λ) < 0 and − 3(2Q+λ)
4(Q+λ) < 0. Hence one of the eigenvalues in Eq. (4.17) is

positive, which means that the point (d) is a saddle if the point (c) is stable. If the condition

λ(Q+ λ) > 3 , (4.20)

is satisfied, the point (d) is stable whereas the point (c) is a saddle.

Then the late-time stable accelerated solution can be realized by the point (d) under the conditions (4.20)
and Q > λ/2 or Q < −λ. The scaling solution (d) allows the interesting possibility of a global accelerated
attractor with Ωϕ ≃ 0.7 [40, 284]. However it is difficult to realize the ϕMDE solution (a) followed by
the scaling solution (d). This comes from the fact that the condition Q2 ≪ 1 is required to have a
ϕMDE compatible with observations whereas large values of |Q| are needed to get the late-time cosmic
acceleration. One can show that there are no allowed regions in the (Q,λ) plane corresponding to the
sequence from the ϕMDE to the scaling attractor [17]. We require a step-like function of the coupling Q
in order to realize two scaling solutions [284].

From the above discussion we find that the following sequence is cosmologically viable:

(e) → (a) → (c) . (4.21)

The presence of the saddle ϕMDE demands the conditions Q2 ≪ 1 and Q(Q+ λ) > −3/2. The stability of the
accelerated points requires the conditions λ2 < 2 and λ(Q+ λ) < 3.

In Fig. 4.1 we plot the cosmological evolution of the density parameters Ωϕ,Ωm,Ωr as well as the equations
of state wϕ and weff for λ = 0.1 and Q = 0.3. This shows that the matter era is in fact replaced by the ϕMDE
with Ωϕ = weff ≃ 2Q2/3 ≃ 0.06. The ϕMDE is followed by the accelerated point (c) with the future asymptotic
values of the equations of state: wϕ = weff = −1 + λ2/3 ≃ −0.996.

The presence of the ϕMDE changes the background expansion history of the universe. Since the evolution
of the scale factor during the ϕMDE is given by a ∝ t2/(3+2Q2), the Hubble parameter evolves as E(z)/E0 ≃
[Ω

(0)
m (1 + z)3+2Q2

]1/2. Therefore the sound horizon at the decoupling epoch is smaller than in the uncoupled
case by roughly a factor zQ

2

dec. For Q = 0.1, for instance, this gives a sound horizon 7% smaller. This is a large
effect that can be constrained by current measurements, although it is partially compensated by the fact that
the distance to the last scattering increases. A full comparison with CMB data varying also all other parameters
shows that the coupling cannot exceed Q ≈ 0.1 [285].

As we will see later, in coupled quintessence, the equation of matter perturbations is subject to change
compared to the uncoupled case. The presence of the coupling between the non-relativistic matter and the
scalar field leads to a larger growth rate of matter perturbations relative to the uncoupled quintessence. Hence
the observational data of galaxy clustering can be used to place bounds on the strength of the coupling Q.
Finally, it is interesting to note that the coupling is partially degenerate with massive neutrinos so that if
large neutrino masses are found, as in some laboratory experiment, these can be reconciled with microwave
background upper limits [286].

4.2 Decoupling the baryons
The scalar field coupling induces a variation of the particle masses. As it can be seen from the conservation
equation (4.4) the matter density varies as

ρm = ρ(0)m (a/a0)
−3

exp

(∫ ϕ

ϕ0

Q(ϕ̃)dϕ̃

)
, (4.22)
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Figure 4.1: Cosmological evolution of the coupled quintessence scenario with an exponential potential for
λ = 0.1 and Q = 0.3. The initial conditions are chosen to be x1 = 0, x2 = 10−10, and x3 = 0.999 at the
redshift log10(z + 1) = 5.6919. The field equation of state wϕ starts from −1 because x1 = 0 initially, but it
quickly approaches wϕ = 1 due to the dominance of the field kinetic energy relative to the potential energy.
This phase is followed by the ϕMDE (a) in which the potential energy is completely negligible relative to its
kinetic energy (x1 = −

√
6Q/3, x2 = 0). The present epoch is on the way to the accelerated fixed point (c) with

weff = wϕ = −1 + λ2/3 and Ωϕ = 1.

where ϕ0 is the field value today. This can be interpreted at the classical level as a variation of the coupled
particle’s masses as

m = m(0) exp

(∫ ϕ

ϕ0

Q(ϕ̃)dϕ̃

)
. (4.23)

Since in gravitational interactions one always measures the product of masses times the gravitational con-
stant, the limits to the variation of G apply directly to the variation of baryon masses. Current limits on the
variation of G are [287]∣∣∣∣ ĠG

∣∣∣∣ ≲ few × 10−11 yrs−1 . (4.24)

Then we have, in the case of a constant coupling Q,∣∣∣∣ 1G dG

dN

∣∣∣∣ = ∣∣∣∣ 1m dm

dN

∣∣∣∣ = ∣∣∣∣Q dϕ

dN

∣∣∣∣ ≲ 10−1 . (4.25)

Note that we have used the present value of the Hubble parameter given in Eq. (1.42). For instance, on the
solution (d) of the previous section, one has dϕ/dN =

√
6x1 = 3/(Q + λ) so that we find Q ≲ (Q + λ)/30

(assuming both Q,λ > 0). This condition implies that λ ≫ Q, in which case we have no acceleration (weff =
−Q/(Q+ λ) ≈ 0).

Beside the variation of G, the field coupling Q is constrained by local gravity experiments. There are however
several ways to escape these constraints. One, to be discussed later on, is the chameleon mechanism, that screens
the effect of the field interaction near high-density objects. Another one is to assume that the coupling varies
in time so that it is very small today but large in the past. Yet another solution is to assume that the field
couples only to dark matter particles and not to baryons (or couples extremely weakly). In this way, local
gravity constraints are emptied of any effect on cosmology [271].
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If baryons are uncoupled to the scalar field, their conservation equation is standard and another degree of
freedom x4 =

√
ρb/(

√
3H) must be added to the dynamical system (4.12)-(4.14) (see Ref. [288]). Since baryons

correspond to only a small fraction of the total cosmic fluid today, their effect is in general modest and the fixed
points of Table 4.1 remain.

However, there is one case in which the baryons (or in general any uncoupled matter) make a large difference,
namely the scaling attractor (d). Scaling solutions are interesting for several reasons. First, they are particularly
simple because the density parameters ΩM ,Ωϕ and the equation of state are constant. Second, they could help
solving the coincidence problem since the ratio of matter to dark energy is constant not only at the present
time but ever since the scaling attractor is reached [288]. Third, they lead to phenomena that cannot be found
in non-scaling behaviors, as for instance an early start of acceleration. This third point is connected to the
uncoupled component so we discuss it now.

The coupled components, cold dark matter (density ρc) and the scalar field (density ρϕ) , behave at the
background level as a single fluid Ωeff with an effective constant equation of state weff , i.e. ρc ∝ ρϕ ∝ a−3(1+weff ).
For the scaling solution (d) we have weff = −Q/(Q + λ). Let us assume that the condition for the cosmic
acceleration is fulfilled. Then since the baryon density evolves as ρb ∝ a−3, baryons dominate in the past for
a < ab where

ab =
(
Ω

(0)
b /Ω

(0)
eff

)−1/(3weff )

, (4.26)

and Ω
(0)
eff = Ω

(0)
c + Ω

(0)
ϕ = 1 − Ω

(0)
b (assuming a flat spacetime). Therefore the universe undergoes a baryon-

dominated epoch before ab in which the expansion and the growth of structure are standard but driven by the
baryon density rather than by the dark matter. When a > ab the cosmic expansion is governed by the total
effective fluid. If Ω(0)

b ≈ 0.04 and weff ≈ −1, one finds ab ≈ 0.35 or zb ≈ 1.9. Hence we can expect the cosmic
expansion to be accelerated from zb onward. More exactly, one can derive the onset of acceleration (redshift
zacc) by solving for ä = 0 in the flat-space Friedmann equation:

ä

a
= −4π

3
[ρeff(1 + 3weff) + ρb] = −1

2
H2

0

[
Ω

(0)
eff a

−3(1+weff )(1 + 3weff) + (1− Ω
(0)
eff )a−3

]
= 0 . (4.27)

This amounts to

zacc = −1 +

[
Ω

(0)
eff − 1

Ω
(0)
eff (1 + 3weff)

]1/(3weff )

, (4.28)

which gives zacc ≈ 2.6 for Ω
(0)
b = 0.04 and weff = −1. This redshift can increase up to zacc ≈ 4 for weff = −0.6,

which is actually the value favored by the supernovae data for the scaling case [289]. In general, however, the
early acceleration gives a strong integrated Sachs-Wolfe effect on the CMB and to be acceptable it would require
other modifications. Notwithstanding these difficulties it is important to derive the conditions for the existence
of scaling solutions.

4.3 Parametrizing coupled dark energy
Let us discuss other coupled dark energy models in which a non-relativistic matter couples to dark energy with
an energy density ρX and an equation of state wX . The interaction between two components can be encoded
in the conservation equations:

ρ̇m + 3Hρm = +Γρm , (4.29)
ρ̇X + 3H(1 + wX)ρX = −Γρm , (4.30)

where Γ characterizes the strength of the coupling. The coupled quintessence discussed in the previous subsection
corresponds to the choice Γ = Qϕ̇.

Since the origin of dark energy is not yet identified as a scalar field, we take a different approach to con-
straining the coupling without assuming scalar fields [274, 275, 276, 277, 278, 279, 280]. We shall measure Γ in
terms of the Hubble parameter H and define the dimensionless coupling

δ ≡ Γ/H . (4.31)
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Note that a positive δ corresponds to a transfer of energy from dark energy to dark matter, whereas for a
negative δ the energy transfer is opposite. We are interested in placing observational bounds on δ. As usual in
the flat universe the Friedmann equation is given by

3H2 = ρm + ρr + ρX . (4.32)

As long as we use cosmic distances whose upper limits of the redshift are smaller than 1000, it is a good
approximation to neglect the contribution of radiation.

Equation (4.29) can be written in an integrated form

ρm = ρ(0)m (a/a0)
−3 exp

(∫
δ d( ln a)

)
. (4.33)

The cosmological evolution is different depending on the form of the coupling δ. In the following we shall
consider only the case of constant δ.

For constant δ, Eq. (4.33) is integrated to give

ρm = ρ(0)m (a/a0)
−3+δ = ρ(0)m (1 + z)3−δ . (4.34)

If wX is constant, substituting Eq. (4.34) into (4.30) leads to the following equation

ρX = ρ
(0)
X (1 + z)3(1+wX) + ρ(0)m

δ

δ + 3wX

[
(1 + z)3(1+wX) − (1 + z)3−δ

]
. (4.35)

From the Friedmann equation (4.32) and neglecting radiation we obtain

E2(z) = Ω
(0)
X (1 + z)3(1+wX) +

1− Ω
(0)
X

δ + 3wX

[
δ(1 + z)3(1+wX) + 3wX(1 + z)3−δ

]
, (4.36)

where E(z) = H(z)/H0 and Ω
(0)
X = ρ

(0)
X /(3H2

0 ). Hence the Hubble parameter, parametrized in terms of the three
parameters (δ, wX ,Ω

(0)
X ), is now in a convenient form to confront with the SN Ia, CMB, and BAO observations.

In the high-redshift region (z ≫ 1), it follows from Eq. (4.35) that ρX behaves as ρX ≃ −ρ(0)m δ/(δ+3wX)(1+
z)3−δ for 3wX < −δ. Hence the energy density of dark energy is negative for δ < 0. We do not exclude such a
possibility in the likelihood analysis of model parameters.

Using the parametrization (4.36) it is possible to place observational constraints on the coupling δ from the
combined data analysis of the luminosity distance dL of SN Ia, the CMB shift parameter R, and the BAO
effective distance DV . In Fig. 4.2 we plot observational likelihood contours in both (wX , δ) and (Ω

(0)
X , δ) planes

for the constant δ model using data from SNLS, CMB, and BAO. The ΛCDM model (wX = −1) with no
coupling (δ = 0) is in the 1σ observational contour bound. The allowed observational contours are rather widely
spread in the phantom region (wX < −1) with a negative coupling (δ < 0), whereas other parameter regions in
the (wX , δ) plane are also allowed.
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Figure 4.2: Probability contours (1σ, 2σ, and 3σ) for the constant δ parametrization (4.36) obtained from the
combined data analysis of SNLS [107], the CMB shift parameter R [14], and the BAO effective distance DV [68].
The left panel shows observational contours in the (wX , δ) plane marginalized over Ω(0)

X , whereas the right panel
depicts contours in the (Ω

(0)
X , δ) plane marginalized over wX . The ΛCDM model (wX = −1) with no coupling

(δ = 0) is in the 1σ contour bound. The best-fit model parameters correspond to δ = −0.03, wX = −1.02 and
Ω

(0)
X = 0.73. From Ref. [279].



Chapter 5

Modified gravity

Einstein’s gravity is the most general theory of gravity in four dimensions with second-order equations of motion
and a tensor field only. It can be generalized in many ways. One of the simplest modified gravity models is the
so-called f(R) gravity in which the 4-dimensional action is given by some general function f(R) of the Ricci
scalar R:

S =
1

2κ2

∫
d4x

√
−gf(R) + Sm(gµν ,Ψm) , (5.1)

where as usual κ2 = 8πG, and Sm is a matter action with matter fields Ψm. Here G is a bare gravitational
constant: we will see that the observed value will in general be different. Before we proceed we need however a
mathematical tool.

5.1 Conformal transformations
We will use more than once in the following a simple mechanism to introduce a new degree of freedom in the
Einstein Lagrangian, making use of a conformal transformation:

g̃µν = f(ϕ)gµν (5.2)

where ϕ is a scalar field and f(ϕ) a generic invertible (so g̃µν exists) and positive-definite function. The
transformation is called conformal because angles between four-vectors remain the same in the two metrics.
Notice that we are not transforming the coordinates, but the metric elements. Under this transformation, one
has (all tilded quantities make use of g̃µν)√

−g̃ = f2
√
−g (5.3)

R̃ = f−1(R− 6ω,µg
µνω,ν − 62ω) (5.4)

2̃ = f−1[2ω,µg
µν∂ν +2] (5.5)

with ω,µ ≡ f,µ/2f = f ′ϕµ/(2f). Using these relations, one sees that for a model with a scalar field and
ordinary matter (we assume here units such that the factor 1/16πG in front of R is unity) the Lagrangian can
be transformed as follows

S =

∫
d4x

√
−g[R+ Lϕ(gµν) + Lm(gµν ,Ψ)] (5.6)

=

∫
d4x
√

−g̃f−2[f(R̃+ 62̃ω − 6g̃µνω,µω,ν) + Lϕ(f
−1g̃µν) + Lm(f−1g̃µν ,Ψ)] (5.7)

=

∫
d4x
√
−g̃{f−1R̃+ [f−2Lϕ(f

−1g̃µν) + f−1(62̃ω − 6g̃µνω,µω,ν)] + f−2Lm(f−1g̃µν ,Ψ)} (5.8)

=

∫
d4x
√
−g̃{f−1R̃+ L̃ϕ(g̃µν) + L̃m(f−1g̃µν ,Ψ)} = S′ (5.9)

47
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where Ψ represents matter fields (baryons and DM) and L̃m = f−2LM , and the new scalar Lagrangian is

L̃ϕ(g̃µν) = f−2Lϕ(f
−1g̃µν) + f−1(62̃ω − 6g̃µνω,µω,ν) (5.10)

Note that even if one had Lϕ = 0 initially, the transformation would still induce a kinetic term for ϕ. If

Lϕ = −1

2
ϕ,µg

µνϕ,ν − V (ϕ) (5.11)

then (using integration by parts)

L̃ϕ(g̃µν) = f−2Lϕ(f
−1g̃µν) + f−1(62̃ω − 6g̃µνω,µω,ν) (5.12)

= −1

2
f−1g̃µν [1− 3

(
f ′

f

)2

]ϕ,µϕ,ν − f−2V (ϕ) (5.13)

which can be written in fully canonical form

L̃ = −1

2
ψ,µψ,ν g̃

µν − U(ψ) (5.14)

by defining a new field and a new potential

ψ,µ = f−1/2[1− 3

(
f ′

f

)2

]1/2ϕ,µ

U(ψ) =
V (ϕ)

f2(ϕ)
|ϕ(ψ)

The new Lagrangian contains now a direct coupling between ϕ and the new Ricci scalar, and also between
ϕ and the matter fields Ψ inside Lm. The two actions S and S′ obviously describe the same physics, but the
first one is said to live in the Einstein frame (Einstein’s equations being the standard ones) and the second in
the so-called Jordan frame.

There are two main uses of the transformations: a) choose a f(ϕ) in such a way to simplify the equations of
motion, and b) choose a f(ϕ) to generate forms of modified gravity. Let us consider the first application. Let
us assume we have a Lagrangian with an explicit coupling (these models, called scalar-tensor or Brans-Dicke
models, will be studied in Sec. 5.4)

A =

∫
d4x

√
−g

[
1

2κ2
F (ϕ)R− 1

2
gµν∂µϕ∂νϕ− V (ϕ) + LM (gµν ,Ψ)

]
(5.15)

This is then a Jordan frame since the EMT of the matter fields Ψ obeys the standard conservation laws. To
convert the theory into the Einstein frame, we notice that the action A has the same structure as S of Eq. (5.6)
except for the factor F . Repeating the same steps, one sees that by choosing the confornal factor f = F , i.e.
with the transformation

g̃µν = F (ϕ)gµν , (5.16)

one obtains

A =

∫
d4x
√

−g̃[R̃+ L̃ϕ(g̃µν , ϕ) + L̃m(F−1g̃µν ,Ψ)] (5.17)

with suitable redefinitions of L̃ϕ, L̃m. Now we are in an Einstein frame, where the gravitational sector is the
Einstein-Hilbert Lagrangian, but the matter sector includes a coupling between ϕ and Ψ, and therefore matter
particles will obey modified conservation equations. In fact, we know already that one obtains a form of coupled
dark energy. Scalar-tensor and coupled dark energy models can indeed be transformed one into the other via
conformal transformations.

However, one must keep in mind that when the equations of motion for the matter particles deviate from
the standard ones, matter will appear to be non-conserved (eg. particle masses will change in time and space
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or, more in general, the particles do not follow geodesics) and all the experimental/observational results will be
more difficult to interpret. For instance, if the Rydberg constant

R =
mee

4

8ϵ20h
3c

(5.18)

on which the measurement of redshifts depend, varied in space and time with the electron mass, then all
estimation of redshifts would be problematic. Therefore usually it is always preferred to stay in that frame in
which the matter EMT is conserved. If baryons and DM particles have different couplings, then there can be
several possible frames, eg frames in which baryons are conserved but DM is not. In this case, the “observational”
frame (sometimes called “physical” frame), i.e. the one in which experiments can immediately be compared to
theory, is the one in which baryonic particles are conserved (and therefore the masses of eg protons, electrons
etc. do not vary with time and space). It can also happen that although the Lagrangian seems to violate the
standard conservation equations, these are recovered at the local level, i.e. around non-linear structures like the
Earth, Sun, stars or the Milky Way halo, which is where indeed experiments are performed. This effect is called
screened and will be studied later on.

As for the use of the metric transformations to generate new classes of theories, we can simply consider that
if we start from

S =

∫
d4x

√
−g[R+ Lm(gµν ,Ψ)] (5.19)

and rewrite the action in the same way but using the transformed metric g̃, i.e. as

S̃ =

∫
d4x
√

−g̃[R̃+ Lm(g̃µν ,Ψ)] (5.20)

where g̃ = g̃(g, ϕ), we have created a different model (i.e. S and S̃ are not just two ways of writing the same
action, as for S, S′ in our initial example). In the new action ϕ is in fact an additional degree of freedom, and
its variation will give rise to new equations of motion. This kind of coupling is called conformal coupling.

This can be immediately generalized: in fact, the transformation does not have to be a conformal one. For
instance, the new metric g̃ might include derivatives of the scalar field, e.g.

g̃µν = ϕ,µϕ,ν + f(ϕ)gµν (5.21)

If both metrics are invertible, the procedure is acceptable and new classes of modified gravity can be generated.
In fact, most theories of modified gravity currently investigated can be produced this way.

5.2 Dynamics of f(R) models
Let us now go back to Eq. (5.1). There are two approaches to derive field equations from the action (5.1).

• (I) The metric formalism

The first approach is the so-called metric formalism in which the connections Γαβγ are the usual connections
defined in terms of the metric gµν . The field equations can be obtained by varying the action (5.1) with
respect to gµν :

F (R)Rµν(g)−
1

2
f(R)gµν −∇µ∇νF (R) + gµν□F (R) = κ2Tµν , (5.22)

where F (R) ≡ ∂f/∂R (we also use the notation f,R ≡ ∂f/∂R, f,RR ≡ ∂2f/∂R2), and Tµν is the matter
energy-momentum tensor. The steps to derive this equation are similar to the ones employed to obtain
the field equation (2.7). The trace of Eq. (5.22) is given by

3□F (R) + F (R)R− 2f(R) = κ2T , (5.23)

where T = gµνTµν = −ρ + 3P . Here ρ and P are the energy density and the pressure of the matter,
respectively.
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• (II) The Palatini formalism

The second approach is the so-called Palatini formalism in which Γαβγ and gµν are treated as independent
variables. Varying the action (5.1) with respect to gµν gives

F (R)Rµν(Γ)−
1

2
f(R)gµν = κ2Tµν , (5.24)

where Rµν(Γ) is the Ricci tensor corresponding to the connections Γαβγ . In general this is different from
the Ricci tensor Rµν(g) corresponding to the metric connections. Taking the trace of Eq. (5.24), we obtain

F (R)R− 2f(R) = κ2T , (5.25)

where R(T ) = gµνRµν(Γ) is directly related to T . Taking the variation of the action (5.1) with respect to
the connection, and using Eq. (5.24), we find

Rµν(g)−
1

2
gµνR(g) =

κ2Tµν
F

− FR(T )− f

2F
gµν +

1

F
(∇µ∇νF − gµν□F )

− 3

2F 2

[
∂µF∂νF − 1

2
gµν(∇F )2

]
. (5.26)

In General Relativity we have f(R) = R−2Λ and F (R) = 1, so that the term □F (R) in Eq. (5.23) vanishes. In
this case both the metric and the Palatini formalisms give the relation R = −κ2T = κ2(ρ− 3P ), which means
that the Ricci scalar R is directly determined by the matter (the trace T ).

In modified gravity models where F (R) is a function of R, the term □F (R) does not vanish in Eq. (5.23).
This means that, in the metric formalism, there is a propagating scalar degree of freedom, ψ ≡ F (R). The trace
equation (5.23) governs the dynamics of the scalar field ψ (dubbed “scalaron” [8]). In the Palatini formalism
the kinetic term □F (R) is not present in Eq. (5.25), which means that the scalar-field degree of freedom does
not propagate freely.

The de Sitter point corresponds to a vacuum solution at which the Ricci scalar is constant. Since □F (R) = 0
at this point, we get

F (R)R− 2f(R) = 0 , (5.27)

which holds for both the metric and the Palatini formalisms. Since the model f(R) = αR2 satisfies this
condition, it possesses an exact de Sitter solution [8].

The dynamics of f(R) dark energy models is different depending on the two formalisms, but we will confine
ourselves to the metric case.

5.3 f(R) gravity in the metric formalism
Already in the early 1980s it was known that the model f(R) = R + αR2 can be responsible for inflation in
the early universe [8]. This comes from the fact that the presence of the quadratic term αR2 gives rise to an
asymptotically exact de Sitter solution. Inflation ends when the term αR2 becomes smaller than the linear term
R. Since the term αR2 is negligibly small relative to R at the present epoch, this model is not suitable to realize
the present cosmic acceleration.

Since a late-time acceleration requires modification for small R, models of the type f(R) = R − α/Rn

(α > 0, n > 0) were proposed as a candidate for dark energy [53, 54, 55, 354]. While the late-time cosmic
acceleration is possible in these models, it has become clear that they do not satisfy local gravity constraints
because of the instability associated with negative values of f,RR [355, 356, 357, 358, 359]. Moreover a standard
matter epoch is not present because of a large coupling between the Ricci scalar and the non-relativistic matter
[272].

Then, what are the conditions for the viability of f(R) dark energy models in the metric formalism? In the
following we first present such conditions and then explain why they are required step by step.
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• (i) f,R > 0 for R ≥ R0 (> 0), where R0 is the Ricci scalar at the present epoch. Strictly speaking, if the
final attractor is a de Sitter point with the Ricci scalar R1 (> 0), then the condition f,R > 0 needs to hold
for R ≥ R1.

This is required to avoid anti-gravity (see later on).

• (ii) f,RR > 0 for R ≥ R0.

This is required for consistency with local gravity tests [356, 358, 359, 360], for the presence of the matter-
dominated epoch [272, 361], and for the stability of cosmological perturbations [362, 363, 364, 365].

• (iii) f(R) → R− 2Λ for R≫ R0.

This is required for consistency with local gravity tests [266, 366, 367, 368, 369] and for the presence of
the matter-dominated epoch [361].

• (iv) 0 <
Rf,RR

f,R
(r = −2) < 1 at r = −Rf,R

f = −2.

This is required for the stability of the late-time de Sitter point [370, 371, 361].

For example, the model f(R) = R− α/Rn (α > 0, n > 0) does not satisfy the condition (ii).
Below we list some viable f(R) models that satisfy the above conditions.

(A) f(R) = R− µRc(R/Rc)
p with 0 < p < 1, µ,Rc > 0 , (5.28)

(B) f(R) = R− µRc
(R/Rc)

2n

(R/Rc)2n + 1
with n, µ,Rc > 0 , (5.29)

(C) f(R) = R− µRc

[
1−

(
1 +R2/R2

c

)−n]
with n, µ,Rc > 0 , (5.30)

(D) f(R) = R− µRctanh (R/Rc) with µ,Rc > 0 . (5.31)

The models (A), (B), (C), and (D) have been proposed in Refs. [361], [366], [367], and [369], respectively. A
model similar to (D) has been also proposed in Ref. [368], while a generalized model encompassing (B) and (C)
has been studied in Ref. [373]. In the model (A), the power p needs to be close to 0 to satisfy the condition
(iii). In the models (B) and (C) the function f(R) asymptotically behaves as f(R) → R− µRc[1− (R2/R2

c)
−n]

for R ≫ Rc and hence the condition (iii) can be satisfied even for n = O(1). In the model (D) the function
f(R) rapidly approaches f(R) → R − µRc in the region R ≫ Rc. These models satisfy f(R = 0) = 0, so the
cosmological contant vanishes in the flat spacetime.

Let us consider now in more detail the cosmological dynamics of f(R) gravity. It is possible to carry out a
general analysis without specifying the form of f(R). In the flat FLRW spacetime the Ricci scalar is given by

R = 6(2H2 + Ḣ) , (5.32)

where H is as usual the Hubble parameter. As a matter action Sm we take into account non-relativistic matter
and radiation, which satisfy the usual conservation equations ρ̇m + 3Hρm = 0 and ρ̇r + 4Hρr = 0 respectively.
From Eqs. (5.22) and (5.23) we obtain the following equations

3FH2 = κ2 (ρm + ρr) + (FR− f)/2− 3HḞ , (5.33)
−2FḢ = κ2 [ρm + (4/3)ρr] + F̈ −HḞ . (5.34)

We introduce the dimensionless variables:

x1 ≡ − Ḟ

HF
, x2 ≡ − f

6FH2
, x3 ≡ R

6H2
, x4 ≡ κ2ρr

3FH2
, (5.35)

together with the following quantities

Ωm ≡ κ2ρm
3FH2

= 1− x1 − x2 − x3 − x4 , Ωr ≡ x4 , ΩDE ≡ x1 + x2 + x3 . (5.36)
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It is straightforward to derive the following differential equations [361]:

dx1
dN

= −1− x3 − 3x2 + x21 − x1x3 + x4 , (5.37)

dx2
dN

=
x1x3
m

− x2(2x3 − 4− x1) , (5.38)

dx3
dN

= −x1x3
m

− 2x3(x3 − 2) , (5.39)

dx4
dN

= −2x3x4 + x1x4 , (5.40)

where N = lna and

m ≡ d lnF

d lnR
=
Rf,RR
f,R

, (5.41)

r ≡ − d lnf

d lnR
= −Rf,R

f
=
x3
x2

. (5.42)

From Eq. (5.42) one can express R as a function of x3/x2. Since m is a function of R, it follows that m is a
function of r, i.e. m = m(r). The ΛCDM model, f(R) = R − 2Λ, corresponds to m = 0. Hence the quantity
m characterizes the deviation from the ΛCDM model. Note also that the model, f(R) = αR1+m − 2Λ, gives a
constant value of m. The analysis using Eqs. (5.37)-(5.40) is sufficiently general in the sense that the form of
f(R) does not need to be specified.

The effective equation of state of the system is

weff = −1

3
(2x3 − 1) , (5.43)

In the absence of radiation (x4 = 0) the fixed points for the dynamical system (5.37)-(5.40) are

P1 : (x1, x2, x3) = (0,−1, 2), Ωm = 0, weff = −1 , (5.44)
P2 : (x1, x2, x3) = (−1, 0, 0), Ωm = 2, weff = 1/3 , (5.45)
P3 : (x1, x2, x3) = (1, 0, 0), Ωm = 0, weff = 1/3 , (5.46)
P4 : (x1, x2, x3) = (−4, 5, 0), Ωm = 0, weff = 1/3 , (5.47)

P5 : (x1, x2, x3) =

(
3m

1 +m
,− 1 + 4m

2(1 +m)2
,
1 + 4m

2(1 +m)

)
,

Ωm = 1− m(7 + 10m)

2(1 +m)2
, weff = − m

1 +m
, (5.48)

P6 : (x1, x2, x3) =

(
2(1−m)

1 + 2m
,

1− 4m

m(1 + 2m)
,− (1− 4m)(1 +m)

m(1 + 2m)

)
,

Ωm = 0, weff =
2− 5m− 6m2

3m(1 + 2m)
. (5.49)

The points P5 and P6 lie on the line m(r) = −r − 1 in the (r,m) plane.
It is important to remark that P5,6 represent actually two families of points. In fact m(x3/x2) is a function

of the coordinates and for each model one has to solve the three equations

{x1, x2, x3} =

{
3m(x3/x2)

1 +m(x3/x2)
,− 1 + 4m(x3/x2)

2[1 +m(x3/x2)]2
,
1 + 4m(x3/x2)

2[1 +m(x3/x2)]

}
, (5.50)

for P5 and an analogous set for P6. We will call m5,6 the solutions of these equations and

m′
5,6 ≡ dm

dr

∣∣∣∣
m5,6

, (5.51)

their derivatives. For a given model there are several fixed points of type P5,6, all of them lying on the critical
line m = −r − 1. For simplicity, however, we will refer to points P5,6 in the following discussion as if they were
single points because for every viable cosmological model only one point of each family really matters.
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Among the six fixed points we have presented above, only the point P5 can be used for the matter-dominated
epoch. Since in this case we require Ωm ≃ 1 and weff ≃ 0, this implies that m is close to 0. In the (r,m) plane
this point exists around (r,m) = (−1, 0). The point P2 corresponds to the ϕMDE [17], but in this case the
ϕMDE cannot be responsible for the matter fixed point because weff(P2) = 1/3. In f(R) gravity, a scalar field
degree of freedom has a large coupling (Q = −1/

√
6) with non-relativistic matter in the Einstein frame (as we

will see later).
One can study the stability of the above fixed points by considering perturbations δxi (i = 1, 2, 3) around

them [361]. For the point P5 the eigenvalues for the 3× 3 Jacobian matrix of perturbations are

3(1 +m′
5),

−3m5 ±
√
m5(256m3

5 + 160m2
5 − 31m5 − 16)

4m5(m5 + 1)
, (5.52)

where r5 ≈ −1. In the limit |m5| ≪ 1 the latter two eigenvalues reduce to −3/4±
√
−1/m5. The f(R) models

with m5 < 0 exhibit a divergence of the eigenvalues as m5 → −0, in which case the system cannot remain for
a long time around the point P5. For example the model f(R) = R − α/Rn with n > 0 and α > 0 falls into
this category. On the other hand, if 0 < m5 < 0.327, the latter two eigenvalues in Eq. (5.52) are complex with
negative real parts. Then, provided that m′

5 > −1, the point P5 corresponds to a saddle point with a damped
oscillation. Hence the universe can evolve toward the point P5 from the radiation era and then can leave for
the late-time acceleration. In summary the condition for the existence of the saddle matter era is

m(r) ≈ +0 ,
dm

dr
> −1 , at r = −1 . (5.53)

The first condition implies that the f(R) models need to be close to the ΛCDM model during the matter-
dominated epoch.

The points P1 and P6 can lead to the late-time cosmic acceleration. The point P1 corresponds to a de Sitter
solution at which r = −2. In fact the condition (5.27) is satisfied in this case. The eigenvalues for the 3 × 3
matrix of perturbations about the point P1 are

−3, −3

2
±
√
25− 16/m1

2
, (5.54)

where m1 = m(r = −2). This shows that the condition for the stability of the de Sitter point P1 is given by

0 < m(r = −2) < 1 , (5.55)

which corresponds to the condition (iv) given in Sec. 5.3. The trajectories which start from the saddle matter
point P5 [satisfying the condition (5.53)] and then approach the stable de Sitter point P1 [satisfying the condition
(5.55)] are cosmologically viable.

The point P6 is on the line m(r) = −r − 1. It can satisfy the condition for the cosmic acceleration (weff <
−1/3) provided that m6 < −(1 +

√
3)/2, or −1/2 < m6 < 0, or m6 > (

√
3 − 1)/2. The eigenvalues for

perturbations are given by

−4 +
1

m6
,

2− 3m6 − 8m2
6

m6(1 + 2m6)
, −2(m2

6 − 1)(1 +m′
6)

m6(1 + 2m6)
. (5.56)

We then find that P6 is stable and accelerated in the following four regions:

[I] m′
6 > −1

• (a)m6 < −(1+
√
3)/2: P6 is accelerated with the effective equation of state, weff > −1. One has weff → −1

in the limit m6 → −∞.

• (b) −1/2 < m6 < 0: P6 corresponds to a strongly phantom behavior with weff < −7.6.

• (c) m6 ≥ 1: P6 corresponds to a slightly phantom behavior with −1.07 < weff ≤ −1. One has weff → −1
in the limit m6 → +∞ and m6 → 1.

[II] m′
6 < −1

When m′
6 < −1, the point P6 is stable and accelerated in the following region.
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• (d) (
√
3− 1)/2 < m6 < 1: P6 corresponds to a non-phantom behavior with weff > −1.

Recall that the matter point P5 needs to satisfy the condition m5 ≈ +0 and m′
5(r) > −1 at r = −1 and that

both P5 and P6 are on the line m = −r − 1. If we consider curves connecting P5 to P6, it is not possible to
realize the trajectories to the point P6 in the regions (a), (b), (c) satisfying the condition m′

6(r) > −1. In other
words, once a trajectory crosses the line m = −r− 1 with the tangent m′

5(r) > −1, then it crosses the same line
again with the tangent m′

6(r) < −1. See the curve (iv) in Fig. 5.1 for illustration. From the above argument
the viable trajectories evolve from the point P5 to the point P6 in the region (d).

In summary we have only two qualitatively different viable cases:

• Class A: Models that link P5 with P1 (r = −2, 0 < m < 1).

• Class B: Models that link P5 with P6 (m = −r − 1, (
√
3− 1)/2 < m < 1).

Let us consider a couple of viable f(R) models in the (r,m) plane. The ΛCDM model, f(R) = R − 2Λ,
corresponds to m = 0, in which case the trajectory is a straight line from P5: (r,m) = (−1, 0) to P1: (r,m) =
(−2, 0). The trajectory (ii) in Fig. 5.1 represents the following model [266]

f(R) = (Rb − Λ)c , (5.57)

which corresponds to the straight line m(r) = [(1 − c)/c]r + b − 1 in the (r,m) plane. The existence of
a saddle matter epoch requires the condition c ≥ 1 and bc ≈ 1. The trajectory (iii) represents the model
f(R) = R − µRc(R/Rc)

p (0 < p < 1, µ,Rc > 0) [361, 374], which corresponds to the curve m = p(1 + r)/r.
These models fall into Class A.

The models (5.29) and (5.30) have the same asymptotic form f(R) ≃ R−µRc[1− (R/Rc)
−2n] in the region

R≫ Rc. In this region these models behave as

m(r) = C(−r − 1)2n+1 , (5.58)

where C = 2n(2n + 1)/µ2n. The parameter m(r) rapidly approaches 0 in the limit r → −1 because of the
presence of the power 2n + 1 larger than 1. As we will see later, this small value of m in the region of high
density is required for consistency with local gravity constraints. These models can be categorized by either
Class A or Class B. The trajectory (iv) in Fig. 5.1 shows the model m(r) = −C(r + 1)(r2 + ar + b), which
belongs to Class B. We require the conditions m′(−1) = −C(1− a+ b) > −1 and m′(−2) = C(3a− b− 8) < −1
for the transition from the matter point P5 to the stable accelerated point P6. The models shown in Fig. 5.1
are a couple of representative models giving viable cosmological evolution.

The requirement m → +0 during the radiation and matter eras means that the models need to be close to
the ΛCDM model, f(R) = R − 2Λ, in the region R ≫ R0 (where R0 is the present cosmological Ricci scalar).
This corresponds to the condition (iii) listed in Sec. 5.3. Note also that the Ricci scalar R = 6(2H2+Ḣ) remains
positive from the radiation era to the present epoch, as long as it does not oscillate as in the f(R) = R + αR2

model. Under the condition f,R > 0, the requirement m > 0 translates into the condition f,RR > 0. This is the
condition (ii) listed in Sec. 5.3, which is also required for the consistency with local gravity constraints (as we
will see later).

For the model (5.29) let us consider the case in which the solutions finally approach the de Sitter point P1

with the Ricci scalar R1. The de Sitter point at r = −Rf,R/f = −2 is determined by the value µ:

µ =
(1 + x2n1 )2

x2n−1
1 (2 + 2x2n1 − 2n)

, (5.59)

where x1 ≡ R1/Rc. From the stability condition 0 < m(r = −2) < 1 we obtain

2x4n1 − (2n− 1)(2n+ 4)x2n1 + (2n− 1)(2n− 2) > 0 . (5.60)

When n = 1, for example, we have x1 >
√
3 and µ > 8

√
3/9. Under Eq. (5.60) one can show that the

conditions f,R > 0 and f,RR > 0 are also satisfied for R ≥ R1. For µ and n of the order of unity we find from
Eq. (5.59) that R1 is the same order as Rc. Hence Rc is roughly the same order as the present cosmological
Ricci scalar R0. In the region R≫ Rc the model (5.29) is close to the ΛCDM model with the asymptotic form
f(R) ≃ R−µRc

[
1− (R/Rc)

−2n
]
. The deviation from the ΛCDM model becomes important when R decreases

to the order of Rc. Note that the model (5.30) also has a similar property.
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Figure 5.1: Four trajectories in the (r,m) plane. Each trajectory corresponds to the models: (i) ΛCDM, (ii)
f(R) = (Rb−Λ)c, (iii) f(R) = R−µRc(R/Rc)p (0 < p < 1, µ,Rc > 0), and (iv) m(r) = −C(r+1)(r2+ar+ b).

In order to derive the equation of state of dark energy to confront with SN Ia observations, we rewrite
Eqs. (5.33) and (5.34) as follows:

3AH2 = κ2 (ρm + ρr + ρDE) , (5.61)
−2AḢ = κ2 [ρm + (4/3)ρr + ρDE + PDE] , (5.62)

where A is some constant and

κ2ρDE ≡ (1/2)(FR− f)− 3HḞ + 3H2(A− F ) , (5.63)
κ2PDE ≡ F̈ + 2HḞ − (1/2)(FR− f)− (3H2 + 2Ḣ)(A− F ) . (5.64)

Defining ρDE and PDE in the above way, one can show that these satisfy the usual conservation equations

ρ̇DE + 3H(ρDE + PDE) = 0 . (5.65)

A similar procedure can be carried out for a more general Lagrangian density, f(R,ϕ,X). The dark energy
equation of state, wDE ≡ PDE/ρDE, is directly related to the one used in the standard analysis of SN Ia
observations. From Eqs. (5.61) and (5.62) it is given by

wDE = −2AḢ + 3AH2 + κ2ρr/3

3AH2 − κ2(ρm + ρr)
≃ weff

1− Ω̃m
, (5.66)

where

Ω̃m ≡ κ2ρm
3AH2

=
F

A
Ωm . (5.67)

The last approximate equality in Eq. (5.66) is valid in the regime where the radiation energy density ρr is
negligible relative to the matter density.

The viable f(R) models approach the ΛCDM model in the past, i.e. F → 1 as R→ ∞. In order to reproduce
the standard matter era for z ≫ 1, we can choose A = 1 in Eqs. (5.61) and (5.62). Another possible choice is
A = F0, where F0 is the present value of F . This choice is suitable if the deviation of F0 from 1 is small (as
in the scalar-tensor theory with a massless scalar field [372]). In both cases the equation of state changes from
wDE < −1 to wDE > −1 before reaching the de Sitter attractor for viable f(R) models [366, 266, 369]. This is
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associated with the decrease of the quantity F with time (coming from the condition F,R > 0 with Ṙ < 0). Thus
viable f(R) dark energy models give rise to a phantom equation of state without violating stability conditions
of the system.

For the cosmological viability of f(R) models the constraint on m is not so severe: m can be of the order of
0.1 around the present epoch. Meanwhile the consistency with local gravity experiments places a tighter bound
on m in the region of high density (R ≫ R0), which corresponds to the value of m ≪ 10−9 during radiation
and deep matter eras. The models (5.29)-(5.31) are carefully constructed to have a suppressed m in the early
cosmological epoch, while an appreciable deviation from the ΛCDM model (m ≲ O(0.1)) can appear around
the present. Note that the model (5.28) does not allow this rapid evolution of m.

5.4 Scalar-tensor theories
As we have seen, most models of dark energy rely on scalar fields. Scalar fields have a long history in cosmology,
starting from Brans-Dicke theory [63] in which gravity is mediated by a scalar field in addition to the metric
tensor field (see [398]). Brans-Dicke theory was an attempt to revive Mach’s principle (according to which inertia
arises when a body is accelerated with respect to the global mass distribution in the universe) by linking the
gravitational constant to a cosmic field. At the same time, Brans-Dicke theory incorporated Dirac’s suggestion
that G varies in time in order to explain the coincidence that combinations like (ℏ2H0c

5/G)1/3 ≃ 68h1/3 MeV
or (e4H0c

3/G)1/3 ≃ 2.5h1/3 MeV are of the order of typical particle masses.
Brans-Dicke theory is just a particular example of scalar-tensor theories. These are relatively simple example

of modified gravity models and as such one of the most intensely studied alternatives to General Relativity. After
the discovery of cosmic acceleration, they have been invoked by several authors [56, 57, 58, 59, 60, 372, 399, 400]
to generalize the cosmological constant and to explain the fine-tuning and the coincidence problem. In this
section we discuss their properties as dark energy candidates.

The action for scalar-tensor theories is given by

S =

∫
d4x

√
−g
[
1

2
f(φ,R)− 1

2
ζ(φ)(∇φ)2

]
+ Sm(gµν ,Ψm) , (5.68)

where f is a general function of the scalar field φ and the Ricci scalar R, ζ is a function of φ, and Sm is a matter
Lagrangian that depends on the metric gµν and matter fields Ψm. We choose units such that κ2 = 1.

The action (5.68) includes a wide variety of theories such as f(R) gravity, Brans-Dicke theory, and dilaton
gravity. The f(R) gravity corresponds to the choice f(φ,R) = f(R) and ζ = 0. The action in Brans-Dicke theory
is f = φR and ζ = ωBD/φ, where ωBD is called the Brans-Dicke parameter [63]. One can generalize Brans-Dicke
theory by adding the field potential U(φ) to the original action, i.e. f = φR − 2U(φ) and ζ = ωBD/φ. The
action (5.68) can be transformed to the Einstein frame under the conformal transformation g̃µν = Fgµν with
the choice

F ≡ ∂f

∂R
, (5.69)

where F is positive in order to ensure that gravity is attractive.
Let us now consider theories of the type

f(φ,R) = F (φ)R− 2U(φ) , (5.70)

for which the conformal factor depends on φ only. Following the transformation, we obtain the action in the
Einstein frame:

SE =

∫
d4x
√
−g̃
[
1

2
R̃− 1

2
(∇̃ϕ)2 − V (ϕ)

]
+ Sm(g̃µνF

−1,Ψm) , (5.71)

where we have introduced a new scalar field ϕ in order to make the kinetic term canonical:

ϕ =

∫
dφ

√
3

2

(
F,φ
F

)2

+
ζ

F
. (5.72)

The potential V (ϕ) is given by

V = U/F 2 . (5.73)
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In order to describe the strength of the coupling between dark energy and non-relativistic matter, we intro-
duce the following quantity

Q ≡ −F,ϕ
2F

= −F,φ
2F

[
3

2

(
F,φ
F

)2

+
ζ

F

]−1/2

. (5.74)

If Q is a constant, the following relations hold from Eqs. (5.72) and (5.74):

F = e−2Qϕ , ζ = (1− 6Q2)F

(
dϕ

dφ

)2

. (5.75)

Then the action (5.68) in the Jordan frame yields [273]

S =

∫
d4x

√
−g

[
1

2
F (ϕ)R− 1

2
(1− 6Q2)F (ϕ)(∇ϕ)2 − U(ϕ)

]
+ Sm(gµν ,Ψm) . (5.76)

In the limit Q→ 0 the action (5.76) reduces to the one for a minimally coupled scalar field ϕ with the potential
U(ϕ). The transformation of the Jordan frame action (5.76) via a conformal transformation g̃µν = F (ϕ)gµν
gives rise to the Einstein frame action (5.71) with a constant coupling Q.

It is instructive to compare (5.76) with the action of Brans-Dicke theory with a potential U :

S =

∫
d4x

√
−g

[
1

2
ψR− ωBD

2ψ
(∇ψ)2 − U(ψ)

]
+ Sm(gµν ,Ψm) . (5.77)

Setting ψ = F = e−2Qϕ, one easily finds that the two actions are equivalent if the parameter ωBD is related to
Q via the relation [273]

3 + 2ωBD =
1

2Q2
. (5.78)

Under this condition, the theories given by (5.76) are equivalent to Brans-Dicke theory with a potential U . In
the General Relativistic limit, Q→ 0, we have ωBD → ∞ as expected.

Taking the variation of Eq. (5.77) with respect to gµν and ψ leads to the following equations

Rµν(g)−
1

2
gµνR(g) =

1

ψ
Tµν −

1

ψ
gµνU(ψ) +

1

ψ
(∇µ∇νψ − gµν□ψ)

+
ωBD

ψ2

[
∂µψ∂νψ − 1

2
gµν(∇ψ)2

]
, (5.79)

(3 + 2ωBD)□ψ + 4U(ψ)− 2ψU,ψ = T . (5.80)

The above discussion shows that the action (5.76) with F (ϕ) = e−2Qϕ corresponds to Brans-Dicke theory
with the potential U(ϕ), which includes a wide variety of theories such as f(R) theories in the metric and
Palatini formalisms, and dilaton gravity.

There are theories that give rise to varying couplings Q. For example a nonminimally coupled scalar field
with a coupling ξ corresponds to the choice F (φ) = 1 − ξφ2 and ζ(φ) = 1. In this case the coupling Q(φ) is
field-dependent:

Q(φ) =
ξφ

[1− ξφ2(1− 6ξ)]1/2
. (5.81)

Note that Q ≃ ξφ for |ξ| ≪ 1 and Q ≃ ±1/
√
6 in the limit |ξ| ≫ 1.

We shall now study the cosmological dynamics for the Jordan frame action (5.76) with F (ϕ) = e−2Qϕ in
the presence of a non-relativistic fluid with energy density ρm and a radiation fluid with energy density ρr.
We regard here the Jordan frame as a “physical” one due to the usual conservation of non-relativistic matter
(ρm ∝ a−3) in this frame. In the Einstein frame the system is described by a coupled quintessence scenario
with the potential V = U/F 2. One can study the cosmological dynamics in the Einstein frame and transform
back to the Jordan frame, but we shall carry out the analysis directly in the Jordan frame.
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In the flat FLRW background the variation of the action (5.76) with respect to gµν and ϕ leads to the
following equations of motion

3FH2 = 1
2 (1− 6Q2)Fϕ̇2 + U − 3HḞ + ρm + ρr , (5.82)

2FḢ = −(1− 6Q2)Fϕ̇2 − F̈ +HḞ − ρm − (4/3)ρr , (5.83)

(1− 6Q2)F
[
ϕ̈+ 3Hϕ̇+ (Ḟ /2F )ϕ̇

]
+ U,ϕ +QFR = 0 . (5.84)

We introduce the following variables

x1 ≡ ϕ̇√
6H

, x2 ≡ 1

H

√
U

3F
, x3 ≡ 1

H

√
ρr
3F

, (5.85)

and

Ωm ≡ ρm
3FH2

, Ωr ≡ x23 , ΩDE ≡ (1− 6Q2)x21 + x22 + 2
√
6Qx1 . (5.86)

These satisfy the relation Ωm +Ωr +ΩDE = 1 from Eq. (5.82).
Using Eqs. (5.82)-(5.84), we obtain the differential equations for x1, x2 and x3:

dx1
dN

=

√
6

2
(λx22 −

√
6x1) +

√
6Q

2

[
(5− 6Q2)x21 + 2

√
6Qx1 − 3x22 + x23 − 1

]
− x1

Ḣ

H2
, (5.87)

dx2
dN

=

√
6

2
(2Q− λ)x1x2 − x2

Ḣ

H2
, (5.88)

dx3
dN

=
√
6Qx1x3 − 2x3 − x3

Ḣ

H2
, (5.89)

where

λ ≡ −U,ϕ/U , (5.90)

and Ḣ/H2 is given by

Ḣ

H2
= −1− 6Q2

2

(
3 + 3x21 − 3x22 + x23 − 6Q2x21 + 2

√
6Qx1

)
+ 3Q(λx22 − 4Q) . (5.91)

The effective equation of state of the system is

weff = −1 +
1− 6Q2

3
(3 + 3x21 − 3x22 + x23 − 6Q2x21 + 2

√
6Qx1)− 2Q(λx22 − 4Q) . (5.92)

We now assume λ = const, i.e. an exponential potential. In the absence of radiation (x3 = 0), the fixed points
of the system (5.87)-(5.89) for constant λ are given by [273]

• (a) ϕMDE

(x1, x2) =

( √
6Q

3(2Q2 − 1)
, 0

)
, Ωm =

3− 2Q2

3(1− 2Q2)2
, weff =

4Q2

3(1− 2Q2)
. (5.93)

• (b) Kinetic points

(x1, x2) =

(
1√

6Q± 1
, 0

)
, Ωm = 0 , weff =

3∓
√
6Q

3(1±
√
6Q)

. (5.94)

• (c) Scalar-field dominated point

(x1, x2) =

( √
6(4Q− λ)

6(4Q2 −Qλ− 1)
,

[
6− λ2 + 8Qλ− 16Q2

6(4Q2 −Qλ− 1)2

]1/2)
, Ωm = 0 ,

weff = −20Q2 − 9Qλ− 3 + λ2

3(4Q2 −Qλ− 1)
. (5.95)
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Figure 5.2: The evolution of ΩDE, Ωm, Ωr, and weff with parameters Q = 0.01, p = 0.2, and C = 0.7. The
initial conditions are given by x1 = 0, x2 = 2.27× 10−7, x3 = 0.7, and x4 − 1 = −5.0× 10−13 at N = 0. From
Ref. [273].

• (d) Scaling solution

(x1, x2) =

(√
6

2λ
,

√
3 + 2Qλ− 6Q2

2λ2

)
, Ωm = 1− 3− 12Q2 + 7Qλ

λ2
, weff = −2Q

λ
. (5.96)

• (e) de Sitter point (present for λ = 4Q)

(x1, x2) = (0, 1) , Ωm = 0 , weff = −1 . (5.97)

One can confirm that the de Sitter point (e) exists for λ = 4Q, by setting ϕ̇ = 0 in Eqs. (5.82)-(5.84). This is
the special case of the scalar-field dominated point (c).

The stability of the fixed points (a)-(e) can be found as usual by considering the eigenvalues of the 2 × 2
Jacobian matrix of perturbations. The matter-dominated epoch can be realized either by the point (a) or by
the point (d). If the point (a) is responsible for the matter era, we require the condition Q2 ≪ 1. We then
have Ωm ≃ 1 + 10Q2/3 > 1 and weff ≃ 4Q2/3. When Q2 ≪ 1 the scalar-field dominated point (c) yields
an accelerated expansion of the universe provided that −

√
2 + 4Q < λ <

√
2 + 4Q. Under these conditions

the point (a) is followed by the late-time cosmic acceleration. The scaling solution (d) can give rise to the
equation of state, weff ≃ 0 for |Q| ≪ |λ|. In this case, however, the condition weff < −1/3 for the point
(c) gives λ2 ≲ 2. Then the energy fraction of the pressureless matter for the point (d) does not satisfy the
condition Ωm ≃ 1. From the above discussion the viable cosmological trajectory for constant λ corresponds
to the sequence from the point (a) to the scalar-field dominated point (c) under the conditions Q2 ≪ 1 and
−
√
2 + 4Q < λ <

√
2 + 4Q. In the Einstein frame this corresponds to the coupled quintessence scenario with

the exponential potential V = U/F 2 = U0e
−(λ−4Q)ϕ discussed in Sec. 4.
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5.5 Relation between f(R) and scalar-tensor theories
Models of f(R) gravity can be recast as scalar-tensor models via the conformal transformation

g̃µν = Ω2gµν , (5.98)

The action (5.1) can in fact be written as

S =

∫
d4x

√
−g
(

1

2κ2
FR− U

)
+ Sm(gµν ,Ψm) , (5.99)

where

U =
RF − f

2κ2
. (5.100)

The action (5.99) is then transformed to be

S =

∫
d4x
√

−g̃
[

1

2κ2
FΩ−2(R̃+ 6□̃ω − 6g̃µνω,µω,ν)− Ω−4U

]
+ Sm(gµν ,Ψm) . (5.101)

So we see that with

Ω2 = F (5.102)

we recover an Einstein Lagrangian. We also introduce a new scalar field ϕ defined by

κϕ ≡
√

3

2
lnF . (5.103)

Since Ω =
√
F and ω,µ = Ω,µ/Ω, it follows that ω,µ = (1/

√
6)κϕ,µ. The integral

∫
d4x

√
−g̃ □̃ω vanishes on

account of Gauss’s theorem. Then the action in the Einstein frame is

SE =

∫
d4x
√
−g̃
[

1

2κ2
R̃− 1

2
g̃µν∂µϕ∂νϕ− V (ϕ)

]
+ Sm(gµν ,Ψm) , (5.104)

where

V (ϕ) =
RF − f

2κ2F 2
. (5.105)

As in the previous section, it is useful to write the coupling in the form

F = e−2Qϕ , (5.106)

From Eq. (5.103) we then find that f(R) models are equivalent to scalar-tensor models with the specific coupling

Q = −1/
√
6 . (5.107)

Since the coupling Q for the f(R) theory in the metric formalism is given by Q = −1/
√
6, it also follows from

Eq. (5.78) that in this case the Brans-Dicke parameter ωBD is equivalent to 0.

5.6 Horndeski Lagrangian a

The scalar-tensor Lagrangian can be further generalized. In fact, Horndeski in 1974 found the most general
scalar-tensor theory that gives second order equations of motion, the so-called Horndeski Lagrangian (HL). We
give here a very brief introduction.

The HL is defined as the sum of four terms L2 to L5. Defining with X = −gµνϕ,µϕ,ν/2 the canonical kinetic
term, the four terms are specified by two non-canonical kinetic functions K(ϕ,X) and G3(ϕ,X) and by two
coupling functions G4,5(ϕ,X), all of them in principle arbitrary:

S =

∫
d4x

√
−g

5∑
i=2

Li + Sm (5.108)

aText adapted from Amendola et al. Universe, vol. 6, p. 20
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where Sm is the action for matter fields – dark matter, baryons and radiation – and

L2 =K(ϕ,X) ,

L3 =−G3(ϕ,X)2ϕ ,

L4 =G4(ϕ,X)R+G4,X

[
(2ϕ)2 − (∇µ∇νϕ)

2
]
,

L5 =G5(ϕ,X)Gµν∇µ∇νϕ− G5,X

6

[
(2ϕ)3 − 3 (2ϕ) (∇µ∇νϕ)

2
+ 2 (∇µ∇νϕ)

3
]
.

(5.109)

(here f,X ≡ ∂f/∂X) Note that G3 and G5 must have an X dependence, otherwise they are total derivatives and
could be rewritten – after integration by parts – as K and G4 respectively. As usual, each term in the HL has
dimension mass4. Often one chooses the scalar field to have dimensions of mass, but this is not necessary. As
already mentioned, the HL is the most general Lagrangian for a single scalar which gives second-order equations
of motion for both the scalar and the metric on an arbitrary background. This is a necessary, but not sufficient,
condition for the absence of instabilities. The terms L4,L5 couple the field ϕ to the Ricci scalar R and the
Einstein tensor Gµν = Rµν −Rgµν/2. As a consequence, G4,5 are the gravity-modifying coupling function.

Let us now briefly discuss some useful limits of the HL.

• If G4 = 1/2 and G5 = 0 (it is actually sufficient G5 = const) the HL reduces to ordinary gravity with
a scalar field having a non-canonical kinetic sector given by L2,L3. The canonical form is obtained for
K = X − V (ϕ) and G3 = 0 (G3 = const is sufficient). ΛCDM is recovered for K = −2Λ.

• The "minimal" form of modified gravity within the HL is provided by G4 = G4(ϕ) and G5 = const: this
is then equivalent to a Brans-Dicke scalar-tensor model, again with a non-canonical kinetic sector.

• The original Brans-Dicke model is recovered assuming a kinetic sector, K = (ωBD/ϕ)X,G3 = 0, and
G4(ϕ) = ϕ/2.

• If, moreover, the kinetic sector vanishes, K,X = G3 = 0, then we reduce ourselves to a f(R) model [388],
whose Lagrangian is LR = (R + f(R))/2. In fact, this model is equivalent to a scalar-tensor theory with
G4(ϕ) = e2ϕ/

√
6/2 and a potential K(ϕ) = −(Rf,R − f)/2 where ϕ =

√
6/2 log(1 + f,R). This relation

should then be inverted to get R = R(ϕ) and used to replace R with ϕ in K(ϕ).

• If one sets Gi(ϕ,X) = Gi(X) then the Lagrangian is invariant under the shift ϕ → ϕ + c with c =
const. This shift-symmetric version of the HL is connected to the Covariant Galileon when the functional
dependence of the Gi is fixed and is able to produce the accelerated expansion without a potential that
makes the field slow roll.

In general, the equations of motion for the scalar will couple it to the matter energy density. The full set of
equations of motion has been studied in several papers, for instance in [418]. Any modification of the HL, or
addition of terms (except the so-called Beyond Horndeski terms), based on the same scalar field, will introduce
higher order equations of motion and associated instabilities, as a consequence of the Ostrogradsky theorem
[419]. Of course one can in principle add several scalar fields, but on grounds of simplicity this is rather
unnatural. Notice that we do not demand that the ϕ drives the present-day accelerated expansion. It could be,
after all, that the modification of gravity and the accelerated expansion are independent phenomena. It would
be very interesting, though, to explain the latter in terms of the former.

An interesting property of the HL is that, differently from the simple Brans-Dicke case, the velocity cT of
propagation of tensor modes (i.e. gravitational waves) is different from c. In fact, one has

cT = 1 +
2X
(
2G4X − 2G5ϕ −

(
ϕ̈− ϕ̇H

)
G5X

)
2
(
G4 − 2XG4X +XG5ϕ − ϕ̇HXG5X

) (5.110)

The recent discovery of gravitational waves with optical counterparts has shown that cT = 1 to very high
precision. So cT = 1 only if G4 = G5 = 0 or for particular (and very fine-tuned) combinations of G4, G5 (or,
trivially, when X = 0, so for a static field). Of course, one can also devise models such that cT = 1 today but
not in the past.
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5.7 Screening mechanisms
If a scalar field ϕ couples to a non-relativistic matter as in the coupled quintessence scenario, this gives rise to a
fifth force interaction which can be constrained experimentally. In fact, a coupling Q of the order of unity often
arises in superstring and supergravity theories. The existence of such a strongly coupled scalar field is not in
general compatible with local gravity experiments unless some mechanism exists to suppress the propagation of
the fifth force.

There is an interesting attempt called the chameleon mechanism to reconcile large coupling models with
local gravity constraints [319, 320]. This is based on a coupled quintessence field whose effective mass is different
depending on the environment it is in. The matter coupling gives rise to an extremum of the field potential
the field can sit on. If the matter density is sufficiently high as in the interior of a compact object, the field
acquires a heavy mass about the potential minimum so that it cannot propagate freely. Meanwhile the field
has a lighter mass in a low-density environment such as the exterior of the same compact object. This effect is
called screening.

An effective coupling Qeff between the scalar field ϕ and the non-relativistic matter can be much smaller
than its bare coupling Q when a spherically symmetric body has a thin-shell around the surface of the body
[319, 320]. The field is nearly frozen around the potential extremum at ϕ = ϕA in the region 0 < r < r1, where
r1 is close to the radius rc of the body. In the thin-shell region (r1 < r < rc) the field begins to evolve because
of the dominance of the matter coupling term QρA, where ρA is the mean density of the body. As long as the
condition (rc−r1)/rc ≪ 1 is satisfied, it is possible to make the effective coupling |Qeff | small so that the models
are consistent with local gravity experiments. In the following we shall discuss the chameleon mechanism and
the resulting field profile in details.

Let’s start with the equations of the coupled dark energy

∇µT
µ
ν(ϕ) = −QTM∇νϕ , ∇µT

µ
ν(m) = +QTm∇νϕ , (5.111)

where Q is taken constant. We have seen that the matter equation is solved by (see 4.22) ρm = ρeQ(ϕ−ϕ0),
where ρ = ρm0a

−3. From now on we rescale the field do that ϕ0 = 0. The ν = 0 field equation is then

□ϕ− V,ϕ = QρeQϕ , (5.112)

Eq. (5.112) can be written as

□ϕ = V,ϕ +QρeQϕ . (5.113)

In a spherically symmetric spacetime of the Minkowski background (i.e. weak gravity background) this reduces
to

d2ϕ

dr2
+

2

r

dϕ

dr
=

dVeff(ϕ)

dϕ
, (5.114)

where r is the distance from the center of symmetry and the effective potential Veff is defined by

Veff(ϕ) ≡ V (ϕ) + ρeQϕ . (5.115)

In a strong gravity background, Eq. (5.114) is subject to change due to the backreaction of gravitational
potentials. In the analysis presented below we focus on the weak gravity background in which the neglect of
gravitational potentials can be justified.

We assume now that the spherically symmetric body has a homogeneous density ρ = ρA and a mass
Mc = (4π/3)ρAr

3
c with a homogeneous density ρ = ρB outside the body. The effective potential Veff has minima

at field values ϕA and ϕB given by

V,ϕ(ϕA) +QρAe
QϕA = 0 , (5.116)

V,ϕ(ϕB) +QρBe
QϕB = 0 . (5.117)

The former corresponds to the region with a high density (interior of the body) with a large mass squared
m2
A ≡ d2Veff

dϕ2 (ϕA), whereas the latter to the lower density region (exterior of the body) with a small mass

squared m2
B ≡ d2Veff

dϕ2 (ϕB). See Fig. 5.3 for illustration.
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Figure 5.3: The effective potential Veff of a chameleon field (solid curve) for the case V,ϕ < 0 and Q > 0. The
effective potential is the sum of the field potential V (ϕ) (dashed curve) and the coupling term ρeQϕ (dotted
curve). The left and right panels correspond to large and small densities, respectively. The field tends to be
more massive around the minimum of the effective potential for larger density ρ.

Equation (5.114) shows that we need to consider the potential (−Veff) in order to find the “dynamics” of the
field with respect to r. This means that the effective potential (−Veff) has a maximum at ϕ = ϕA, see Fig. 5.4.
We impose the following boundary conditions:

dϕ

dr
(r = 0) = 0 , ϕ(r → ∞) = ϕB . (5.118)

The field ϕ is at rest at r = 0 and begins to roll down the potential when the matter-coupling term QρAe
Qϕ

becomes important at a radius r1. If the field value at r = 0 is close to ϕA, the field is nearly frozen around ϕA
in the region 0 < r < r1. We say that the body has a thin-shell if r1 is close to the radius rc of the body. The
value of r1 will be determined later on. We split now the problem into three regions: region I for 0 < r < r1,
region II for r1 < r < rc, and region III for r > rc. We also assume that Qϕ ≪ 1 because of constraints from
local gravity.

In the region 0 < r < r1, the r.h.s. of Eq. (5.114) can be approximated as dVeff/dϕ ≃ m2
A(ϕ − ϕA) around

ϕ = ϕA. Therefore Eq. (5.114) can be written as

d2ϕ

dr2
+

2

r

dϕ

dr
=

(r2ϕ′)′

r2
= m2

A(ϕ− ϕA) , (5.119)

(prime is derivative wrt r). One can easily see by integrating the last equality (or by substitution) that the
equation is solved by ϕ ∼ e±mAr/r and also by ϕ = ϕA = const. Hence we can write ϕ(r) = ϕA +Ae−mAr/r +
BemAr/r, where A and B are integration constants. To avoid the divergence of ϕ at r = 0 one needs B = −A,
so the solution reduces to

ϕ(r) = ϕA +
A(e−mAr − emAr)

r
(0 < r < r1) , (5.120)

which satisfies the boundary condition dϕ
dr (r = 0) = 0.

In the region r1 < r < rc the field |ϕ(r)| evolves toward larger values with the increase of r. In this regime
the condition |V,ϕ| ≪ |QρAeQϕ| is satisfied. Since Qϕ ≪ 1 for most of the field potentials relevant to dark
energy, one has dVeff/dϕ ≃ QρA in Eq. (5.114). We then find the following solution

ϕ(r) =
1

6
QρAr

2 − C

r
+D (r1 < r < rc), (5.121)
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where C and D are constants.
In the region r > rc the field |ϕ| climbs up the potential hill toward larger values. As long as the field

acquires a sufficient kinetic energy in the thin-shell regime, the l.h.s. of Eq. (5.114) dominates over the r.h.s..
Then the solution outside the body satisfying the boundary condition ϕ(r → ∞) = ϕB is given by

ϕ(r) = ϕB +
E

r
(r > rc). (5.122)

If we take into account a small mass term mB , the solution is given by ϕ(r) ≃ ϕB + Ee−mB(r−rc)/r. In the
following we neglect the contribution of the mass mB as it does not affect the essential part of the discussion.

The coefficients A, C, D, and E are determined by imposing continuity conditions of ϕ(r) and ϕ′(r) for the
three solutions (5.120), (5.121), and (5.122) at r = r1 and r = rc. We then obtain the following field profile
[321]

ϕ(r) = ϕA − 1

mA(e−mAr1 + emAr1)

[
ϕB − ϕA +

1

2
QρA(r

2
1 − r2c )

]
e−mAr − emAr

r
, (5.123)

(0 < r < r1),

ϕ(r) = ϕB +
1

6
QρA(r

2 − 3r2c ) +
QρAr

3
1

3r

−
[
1 +

e−mAr1 − emAr1

mAr1(e−mAr1 + emAr1)

] [
ϕB − ϕA +

1

2
QρA(r

2
1 − r2c )

]
r1
r
, (5.124)

(r1 < r < rc),

ϕ(r) = ϕB −

[
r1(ϕB − ϕA) +

1

6
QρAr

3
c

(
2 +

r1
rc

)(
1− r1

rc

)2

+
e−mAr1 − emAr1

mA(e−mAr1 + emAr1)

{
ϕB − ϕA +

1

2
QρA(r

2
1 − r2c )

}]
1

r
, (5.125)

(r > rc) .

In the original papers of the chameleon mechanism [319, 320], Khoury and Weltman matched two solutions at
r = rc by assuming that the field is frozen in the regime 0 < r < r1. In Ref. [321] this was revisited to match
three solutions (5.120), (5.121), and (5.122) at r = r1 and r = rc.

The radius r1 is determined by the condition that dVeff/dϕ ≈ m2
A [ϕ(r1)− ϕA] in region I equals dVeff/dϕ ≈

QρAe
QϕA ≈ QρA in region II. The condition m2

A [ϕ(r1)− ϕA] = QρA translates into

ϕB − ϕA +
1

2
QρA(r

2
1 − r2c ) =

6QΦc
(mArc)2

mAr1(e
mAr1 + e−mAr1)

emAr1 − e−mAr1
, (5.126)

where Φc = Mc/(8πrc) = ρAr
2
c/6 is the gravitational potential at the surface of the body. Using this relation,

the field profile in the region r > rc is

ϕ(r) = ϕB − 2Qeff
GMc

r
, (5.127)

where

Qeff = Q

[
1− r31

r3c
+ 3

r1
rc

1

(mArc)2

{
mAr1(e

mAr1 + e−mAr1)

emAr1 − e−mAr1
− 1

}]
. (5.128)

The fifth force on a test particle of unit mass and a coupling Q is given by Fϕ = −Q∇ϕ. Hence its amplitude
in the region r > rc is

Fϕ = 2 |QQeff |
GMc

r2
. (5.129)

As long as |Qeff | ≪ 1 it is possible to make the fifth force suppressed relative to the gravitational force GMc/r
2.

From Eq. (5.128) the amplitude of the effective coupling can be made much smaller than |Q| provided that the
conditions ∆rc ≡ rc− r1 ≪ rc and mArc ≫ 1 are satisfied. Hence we require that the body has a thin-shell and
that the field is heavy inside the body for the chameleon mechanism to work.
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Figure 5.4: The inverted effective potential (−Veff) of a chameleon field inside (left) and outside (right) a
spherically symmetric body with constant matter densities ρA and ρB , respectively. The black points represent
the position of the field and show how the field “evolves” with the increase of r. When the body has a thin-shell,
the field is nearly frozen in the region 0 < r < r1 with (rc − r1)/rc ≪ 1. The field rolls down the potential for
r1 < r < rc and it rolls up the potential for r > rc after acquiring a sufficient kinetic energy in the thin-shell
regime (r1 < r < rc).

When the body has a thin-shell (∆rc ≪ rc), one can expand Eq. (5.126) in terms of the small parameters
∆rc/rc and 1/(mArc):

ϵth ≃ ∆rc
rc

+
1

mArc
, (5.130)

where ϵth is the so called thin-shell parameter defined by

ϵth ≡ ϕB − ϕA
6QΦc

. (5.131)

As long as mArc ≫ (∆rc/rc)
−1, this recovers the relation ϵth ≃ ∆rc/rc [319, 320]. The effective coupling (5.128)

is approximately given by

Qeff ≃ 3Qϵth . (5.132)

Under the condition ϵth ≪ 1 one has |Qeff | ≪ |Q|, which means that the smallness of the thin-shell parameter
is crucially important for the compatibility with local gravity constraints. From Eqs. (5.123) and (5.124) the
field values at r = 0 and r = r1 are ϕ(0) ≃ ϕA + 12QΦc/(mArce

mArc) and ϕ(r1) ≃ ϕA + 6QΦc/(mArc)
2. This

shows that, under the condition mArc ≫ 1, the field needs to be very close to ϕA inside the body to avoid that
the field rapidly rolls down the potential because of the heavy mass.

If the field value at r = 0 is away from ϕA, it begins to roll down the potential at r = 0. This is the
“thick-shell” solution, which corresponds to taking the limit r1 → 0 in Eq. (5.128). One has Qeff ≃ Q in this
limit, so that the model does not satisfy local gravity constraints for values of Q of the order of unity. Hence
the body needs to have a thin-shell for the chameleon mechanism to work.

When the spherically symmetric body has a thin-shell, we can place experimental bounds on the thin-shell
parameter ϵth from the possible violation of the equivalence principle (EP). The tightest bound comes from the
solar system tests of weak EP using the free-fall acceleration of Moon (aMoon) and Earth (a⊕) toward Sun [320].
The experimental bound on the difference of two accelerations is given by [323]

2
|aMoon − a⊕|
aMoon + a⊕

< 10−13 . (5.133)
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Applying this constraint to the thin-shell solution, we find that

ϵth,⊕ <
8.8× 10−7

|Q|
. (5.134)

The constraint coming from the violation of strong EP provides a bound ϵth,⊕ ≲ 10−4 [320], which is weaker
than (5.134) for |Q| = O(1).



Chapter 6

Dark energy and linear cosmological
perturbationsa

Most of the previous Chapters explored general properties of dark energy models that are connected to their
background behavior. However, dark energy influences not only the expansion rate of the universe but also the
growth of perturbations, so to this we turn now our attention.

In this Chapter we discuss several advanced topics about linear cosmological perturbations. These include
(i) perturbations for a general dark energy fluid, (ii) perturbations for a dark energy scalar field, and (iii)
perturbations in modified gravity models.

Throughout this Chapter, a prime represents a derivative with respect to N = ln a (not to conformal time
as in previous chapters), unless otherwise specified. For the basics of perturbation theory, see the Lecture Notes
on Cosmology.

6.1 Perturbations for a general fluid
The standard linear perturbation equations for a single fluid and for two fluid cases that we have seen in the
Lecture Notes on Cosmology can be generalized in several ways, such as considering more fluids, interaction
terms, and various level of approximations, but the physics and the mathematics involved are more or less
always the same. The present universe is well described by at least two components, matter and dark energy,
where the latter is completely unknown. It is then useful to derive the equations in a very general case by
assuming a general equation of state w(z) and a general sound speed c2s(z) in a multi-fluid universe. Moreover,
we will also assume that the gravitational field is sourced by the sum of energy densities of both components.
We use the subscript t to refer to total quantities, ρt, Pt, δt etc, and the subscript X for a generic fluid, which
may represent either matter or dark energy. So for perfect fluids we will have two equations for each fluid (for
δ′X and θ′X), two equations for the gravitational field (i.e. for Φ and Φ′), and another one that provides the
relation between Φ and Ψ.

The equations in the following are best obtained by an algebraic manipulator. In this case it is convenient
to start directly with the metric in N = ln a:

ds2 = e2N
[
−(1 + 2Ψ)H−2dN2 + (1 + 2Φ)δijdx

idxj
]
, (6.1)

and work out from the beginning a single mode k, putting Φ(r, a) = Φ(a)eik·r, Ψ(r, a) = Ψ(a)eik·r etc. This
new metric forces a new definition of the first-order four-velocity:

uα =
dxα

ds
=

{
dN

a(1 + Ψ)H−1dN
,

dxi

aH−1dN

}
=

{
H
a
(1−Ψ) ,

vi

a

}
, (6.2)

where of course a = eN and adN = da. It is convenient also to define a new velocity divergence:

θnew =
ik · v
H

=
θold
H

, (6.3)

aAdapted from Amendola & Tsujikawa, Dark Energy. Theory and Observations, CUP 2010.
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For simplicity we drop the subscript “new” but will remind the new definition when necessary.
All the equations can be converted into conformal-time equations by using the rules

d

dN
=

1

H
d

dη
, (6.4)

d2

dN2
=

1

H2

d2

dη2
− dH/dη

H2

d

dη
, (6.5)

and into ordinary time equations by the same rules and replacing η → t and H → H.
If we have many fluids, the total energy-momentum tensor is the sum Tαβ =

∑
i T(i)αβ of the individual

tensors. At the perturbation level this implies that

δT 0
0 = −ρtδt = −

∑
i

ρiδi , (6.6)

ikj(δT
j
0 ) = −(1 + weff)ρtθt = −

∑
i

(1 + wi)ρiθi , (6.7)

δT 1
1 = δT 2

2 = δT 3
3 = c2s,tρtδt =

∑
i

c2s,iρiδi , (6.8)

where the total perturbation variables are given by

δt =
∑
i

Ωiδi , (6.9)

θt =
∑
i

1 + wi
1 + weff

Ωiθi , (6.10)

together with the total equation of state and the sound speed

weff =
Pt
ρt

=
∑
i

Ωiwi , (6.11)

c2s,t =

∑
i c

2
s,iΩiδi

δt
=

∑
i c

2
s,iΩiδi∑
iΩiδi

. (6.12)

Recall that Ωi is defined by Ωi ≡ ρi/ρt.
The total equation of state weff satisfies the following relation

H′

H
= 1 +

H ′

H
= −1

2
− 3

2
weff . (6.13)

The total sound speed simplifies if the i-th component is the only one to cluster (δi ̸= 0) since then cs,t = cs,i.
If that component is also barotropic, i.e. Pi = Pi(ρi), then the adiabatic sound speed is a function of wi given
by

c2s(a),t =
Ṗi
ρ̇i

= wi −
w′
i

3(1 + wi)
. (6.14)

Suppose now all components are barotropic, c2s,i = dPi/dρi. Under which condition is the total fluid barotropic?
If we impose the adiabatic condition,

δρi
ρ′i

=
δρj
ρ′j

→ δi
1 + wi

=
δj

1 + wj
, (6.15)

for different matter components i, j, one can express any δi as δ1(1+wi)/(1+w1), where δ1 corresponds to the
perturbation for one component. Substituting this into Eq. (6.12), we find

c2s,t =

∑
i c

2
s,iΩiδ1(1 + wi)∑
i Ωiδ1(1 + wi)

=

∑
i c

2
s,iρi(1 + wi)∑
i ρi(1 + wi)

=

∑
i(dPi/dρi)ρ̇i∑

i ρ̇i
=
Ṗt
ρ̇t

= weff − w′
eff

3(1 + weff)
. (6.16)
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Hence the total fluid remains barotropic provided that all components satisfy the adiabatic conditions. This
occurs most notably on super-horizon scales for a universe composed of dust and radiation. In general even if
all the fluids are barotropic, the total fluid is not, or in other words Pi = Pi(ρi) does not imply Pt = Pt(ρt).

The perturbation equations for a generic perfect fluid with density contrast δX and velocity divergence θX
are given by (see Lecture Notes on Cosmology)

δ′X = 3(w − c2s)δX − (θX + 3Φ′)(1 + w) , (6.17)

θ′X =

(
3w − 1− w′

1 + w
− H′

H

)
θX +

c2s

λ̂2(1 + w)
δX +

Ψ

λ̂2
. (6.18)

Here we have introduced the quantity

λ̂ ≡ H/k = aH/k , (6.19)

so as to check the dimensional correctness at once. Another advantage is that in real space we can interpret
λ̂−2 as the operator −H−2∇2 while in Fourier space, λ̂ = H/k. In this way the perturbation equations can be
read equivalently in real or Fourier space. Note that the above equations are valid for w ̸= −1. Perturbing
Einstein’s equations, we obtain the following equations

Φ = 3λ̂2
(
1

2
δt +Ψ− Φ′

)
, (6.20)

Φ′ = Ψ− 3

2
λ̂2θt(1 + weff) , (6.21)

where we have used the background equation, 3H2 = 8πGa2ρt. For w = −1 the equations for δX and θX
give rise to the solution δX = θX = 0, which means that the cosmological constant does not fluctuate. The
perturbation equations for δX and θX are generic. For dark energy we would have w = w(a), c2s = c2s(a); for
cold dark matter w = 0, c2s = 0; for radiation w = c2s = 1/3, etc.

Equations (6.17) and (6.18) can be also applied to the total component, replacing the subscript X for
t and w, cs for weff , cs,t. So the problem is composed of two equations for δX , θX , two for δt, θt and two
algebraic relations that couple them through Φ and Ψ. Any non-degenerate combination of four of these will
be mathematically equivalent. These equations are therefore all we need for the general problem of several
uncoupled perfect fluid components.

The (i, j) off-diagonal equations produce an additional equation for Φ and Ψ. In the absence of anisotropic
stress this is simply given by Φ = −Ψ. Using this identity, the gravitational equations for Φ,Φ′ can be written
as

Φ =
3

2
λ̂2[δt + 3λ̂2θt(1 + weff)] , (6.22)

Φ′ = −3

2
λ̂2[δt + θt(3λ̂

2 + 1)(1 + weff)] . (6.23)

It is important to observe that a consequence of the gravitational gauge freedom is that only gauge-invariant
quantities can be compared directly to observations. It is possible to show that a gauge-invariant combination
reduces to [90]

∆t ≡ δt + 3λ̂2θt(1 + weff) , (6.24)

in any gauge in which the (0, i) elements of the perturbed metric are set to zero. These elements vanish for any
observer at rest with respect to the coordinate frame and this is indeed what any observer assumes implicitly.
The combination ∆t is therefore the quantity to confront with observations. This reduces to the familiar δt
only at small scales. It is therefore only in this limit that δt can be directly compared to the observed density
contrast (at least in principle: in practice, there are a number of obstacles such as the problems of bias, of
non-linearities, of redshift distortions). From Eq. (6.22) we see that ∆t essentially measures the total potential
Φ. Generally speaking, we will discuss the evolution of δt only in the limit of λ̂ ≪ 1. When this limit is not
respected (e.g., when discussing CMB, ISW, lensing), we stick with Φ and Ψ.
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At small scales λ̂≪ 1 and for vanishing σ, the equations reduce to

δ′′m +
1

2
(1− 3weff)δ

′
m =

Φ

λ̂2
, (6.25)

Φ =
3

2
λ̂2δt =

3

2
λ̂2(Ωmδm +ΩDEδDE) , (6.26)

c2s,t = c2s,DE

[
1− 3λ̂2Ωmδm

2Φ

]
. (6.27)

If dark energy does not cluster then we have δDE = 0, so that Φ = 3λ̂2Ωmδm/2 from Eq. (6.26). Equation (6.27)
shows that in this case the total sound speed cs,t vanishes. From Eq. (6.25) it follows that

δ′′m +
1

2
(1− 3ΩDEwDE)δ

′
m − 3

2
Ωmδm = 0 , (6.28)

where we have used weff = ΩDEwDE. This equation is completely fixed by assigning a wDE(a) given by the
model and the present value Ω

(0)
m = 1 − Ω

(0)
DE from which Ωm(a) = Ω

(0)
m a−3/[Ω

(0)
m a−3 + (1 − Ω

(0)
m )a−3(1+ŵDE)],

with

ŵDE(N) =
1

N

∫ N

0

wDE(Ñ) dÑ . (6.29)

In some simple cases an analytical solution in terms of hypergeometric functions can be found [476]. It is often
more useful however to work with an approximate solution. By using the growth rate parameter f defined as
f = δ′/δ, Eq. (6.28) can be written in the form

f ′ + f2 +

[
1

2
− 3

2
wDE(1− Ωm)

]
f =

3

2
Ωm . (6.30)

By using the Friedmann equation 3H2 = 8πG(ρm + ρDE) together with the continuity equation ρ̇DE + 3H(1 +
wDE)ρDE = 0, we obtain

Ω′
m = 3wDE(1− Ωm)Ωm . (6.31)

Combining Eqs. (6.30) and (6.31), it follows that

3wDEΩm(1− Ωm)
df

dΩm
+

[
1

2
− 3

2
wDE(1− Ωm)

]
f + f2 =

3

2
Ωm . (6.32)

Substituting f = Ωγm into Eq. (6.32), we find that [477]

3wDEΩm(1− Ωm) (lnΩm)
dγ

dΩm
− 3wDE

(
γ − 1

2

)
Ωm +Ωγm − 3

2
Ω1−γ
m + 3wDEγ − 3

2
wDE +

1

2
= 0 . (6.33)

If the variation of wDE(z) is slow so that the condition |dwDE/dΩm| ≪ 1/(1 − Ωm) is satisfied, we obtain the
following estimate for γ [478]:

γ =
3(1− wDE)

5− 6wDE
+

3

125

(1− wDE)(1− 3wDE/2)

(1− 6wDE/5)2(1− 12wDE/5)
(1− Ωm) +O((1− Ωm)2) . (6.34)

Note that the ΛCDM model corresponds to γ ≃ 6/11 ≃ 0.545.
Another fit for γ is provided by [479]

γ = 0.545 + 0.05[1 + wDE(z = 1)] . (6.35)

In Fig. 6.1 we show the behavior of the perturbation growth and the comparison with the fit (6.35).
It is useful to remark that while γ does not depend strongly on wDE, the rate f = Ωγm is significantly affected

by wDE. At any given z, in fact, the dark energy component is more important for higher wDE (assuming a
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Figure 6.1: Growth rate f = δ′m/δm for wDE = −1 (full line) and wDE = −0.6 (dotted line) obtained by
numerical integration compared to the approximation (6.35) (thin lines), fixing Ω

(0)
m = 0.3.

constant wDE for simplicity). Larger ΩDE means smaller Ωm and hence f(z) decreases with increasing wDE,
i.e. structures grow more slowly. If we assign the same initial amplitude to δm, say at z ≈ 1100 as set by CMB
observations, then we conclude that the present amplitude is smaller for larger wDE. On the other hand we
may instead know the present matter amplitude δm, for instance because we measure it through weak lensing
or by estimating the bias. In this case we want our model to reproduce today’s observations and consequently
we normalize δm to today. This would imply that at any given z the linear fluctuation amplitude δm(z) was
higher for larger wDE. These considerations have an important impact on the estimates of the abundance of
collapsed objects.

Finally, it is also important to consider the limits of the Ωγm parametrization. Since Ωm is usually contained
between 0 and 1, f cannot pass from values larger than unity to values below. This rigidity in the parametrization
could be a problem for the cases in which f > 1 in the past, cases that we encounter in coupled dark energy
[480].

6.2 Perturbations of a scalar field
As we have seen, many models describe dark energy as a scalar field. In this section we derive perturbation
equations for a quintessence scalar field. For generality, we include baryons and dark matter and assume explicit
non-gravitational couplings between the field and the two matter components (i.e. coupled quintessence).
Perturbations for scalar fields with non-canonical Lagrangians have been studied in e.g., Refs. [254, 482, 483,
484, 340].

Our dark energy model is therefore characterized by a general scalar-field potential V (ϕ) and general cou-
plings Qi(ϕ) to matter. The conservation equations with interacting terms for the field ϕ, cold dark matter (c),
and baryons (b) are:

∇µT
µ
(c)ν = Qc(ϕ)T(c)∇νϕ , (6.36)

∇µT
µ
(b)ν = Qb(ϕ)T(b)∇νϕ , (6.37)

∇µT
µ
(ϕ)ν = −[Qc(ϕ)T(c) +Qb(ϕ)T(b)]∇νϕ , (6.38)

where the coupling functions Qb,c(ϕ) depend on the species and Ti is the trace of the energy-momentum tensor of
species i. Since radiation has a zero trace it is uncoupled to ϕ. As we have seen, this coupling form is motivated,
through a conformal transformation, from Brans-Dicke gravity with species-dependent interaction. One could
generalize the coupling in many ways, but this scalar-tensor form is sufficiently general for our purposes. The



CHAPTER 6. DARK ENERGY AND LINEAR COSMOLOGICAL PERTURBATIONSf 72

couplings are in general constrained by a number of observations. The baryon coupling in particular is severely
constrained by local gravity experiments, unless the chameleon mechanism [319, 320] is at work. Here for
generality we leave the couplings completely free.

As we have already seen in Sec. 4.1, the field equations in the flat FLRW background are given by

ϕ̈+ 3Hϕ̇+ V,ϕ = −(Qcρc +Qbρb) , (6.39)

ρ̇c + 3Hρc = Qcρcϕ̇ , (6.40)
ρ̇b + 3Hρb = Qbρbϕ̇ , (6.41)
ρ̇r + 4Hρr = 0 , (6.42)

3H2 = ρϕ + ρc + ρb + ρr , (6.43)

where we have used the unit κ2 = 1. Sometimes the coupling constants βc =
√
3/2Qc and βb =

√
3/2Qb are

introduced instead of Qc and Qb to simplify the background equations [17].
To study the perturbations we use the perturbed metric (6.1). In the following we neglect the contribution

of radiation because it is unimportant when we discuss the perturbations after decoupling. If we define

uµ ≡ ϕ,µ
|gαβΦ,αϕ,β |1/2

, ρϕ ≡ −1

2
gαβϕ,αϕ,β + V , Pϕ ≡ −1

2
gαβϕ,αϕ,β − V , (6.44)

we realize that the energy-momentum tensor of the scalar field can be written as

T(ϕ)µν = (ρϕ + Pϕ)uµuν + gµνPϕ . (6.45)

In fact, the energy density and the pressure can be constructed as ρϕ = Tµνu
µuν and Pϕ = Tµνh

µν with the
help of the projection operator hµν = gµν + uµuν . We then obtain the following perturbations (notice here we
have H not H)

δρϕ = H2(ϕ′φ′ − ϕ′2Φ) + V,ϕφ , (6.46)
δPϕ = H2(ϕ′φ′ − ϕ′2Φ)− V,ϕφ , (6.47)

θϕ ≡ −
iki(δT

i
0(ϕ))

(1 + wϕ)ρϕ
= λ̂−2 φ

ϕ′
, (6.48)

where V,ϕ ≡ dV/dϕ and

φ ≡ δϕ , (6.49)

denotes the field fluctuation. We also define the field density contrast

δϕ ≡ φ/ϕ . (6.50)

The sound speed is therefore

c2s,ϕ =
δPϕ
δρϕ

=
H2(ϕ′φ′ − ϕ′2Φ)− V,ϕφ

H2(ϕ′φ′ − ϕ′2Φ) + V,ϕφ
. (6.51)

If we put ourselves in the dark energy rest frame (that is, if we choose the gauge where dark energy is at rest),
we have δϕ = 0 and hence φ = 0. Then we see that the sound speed of the scalar-field rest frame equals unity.

We define also the dark energy effective mass

m2
ϕ ≡ d2V

dϕ2
, (6.52)

together with its dimensionless version

m̂2
ϕ ≡ m2

ϕ/H
2 . (6.53)

Notice that in general mϕ is a function of ϕ. The mass becomes a constant only near the bottom of a harmonic
potential. We also introduce the dimensionless potential

V̂ ≡ V/H2 , (6.54)
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which is at most of order unity. Perturbing the Einstein equations and the conservation equations, we obtain
the linear perturbation equations below.

The perturbation equations for perfect fluids with generic equations of state wi = Pi/ρi, couplings Qi, and
sound speeds cs,i are

δ′i = 3(wi − c2s,i)(1 + 3Qiϕ
′)δi − (θi + 3Φ′)(1 + wi) + (1− 3wi)(Qiφ

′ +Qi,ϕϕ
′φ) , (6.55)

θ′i = −θi
2

[
1− 6wi − 3weff +

2w′
i

1 + wi
+ 2Qi(1− 3wi)ϕ

′
]

+
1

λ̂2

[
c2s,i

1 + wi
δi +Ψ+

Qi(1− 3wi)

1 + wi
φ

]
, (6.56)

where Qi,ϕ ≡ dQi/dϕ. Note that these equations reduce to Eqs. (6.17) and (6.18) in the limit Qi → 0. For
the models in which the equation of state is given by the form wi(ρ) instead of wi(a) (e.g., the Chaplygin gas
model), the above equations are still valid with the substitution c2s,i → δP/δρ = w−w′/[3(1+w)]. The equation
for the scalar field coupled to several fluids with equations of state Pi = wi(a)ρi and sound speeds cs,i is

φ′′ +

(
2 +

H′

H

)
φ′ + (λ̂−2 + m̂2

ϕ)φ− ϕ′(3Φ′ −Ψ′) + 2V̂,ϕΨ

= −3
∑
i

Qi(1− 3c2s,i)Ωiδi − 6
∑
i

Qi(1− 3wi)ΩiΨ− 3
∑
i

(1− 3wi)Qi,ϕΩiφ . (6.57)

This equation for Qi = 0 can be obtained also directly from the continuity equation (6.55) by making use of
the perturbation variables in Eqs. (6.46)-(6.48) and putting δi = δϕ.

Finally the equations for metric perturbations are

Φ =
λ̂2

2

[
2V̂Ψ+ φV̂,ϕ + ϕ′(3φ+ φ′) + 3

∑
Ωi

{
δi + 3(1 + wi)λ̂

2θi

}]
, (6.58)

Φ′ =
1

2

[
2Ψ− φϕ′ − 3λ̂2

∑
(1 + wi)θiΩi

]
, (6.59)

plus the usual equivalence Φ = −Ψ in the absence of anisotropic stress.
Finally, in the uncoupled case with Φ = −Ψ, the field perturbation equation (6.57) reduces to

φ′′ +

(
2 +

H′

H

)
φ′ + (λ̂−2 + m̂2

ϕ)φ− 4ϕ′Φ′ − 2V̂,ϕΦ = 0 . (6.60)

Qualitatively, it is clear that one expects the scalar field to undergo damped oscillations for scales λ̂ < 1/m̂ϕ.
On these scales the scalar field will not contribute to the total gravitational potential and can be approximated
as homogeneous. On larger scales the behavior depends on the mass term m̂ϕ. For m̂ϕ < 1 (i.e. mϕ < H)
both the background field ϕ and its perturbation φ evolve slowly. Then we can approximate V,ϕ ≃ −3H2ϕ′.
Neglecting the ϕ′-dependent terms in Eq. (6.46), we obtain the following relation

Ωϕδϕ ≃ V,ϕφ/(3H
2) ≃ −ϕ′φ . (6.61)

As a further approximation, we can take φ constant during slow-roll and approximate ϕ′ ≃ [3(1+wϕ)Ωϕ]
1/2 for

wϕ near −1. If wϕ remains constant then the field contribution Ωϕδϕ to the total perturbation δt increases in
proportion to Ω

1/2
ϕ approximately.

For m̂ϕ > 1 (i.e. mϕ > H) the perturbations oscillate even on large scales. In this case, however, the
background field will oscillate as well and the effective equation of state will depart from the one corresponding
to dark energy. The field can now act indeed as dark matter and this case has to be analyzed separately.

6.3 From dark energy to dark force: the quasi-static limit

Let us now assume Φ = −Ψ and derive the perturbation solutions in the sub-horizon limit (small scales, λ̂≪ 1).
The gravitational equations are given by

Φ =
λ̂2

2

[
3
∑

Ωiδi + φV̂,ϕ + ϕ′(3φ+ φ′)
]
, (6.62)

Φ′ = −1

2
φϕ′ − Φ . (6.63)
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In the first equation we have used λ̂2V̂ ≲ λ̂2 ≪ 1. Inserting Eqs. (6.62) and (6.63) into Eq. (6.57) and taking
the small-scale limit, we obtain

φ′′ +

(
2 +

H′

H

)
φ′ +

[
λ̂−2 + m̂2

ϕ + 2ϕ′2 + 3
∑

(1− 3wi)ΩiQi,ϕ

]
φ ≃ −3

∑
Qi(1− 3c2s,i)Ωiδi , (6.64)

where the sum is on the coupled components. Suppose now that (a) we can neglect the term 2ϕ′2φ since
|ϕ′2| (≲ 1) is much smaller than λ̂−2 and (b) we can assume also that the field potential is flat enough and its
coupling is almost constant so that m̂2

ϕ and the term in Qi,ϕ are negligible with respect to λ̂−2 (later we remove
some of these approximations). In the limit of very small λ̂ the field will undergo fast oscillations, forced by the
term on the r.h.s. of Eq. (6.64). Averaging over the rapid oscillations of φ, we obtain

⟨φ⟩ ≃ −3λ̂2
∑

Qi(1− 3c2s,i)Ωiδi . (6.65)

Since the field is oscillating very fast, we must see this equation as giving the average of φ over many oscillations.
This is the crucial difference between coupled and uncoupled fields concerning perturbations. In the coupled
case the perturbed field φ does not oscillate around zero but acquires a non-zero average proportional to the
couplings.

Since φ is of order λ̂2, Eq. (6.62) reduces to the usual Poisson equation

Ψ = −3

2
λ̂2
∑
i

Ωiδi . (6.66)

Now, if we substitute ⟨φ⟩ into Eq. (6.56), we can define a new potential acting on the j-th component (which
includes the effect of the coupling Qj)

Ψ̂j ≡ Ψ+
Qj(1− 3wj)

1 + wj
⟨φ⟩

= −3

2
λ̂2
∑
i

Ωiδi

[
1 + 2QiQj

(1− 3c2s,i)(1− 3wj)

1 + wj

]
. (6.67)

Assuming for instance two matter components, CDM and baryons (subscripts c, b), we have a new potential on
CDM:

Ψ̂c = −3

2
λ̂2
[
Ωbδb (1 + 2QbQc) + Ωcδc (1 + 2Q2

c)
]
. (6.68)

In real space, this equation becomes

∇2Ψ̂c = 4πGbcρbδb + 4πGccρcδc , (6.69)

where we have defined

Gij = Gγij , γij ≡ 1 + 2QiQj . (6.70)

Analogous equations hold for the baryon force equation.
We can now write down the sub-horizon linear equations for CDM and baryons. Since both Φ and φ are of

the order of λ̂2, putting w = c2s = 0 in Eqs. (6.55) and (6.56), we have

δ′c = −θc , (6.71)

θ′c = −1

2
(1− 3weff + 2Qcϕ

′)θc + λ̂−2Ψ̂c , (6.72)

δ′b = −θb , (6.73)

θ′b = −1

2
(1− 3weff + 2Qbϕ

′)θb + λ̂−2Ψ̂b , (6.74)

Ψ̂c = −3

2
λ̂2(γbcΩbδb + γccΩcδc) , (6.75)

Ψ̂b = −3

2
λ̂2(γbbΩbδb + γbcΩcδc) . (6.76)
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Differentiating Eq. (6.71) with respect to N and using Eq. (6.72), we obtain

δ′′c +
1

2
(1− 3weff + 2Qcϕ

′)δ′c −
3

2
(γccδcΩc + γbcδbΩb) = 0 . (6.77)

Similarly the equation for δb is given by

δ′′b +
1

2
(1− 3weff + 2Qbϕ

′)δ′b −
3

2
(γbbδbΩb + γbcδcΩc) = 0 . (6.78)

These equations generalize the previous uncoupled equations.
Since baryons and dark matter obey different equations, they will develop a bias already at the linear level.

A simple result can be obtained in the case where one component dominates. Assuming Ωb ≪ Ωc, in fact,
the baryon solution will be forced by the dominating CDM component to follow asymptotically its evolution.
Defining the growth rate of δc as f ≡ δ′c/δc and putting δb = bδc with b = constant, we obtain the coupled
equations

f ′ + f2 +
1

2
(1− 3weff + 2Qcϕ

′)f − 3

2
γccΩc = 0 , (6.79)

f ′ + f2 +
1

2
(1− 3weff + 2Qbϕ

′)f − 3

2b
γbcΩc = 0 , (6.80)

from which by subtraction

b =
3γbcΩc

3γccΩc − 2(Qc −Qb)ϕ′f
. (6.81)

Notice that all terms on the r.h.s. are in general function of time. This shows that a linear bias of gravitational
nature develops whenever Qc ̸= Qb. This bias extends to all sub-horizon scales and therefore is distinguishable
from the hydrodynamical or non-linear bias that takes place in collapsed objects.

The growth rate f can be found numerically for any model by integrating (6.79). A simple analytical solution
exists if weff , Qc,Ωc, ϕ

′ are constants (we are neglecting the baryons here):

f = −1

4
(1− 3weff + 2Qcϕ

′)± 1

4

√
(1− 3weff + 2Qcϕ′)2 + 24γccΩc . (6.82)

This particular case occurs indeed on stationary solutions, e.g. the solution (d) in Section 4.1. In a pure matter
cosmology we recover the standard solution f = 1,−3/2 for weff = Qc = 0 and Ωc = γcc = 1. It is interesting
to derive the limit of strong coupling for scaling solutions. This is obtained by the condition Q ≫ λ (λ is the
potential slope) for the point (d) of Table 8.1. Then we have

ϕ′ =
√
6x1 = 3/(Qc + λ) . (6.83)

Inserting the values of ϕ′, weff ,Ωc for the point (d) into Eq. (6.82), we find that the growing mode solution
corresponds to

f ≃
√
3Qcλ , for Qc ≫ λ. (6.84)

This diverges for Qc → ∞, which is due to the fact that in the limit of strong coupling the correction 1 + 2Q2
c

to gravity blows up. This shows that one can have fast-growing solutions in an accelerating universe, even in
the limit that weff → −1. On the other hand this puts strong limits to the viability of scaling solutions since a
fast growth during acceleration produces an excessive integrated Sachs-Wolfe effect [485].

Another simple case is the ϕMDE scaling, i.e. the solution (a) in Sec. 4.1. Applying Eq. (6.82) to this case
we obtain f = 1 + 2Q2

c , which is faster than the standard CDM growth by 2Q2
c .

Finally, on accelerated but not scaling solutions and for small values of Q, it is also possible to find approx-
imate solutions in the traditional form f = Ωγm, where [486]

γ ≈ 0.55(1− 2.6Q2
c) . (6.85)
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6.4 The Yukawa potential

Let us now consider the mass of the dark energy field, previously neglected. If λ̂−2 is not much larger than
m̂2 = m̂2

ϕ, Eq. (6.65) in Fourier space becomes (in this section we assume that dark energy is coupled to a single
matter component, subscript m, or, equivalently, that has a universal coupling to all fields):

φ = −3Y (k)λ̂2QΩmδm , (6.86)

where

Y (k) ≡ k2

k2 + a2m2
, (6.87)

and m = m̂H. If we substitute Eq. (6.86) into Eq. (6.56), we find that the effective potential is given by
(neglecting the baryons)

Ψ̂ = −3

2
λ̂2Ωmδm[1 + 2Q2Y (k)]. (6.88)

As we have seen in (4.22), in coupled DE the mass varies with the field ϕ as

M(ϕ) = ρma
3 =M0e

∫
Q dϕ . (6.89)

Now, let us write down the present density in real space for a particle of mass M located at the origin as
ρ
(0)
m =MδD(0). The density contrast in Fourier space is

ρm =M

∫
d3xe−ik·xδD(0) =M (6.90)

(one could consider a factor of V −1 to make the density dimensionally correct, but the factor of V is irrelevant
and would cancel later on, so one can consider a unitary volume). So in “empty” space, i.e. for ρm ≫ ρt, we
have:

Ωmδm =
ρm
ρt

=
κ2a3ρm
3H2a

=
κ2M(ϕ)

3H2a
, (6.91)

It turns out then that the potential originated by a dark matter particle in the linear regime is given by (we
put back a k subscript for clarity)

Ψ̂k = −3

2
Ωmδmλ̂

2[1 + 2Q2Y (k)] = −4πGM(ϕ)

(
1

k2
+

2Q2

k2 + a2m2

)
1

a
, (6.92)

from which we can define an effective Geff in Fourier space:

Geff = G

(
1 +

2Q2k2

k2 + a2m2

)
. (6.93)

Under the Fourier transformation

Ψ̂(x) =
1

(2π)3

∫
eik·x Ψ̂k d

3k , (6.94)

we have, using the angular integral∫
eikx cos θ sin θdθdϕ = 4π

sin kx

kx
, (6.95)

the result

Ψ̂(x) = −2GM(ϕ)

πa

∫ ∞

0

sin kx

kx

(
1 +

2Q2k2

k2 + a2m2

)
dk

= −2GM(ϕ)

πr

∫ ∞

0

sin y

y

(
1 +

2Q2y2

y2 +m2r2

)
dy , (6.96)
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where r = ax is the physical coordinate. The last integral gives finally the Yukawa potential

Ψ̂(r) = −GM(ϕ)

r

(
1 + 2Q2e−mr

)
. (6.97)

that replaces Newton’s potential in presence of a massive coupled scalar field. Notice that in general both Q and
m can be function of ϕ and therefore of space and time. The same Yukawa correction applies to f(R) gravity
(Q = −1/

√
6). One sees therefore that the interaction range is given by m−1.

When inserted in the perturbation equations, the Yukawa potential (6.92) will induce a k-dependence in the
growth factor. This could be a way to test for modified gravity.



Chapter 7

Non-linear perturbations: simplified
approaches

Quick summary
• Strongly non-linear fluctuations are difficult to handle and normally one has to employ powerful numerical

simulations

• We first introduce the Zel’dovich approximation, which allows to follow in an almost analytical way the
initial stages of structure formation beyond linearity

• Some more analytical results can be obtained assuming a spherical collapse. On scales of galaxies and
clusters, Newtonian physics is sufficient

• Spherical collapse gives a simple but surprisingly accurate expression for the density of collapse and of
virialization

• Using the so-called Press-Schechter formalism, one can approximately predict the number density of
collapsed object as a function of their mass, to be compared to real data or simulations

• In this entire chapter we can safey use Newtonian gravity since we deal with scales well smaller than the
horizon.

7.1 The Zel’dovich approximation
So far we have only investigated linear perturbations. Stars, galaxies and clusters, however, are certainly not
linear objects. For instance, the density contrast of a typical cluster of galaxies can be δ > 200. Going from the
linear treatment to the non-linear one is however generally very difficult. Even if some important step forward
can be achieved by going to higher order in perturbation theory, ultimately one needs large N-body simulations.

A popular way to make progress in non-linear evolution before ressorting to numerical methods is to adopt
the Zel’dovich approximation. The idea is to follow the movement of particles under the action of gravity until
they hit each other and create a (fomally) infinite density. This should approximate the behavior of particles in
a N-body simulation at least at some early time. Consider two sets of comoving coordinates. One, x0, represents
the coordinates of particles in an unperturbed Universe. Since they are comoving, they do not depend on time.
The other, x(t), in a perturbed one. Initially, we perturb the position of each particle by a vector field s, called
displacement. Then we assume that at some later time t the position of the particles is given by

x(t) = x0 + g(t)s(x0) (7.1)

This means we assume the position at time t only depends on the initial displacement through a time (and not
space) dependent function, still to be defined. The density of the particle at any given time is ρ(x, t) in the
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perturbed Universe and ρ0(t) in the unperturbed one (which just follow the cosmic expansion, ρ0 ∼ a−3). Since
the particle number density dn = ρdV must be conserved, we have

ρ(x, t)d3x = ρ0(t)d
3x0 (7.2)

which implies

ρ(x, t) = ρ0(t)

∣∣∣∣ ∂x∂x0

∣∣∣∣−1

(7.3)

Let us assume now, without loss of generality, that the coordinates have been chosen along the direction of the
eigenvectors of the deformation tensor

dij ≡ − ∂si
∂x0,j

(7.4)

In this case dij is diagonalized and therefore∣∣∣∣ ∂x∂x0

∣∣∣∣ = ∣∣∣∣I + g(t)
∂s(x0)

∂x0

∣∣∣∣ = |δij − g(t)dij | = (1− gλ1)(1− gλ2)(1− gλ3) (7.5)

where I and δij represent the identity matrix and λi are the three eigenvalues of dij (we show below that the
eigenvalues are real). This means

ρ(x, t) =
ρ0(t)

(1− gλ1)(1− gλ2)(1− gλ3)
(7.6)

Before we comment on this important expression, let us understand the meaning of g and s. Expanding (7.6)
for small gλi, we find

ρ(x, t) ≈ ρ0(t)(1 + g(t)(λ1 + λ2 + λ3) = ρ0(t)(1 + g(t)Tr(dij)) (7.7)

and therefore

δ(t) ≡ ρ(x, t)− ρ0(t)

ρ0(t)
= −g(t) ∂si

∂x0,i
= −g(t)∇x0

s(x0) (7.8)

This expression, being a linearized one, must coincide with the growth law, δ(t) = G(t)δ0, where G(t) is the
growth function we have already evaluated for various cases. Then we see that we should identify g(t) with G(t)
and

−∇x0s(x0) = δ0 (7.9)

Now, from the Poisson equation and the Friedmann equation we have

∇2Ψ = 4πρmδ =
3

2
a2H2ΩmG(t)δ0 (7.10)

where the factor a2 arises because we are adopting comoving, rather than physical, coordinates. Then we see
that

δ0 =
2

3a2H2ΩmG
∇2Ψ (7.11)

and therefore

s(x0) = − 2

3a2H2ΩmG
∇Ψ (7.12)

With this identification of s, the deformation tensor dij is symmetric and therefore its three eigenvalues are
real. Therefore, we have completely specified the prescription (7.1): g(t) is the growth factor, and the initial



CHAPTER 7. NON-LINEAR PERTURBATIONS: SIMPLIFIED APPROACHES 80

Figure 7.1: Formation of pancakes in a simulation based on the Zel’dovich approximation (from S. Shandarin,
arXiv:0912.4520).

displacement field s is essentially the gradient of the gravitational potential, i.e. the force acting on the particles.
In this way, one can run a very cheap N -body simulation: first, take the linear power spectrum at some early
epoch for the model you want to simulate; second, convert the power spectrum for δ into a power spectrum for Ψ
using Poisson equation in Fourier space; third, create a real space realization of this spectrum by overimposing
sinusoidal oscillations with amplitude given by the spectrum and random phases; fourth, put particles on a
regular grid; fifth, evaluate the displacement field by evaluating at every grid point (7.12); finally, move the
particles out of their initial grid point by using (7.1).

To appreciate strenghts and limits of this technique, let us now come back to Eq. (7.6). Since g(t) is a
growing function (we discard the decaying mode, if any), ρ(x, t) will develop a singularity as soon as one the
largest λi is positive. This means that the particle will move primarily along the eigenvector associate to maxλi
and form regions of high density on the plane orthogonal to this direction: in other words, particle will tend to
form planar structures, called pancakes (or blinis in the original Russian) by Zel’dovich, clearly visible in Fig.
(7.1). After this singularity, the approximation will no longer be valid. In reality, is already quite surprising
that the prescription (7.1) holds quite well beyond the linear regime!

Once the pancakes have been reached, one might assume that the particles “stick” onto, or oscillate around,
the planar regions by friction or some hydrodynamic mechanism, and then continue flowing along the planes
reaching the edges (called filaments) and finally slide along the filaments towards halos from which, in turn,
galaxies and clusters will form. This is indeed qualitatively what is seen in full N-body simulations. Most of
the current codes actually exploit the Zel’dovich approximation to speed up the calculations during the earliest
stages at z ≫ 1.

7.2 Spherical collapsea

After the formation of pancakes, the Zel’dovich approximation is no longer viable, although it can be extended
through second-order schemes or ad hoc prescriptions. There is however a way to get, on a first approximation
which however turns out to be surprisingly accurate, an estimate of an important observable, namely how many
objects form (i.e., collapse into a virialized structure) for a given mass. This aproximation relies on sphericality
and Gaussianity. The idea is first to find the value of the density contrast in the linear approximation at
which a spherical perturbation collapse and virializes and then, find the fraction of the Gaussian distribution
of perturbations that are above this δ collapse value. This fraction corresponds to the fraction of perturbations
that form structures for a given mass.

For scales at which Newtonian thery applies, a shell of matter at distance R from the center of a spherical
overdensity with uniform density ρ moves according to the Newtonian force law

d2R

dt2
= −GM(R)

R2
= −4

3
πGρR , (7.13)

where M(R) = 4πρR3/3 is the constant mass inside the shell. Since for pressureless matter the background
aAdapted from Amendola & Tsujikawa, Dark Energy. Theory and Observations, CUP 2010.
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density scales as ρ0 = (3M(R0)/4π)(R0a(t))
−3, where R0 is the initial size of the perturbation, we can define

the density contrast as

δ =

(
a(t)R0

R

)3

− 1 , (7.14)

inside the shell and δ = 0 outside. The crucial assumption here is that δ is a step, or top-hat, function, which
allows in fact to cancel all spatial derivatives. Replacing R with δ, the equation for δ in our time variable N is
then:

δ′′ +

(
1 +

H′

H

)
δ′ − 3

2
Ωmδ =

4

3

δ′2

1 + δ
+

3

2
Ωmδ

2 . (7.15)

Multyiplying Eq. (7.13) on both sides by 2dR/dt the equation can be integrated once as(
dR

dt

)2

=
2GM

R
− C , (7.16)

where C is an integration constant. This is the cycloid equation, whose solution for C > 0 can be given
parametrically as R = GM(1− cos τ)/C and t = GM(τ − sin τ)/C3/2 where τ ∈ (0, 2π). Substituting in δ and
putting a(t) = a0(t/t0)

2/3 we obtain in the Einstein-de Sitter case:

δ =
9

2

(τ − sin τ)2

(1− cos τ)3
− 1 , (7.17)

δL =
3

5

[
3

4
(τ − sin τ)

]2/3
, (7.18)

where δL (> 0) is the solution of the linearized equation, i.e. the left-hand-side of Eq. (7.15), normalized so that
for τ → 0, δL ≈ δ. Note that a0, t0 are chosen so that δ(τ = 0) = 0. It is convenient to use δL as a bookkeeping
device: we express the behavior of δ as a function of δL instead of the parameter τ . A similar solution exists
for an underdensity δL < 0. We have assumed a constant mass M(R): this implies that our analysis is valid
only until shell-crossing occurs. As one expects, the radius R first increases (a small perturbation expands with
the cosmological expansion), reaches a turnaround point and then decreases to zero (the perturbation collapses
under its own gravity). The final singular phase is of course unphysical because the dust assumption will fail
at some high density, non-radial fluctuations will develop and even the dark matter collisionless component will
undergo the so-called “violent relaxation” mechanism and will set into virial equilibrium.

The main result we get from this model is the critical or collapse value δcoll of the linear fluctuation δL
that is reached at the time of collapse. This quantity is of cosmological relevance because it is used in the
Press-Schechter theory [516, 517] as a first approximation to the epoch of galaxy formation and to calculate the
abundance of collapsed objects, as we will discuss below. It can be seen from Eq. (7.18) that when τ = 0 the
perturbations are zero, then δ reaches a turnaround at τ = π (for which δT ≡ δ(π) = (3π/4)2 − 1 ≈ 4.6 and
δL ≈ 1.063) and finally for τ = 2π the overdensity δ (but of course not δL) becomes singular. This singularity
occurs when

δL = δcoll = (3/5)(3π/2)2/3 ≈ 1.686 , (7.19)

and it takes exactly twice as much time as for the turnaround. Notice that this value is independent of time: a
spherical perturbation in the Einstein-de Sitter universe collapses to a singularity whenever the linear density
contrast equals 1.686. For other models, however, δcoll depends on time. An approximation for dark energy
with constant wDE in flat space is (Weinberg and Kamionkowski, MNRAS 341, 2003, 251)

δcoll(z) = 1.686 [1 + α(wDE) log10 Ωm(z)] , (7.20)
α(wDE) = 0.353w4

DE + 1.044w3
DE + 1.128w2

DE + 0.555wDE + 0.131 . (7.21)

One can define other phenomenologically interesting epochs that are sometimes used: the epoch of non-
linearity (δ = 1, corresponding to δL ≈ 0.57) and the epoch of expected virialization. The latter is defined to
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correspond to the instant in which the kinetic energy K is related to the gravitational potential energy U by
the condition

K =
R

2

∂U

∂R
. (7.22)

However, it is by no means obvious that this condition is enough to realize virialization, especially when dark
energy is present. For an inverse-power potential (U ∝ −1/R), the virialization implies K = −U/2. The radius
and the density of the perturbation at virialization can be calculated by assuming conservation of energy at
turnaround (when the kinetic energy vanishes; subscript T ) and at a virialization epoch tV when the kinetic
energy satisfies KV = −UV /2, i.e.

UT = UV +KV = UV /2 . (7.23)

Since for a uniform sphere U = −3GM/5R (and remembering once again we are assuming M = constant),
we obtain the relation RV = RT /2. Hence the virialized radius is half the turnaround radius. The density inside
this radius turns out to be δV ≈ 178 and the epoch of this occurrence is very close to the final collapse time. A
numerical fit for wDE = constant models in flat space gives (Weinberg and Kamionkowski, MNRAS 341, 2003,
251)

δV ≈ 178[1 + b1θ
b2(z)] , (7.24)

θ =
1− Ωm(z)

Ωm(z)
, (7.25)

b1 = 0.399− 1.309(|wDE|0.426 − 1) , (7.26)
b2 = 0.941− 0.205(|wDE|0.938 − 1) , (7.27)

if z is the collapse redshift.
It is difficult to go much beyond this kind of phenomenological parametrization. A full understanding of

non-linear physics in dark energy would require extensive N -body simulations coupled to lattice simulations of
scalar fields, a technical feat which is still largely to be explored.

7.3 The mass function of collapsed objectsb

The main reason why it is worthwhile to discuss the abstract phenomenon as a “spherical collapse” is that
the critical value δcoll and the virial radius RV (or rather the mass contained within that radius) enter the
Press-Schecther (PS) formula for the abundance of virialized objects. The main idea behind the PS formula is
that we can estimate the number of collapsed objects formed in a random Gaussian field by simply counting at
any given time how many regions have an overdensity above the collapse threshold given by δcoll.

Suppose at some redshift z we smooth a random Gaussian field of density fluctuations over cells of radius
R, each containing on average the mass M = 4πR3ρ/3 with ρ(z) the background density. Since the smoothing
is a linear operation, if the field is Gaussian then also the density contrast δ in the cells will be distributed
as a Gaussian probability distribution function with variance σ2

M (z). Suppose that all the cells with δ > δcoll
undergo collapse and virialization. The fraction of collapsed regions (i.e. the fraction of space containing objects
of mass larger than M) will be then

p(M, z)|δ>δcoll =
1

σM (z)
√
2π

∫ ∞

δcoll

exp

(
− δ2M
2σ2

M (z)

)
dδM =

1

2
erfc

(
δcoll√
2σM (z)

)
, (7.28)

where erfc(x) is the error function. The fraction containing objects of mass within the range [M,M + dM ] is
given by

dp(M, z) =

∣∣∣∣∂p(M, z)|δ>δcoll
∂M

∣∣∣∣ dM . (7.29)

Remember that in general the threshold δcoll depends on z. Although the boxes with δ > δcoll are certainly
not in the linear regime, the idea is to use the linear regime to estimate the fraction of collapsed regions. We

bAdapted from Amendola & Tsujikawa, Dark Energy. Theory and Observations, CUP 2010.
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are then implicitly assuming that the variance σM (z) is in the linear regime (σM ≪ 1) and therefore that
it can be calculated with the linear spectrum at any redshift. By using the growth function D(z) we have
σM (z) = D(z)σM (0).

Now, suppose in a volume V we find N collapsed objects, each occupying a volume VM = M/ρ. Then by
definition the volume occupied collectively by the N objects is the fraction dp of V , i.e.

NVM = V dp , (7.30)

and therefore the number density dn of collapsed halos with mass in the dM range (the mass function) will be

dn =
N

V
=

dp

VM
=

ρ

M

∣∣∣∣∂p(M, z)|δ>δcoll
∂M

∣∣∣∣ dM =

√
2

π

ρ

M2

δcoll
σM

∣∣∣∣d lnσM
d lnM

∣∣∣∣ e−δ2coll/(2σ2
M )dM . (7.31)

The extra factor of two that we have inserted in the last step is required because we want all the masses to end
up in some object, so that we impose the condition

V

∫ ∞

0

(
dn

dM

)
dM = 1 . (7.32)

This factor-of-2 adjustment can be justified with a random walk analysis of fluctuations. In any case, one finds
it necessary to fit N -body simulations. Sometimes the number density n(M, z) is taken to be the comoving
number density (i.e. is multiplied by a3): in this case also ρ should be identified with the comoving background
density.

Equivalently, Eq. (7.31) is sometimes written as

M

ρ

∣∣∣∣ dn

d lnσM

∣∣∣∣ = f(σM , z) , (7.33)

where all the cosmological information is contained in the function

f(σM , z) =

√
2

π

δcoll
σM

e−δ
2
coll/(2σ

2
M ) . (7.34)

The number density dn(M, z) can then be “directly” confronted with the observed densities of objects (clusters,
galaxies, quasars) at any redshift. The mass M is often taken to be the virial mass of that class of objects.
Because of the exponential dependence on δcoll/σM , the PS formula is quite sensitive to the cosmological model
(see Fig. 7.2).

The theoretical prediction depends then on the variance σ2
M at any given epoch and mass and on the

collapse threshold δc, which however is found to be only mildly dependent on cosmology. The variance σ2
M

can be written in linear growth approximation as σ2
M (z) = G2(z)σ2

M (0) where G(z) is the growth function. It
can be compared to observations once we have a reliable estimator of the cluster masses, for instance using the
X-ray temperature scaling Eq. (10.7) or through the Sunyaev-Zel’dovich effect. This gives then a test of the
power spectrum normalization σ2

M . Since also Ωm enters the growth function G(z), the test constrains some
combination of σ8 and Ωm.

The simplicity of the PS approach must not hide the fact that it relies on a dangerous extrapolation of
the linear theory, on the critical assumption of spherical collapse with top-hat filter, on a dubious definition of
virialization, and on the absence of processes like merging, dissipation, shell crossing. Surprisingly, this shaky
foundation did not prevent the PS formula to prove itself a valuable first approximation to the abundances
obtained through numerical simulations. Not surprisingly, many works have been dedicated to improving the
original PS formula by including corrections due to departure from sphericity or merging or by directly fitting
to large N -body simulations. A remarkably successful fit is given by (Jenkins et al. MNRAS 321 (2001) 372)

f(σM , z) = 0.315 exp(−|0.61− lnσM (z)|3.8) . (7.35)

This fit has been found to hold for a large range of masses, redshifts, and cosmological parameters, including
dark energy with constant or varying wDE .
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Figure 7.2: The sensitivity of the cluster mass function to cosmological models. Left panel: The cumulative
mass function at z = 0 for M > 5 × 1014 h−1M⊙ (M⊙ is the solar mass) for three cosmologies, as a function
of σ8; solid line: Ω

(0)
m = 1; short–dashed line: Ω

(0)
m = 0.3, Ω(0)

Λ = 0.7; long–dashed line: Ω
(0)
m = 0.3,Ω

(0)
Λ = 0.

The shaded area indicates the observational uncertainty in the determination of the local cluster space density.
Right panel: Evolution of n (> M, z) for the same cosmologies and the same mass limit, with σ8 = 0.5 for the
Ω

(0)
m = 1 case and σ8 = 0.8 for the low-density models. From Rosati, Borgani, Norman, ARAA 40 (2002) 539.



Chapter 8

Standard non-linear perturbation theory

In this chapter we introduce a systematic way to estimate the effect of non-linearities on the power spectrum.
We work entirely in Newtonian gravity since we refer to scales much smaller than the horizon. A useful review
for this section is Bernardeau et al. 2002. For the biased tracers, I followed Chudaykin et al (2020).

8.1 Second-order perturbations
The Newtonian fluidodynamical equations are (see Lectures notes on Cosmology)

ρ̇+ v · ∇ρ = −ρ∇ · v conservation (8.1)
ρ(v̇ + v · ∇v) = −∇p− ρ∇Φ Euler (8.2)

∇2Φ = 4πρ Poisson (8.3)

where the dot is here a derivative wrt cosmic time, v = vp + Hx is the total velocity, including the Hubble
expansion vH = Hx, and vp the peculiar velocity. By introducing the density contrast δ = (ρ(x, t)−ρ0(t))/ρ0(t)
(where ρ0 is the background density that depends only on time) the first one can be written as (ρ̇ = ˙(ρ0δ)+ ρ̇0 =
ρ̇0(1 + δ) + ρ0δ̇)

ρ̇0(1 + δ) + ρ0δ̇ + ρ0(vp+Hx) · ∇δ = −ρ0(1 + δ)(∇ · vp + 3H) (8.4)

Since at the background level ρ̇0 + 3Hρ0 = 0, this becomes (we suppress the subscript p from now on)

dδ

dt
≡ δ̇ +Hx · ∇δ = −∇ · (1 + δ)v (8.5)

On the rhs a nabla operator wrt physical coordinates x = ar, which becomes a−1∇r converting to comoving
coordinates. On the lhs, one can show that(

dδ

dt

)
x

≡ δ̇ + v0 · ∇δ =
(
∂δ

∂t

)
r

(8.6)

(see proof in Lectures notes on Cosmology). Finally, therefore, the continuity equation is (dot is from now on
the derivative wrt conformal time, so the a−1 factors cancel out)

δ̇ = −∇(1 + δ)v (8.7)

where the nabla is now wrt comoving coordinates and we suppressed the subscript r.
Taking now the gradient of the Euler equation for a pressureless fluid, inserting the Poisson equation, we

obtain

∇v̇ +∇ · (v · ∇v) = −4πρ (8.8)
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and steps analogous to above lead to

θ̇ +Hθ − 3

2
a2H2δ = −∇(v · ∇v) (8.9)

where now v is the peculiar velocity, we moved to comoving coordinates, and we employed the Friedmann
equation 3H2 = 8πρ.

Eqs. (8.7) and (8.9) can be combined into a single non-linear second order equation if we assume that v is
irrotational also at second order, i.e. v = ∇w, where w is a velocity potential and of course θ = ∇2w. Let us
first rewrite the equations using log a as independent variable and redefining θnew = θold/H:

dδ

dN
≡ δ′ + v∇δ = −(1 + δ)θ (8.10)

θ′ = −(1 +
H′

H
)θ +

3

2
δ −∇i(vj∇jvi) (8.11)

The last term is

∇i(vj∇jvi) = ∇i

[
(∇jw)∇j∇iw)

]
= (∇i∇jw)(∇j∇iw) +

[
(∇jw)∇i∇j∇iw

]
(8.12)

= (∇i∇jw)(∇j∇iw) +
[
(∇jw)∇j∇2w)

]
= (∇i∇jw)

2 + vi∇iθ (8.13)

so

dθ

dN
≡ θ′ + vi∇iθ = −(1 +

H′

H
)θ +

3

2
δ − (∇i∇jw)

2 (8.14)

Finally, in order to obtain a closed set of equations, we assume that the dominant component of the velocity
is purely radial, i.e. the non-linear collapse is approximately spherical, at least initially. Then one can write
v = v{1, 1, 1}/

√
3 and

(∇i∇jw)
2 = (∇ivj)(∇ivj) =

1

3
θ2 (8.15)

so finally

dθ

dN
≡ θ′ + vi∇iθ = −(1 +

H′

H
)θ +

3

2
δ − 1

3
θ2 (8.16)

Now, differentiating (8.10) and inserting (8.16), and neglecting the gradient terms ∇δ,∇θ because near the
center of a spherical perturbations they must indeed vanish, we obtain the same spherical collapse equation
already encountered in Eq. (7.15):

δ′′ +

(
1 +

H′

H

)
δ′ − 3

2
Ωmδ =

4

3

δ′2

1 + δ
+

3

2
Ωmδ

2 . (8.17)

where now δ depends only on time. In a Einstein-de Sitter Universe in which Ωm = 1, one has H′

H = − 1
2 and,

as we know already, one finds at first order G(1) = G(1)′ = G(1)′′ = a and the growth function f = 1. At second
order, we can neglect the denominator 1 + δ at rhs, and write

4

3

δ′2

1 + δ
+

3

2
Ωmδ

2 ≈
(
4

3
f2 +

3

2
Ωm

)
δ2 =

17

6
δ2 (8.18)

We now expand δ = G(1)δ(1) +G(2)(δ(1))2 + ... Therefore at second order we get in EdS

G(2)′′ +
1

2
G(2)′ − 3

2
G(2) =

17

6
G(1)2 . (8.19)

Making the Ansatz G(2) = αG(1)2 we find

G(2) =
17

21
G(1)2 . (8.20)

One sees therefore that the second-order perturbations grow as G(1)2 in a EdS model. In the following we will
assume therefore that the second order perturbations grow as G(1)2.
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8.2 Fourier space
We now consider in detail the space dependence of the second-order perturbations, in order to derive a correction
to the power spectrum.

In the linear regime, Eq. (8.7) gives δ̇ = −∇v, which can be immediately Fourier-transformed as δ̇ = −ikv =
−θ, so

v = iHδkf
k

k2
(8.21)

where δk is the total matter field. This can also be written as

v = −iθ k

k2
(8.22)

so we can convert v, δ, θ at linear level one into the other.
In Fourier space, we have δ =

∫
δke

ikxd3k , and the analog for v, which gives∫
δ̇ke

ikxd3k = −∇(1 +

∫
δke

ikxd3k)(

∫
vk′e

ik′xd3k′) (8.23)

or ∫
δ̇ke

ikxd3k = −i
∫

vkke
ikxd3k − i

∫
δkvk′(k+ k′)ei(k+k′)xd3kd3k′ (8.24)

Integrating over (2π)−3e−ik
′′xd3x one gets on the rhs∫

δ̇k
(2π)3

ei(k−k′′)xd3kd3x =

∫
δ̇kd

3kδD(k− k′′) = δ̇k′′ (8.25)

and on the lhs

−ivk′′k′′ − i

∫
δkvk′(k+ k′)δD(k+ k′ − k′′)d3kd3k′ (8.26)

So we have (switching some k labeling)

δ̇k + ivkk = −i
∫
δk1vk2(k1 + k2)δD(k1 + k2 − k)d3k1d

3k2 (8.27)

or also, since δk1 = −ik1v1/(Hf) = −θ/(Hf) and using Eq. (8.22)

δ̇k + θ = Hf
∫
δk1δk2

k2

k22
· (k1 + k2)δD(k1 + k2 − k)d3k1d

3k2 (8.28)

We now expand the perturbation variables as

δ = εδ(1) + ε2δ(2) + ... (8.29)

and similarly for θ and v , where the small parameter ε is temporarily inserted to keep track of the order.
Inserting these expansions, one immediately see that at order ε the δ(1), θ(1) cancel out since they obey the first
order equation δ(1) = −θ(1). Then at order ε2 one has

ε2δ̇(2) + ε2θ(2) = ε2Hf
∫
δ
(1)
k1
δ
(1)
k2

k2

k22
· (k1 + k2)δD(k1 + k2 − k)d3k1d

3k2 (8.30)

From now on, we delete the ε and also suppress the superscripts (1), (2) when not needed, since it is clear that
wherever there is a single perturbation variable, it has to be second order, and wherever there is a product of
two perturbation variables, they have to be first order. As already seen, we define the linear growth factor G
(dropping the superscript (1)) such that G(z = 0) = 1 and

δ = G(z)δ0
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and the growth rate f ≡ G′/G (we assume G, f are k-independent). Then Eq. (8.30) can be written as (with a
new definition of θ: θnew = θold/H)

Hδ′ +Hθ = HG2f

∫
δ1δ2

k2k1 + k2k2

k22
δD(k1 + k2 − k)d3k1d

3k2 (8.31)

where the prime is d/d log a and where δi are evaluated at the present time (so they are independent of time).
All δ, θ inside the integrals from now on are the present values. Then we also have

θ + δ′ = G2f

∫
δ1δ2KCδD(k1 + k2 − k)d3k1d

3k2 ≡ C (8.32)

where the kernel KC can be symmetrized

KC =
1

2

[
k2 · (k1 + k2)

k22
+

k1 · (k1 + k2)

k21

]
=

1

2

(
k2

k21
+

k1

k22

)
· (k1 + k2)

Similarly, the general Euler equation (8.9) can be written as

θ′ + Fθ + Sδ = −∇
[
(

∫
vke

ikxd3k) · ∇
∫

vk′e
ik′xd3k′

]
(8.33)

= −i∇
[∫

(vk · k′)vk′e
ikxeik

′xd3kd3k′
]

(8.34)

=

∫
(vk · k′)(vk′ · (k+ k′))ei(k

′+k)xd3k′d3k (8.35)

(with F = 1 +H′/H, S = −3/2).
From now on we put ourselves in an Einstein-de Sitter model (i.e. Ωm = 1). In this case, G = G′ = G′′ = a

and f = 1. Moreover, F = 1/2. Because of the new definition of θ, we have now at linear level δ = −θ/f = −θ,
and therefore δ and θ have the same growth factor G. Then we see that

θ′ + Fθ + Sδ = −G2

∫
θkθk′(

k

k2
· k′)(

k′

k′2
· (k+ k′))ei(k

′+k)xd3k′d3k (8.36)

= −G2

∫
θkθk′(

k · k′

k2k′2
k′ · (k+ k′))ei(k

′+k)xd3k′d3k (8.37)

The kernel can be symmetrized:

KE =
1

2k2k′2
[k · k′(k′ + k) · (k+ k′)] =

k · k′(k′ + k)2

2k2k′2
(8.38)

Integrating again over (2π)−3e−ik
′′xd3x one gets

θ′ + Fθ + Sδ = −G2

∫
θ1θ2KEδD(k1 + k2 − k)d3k1d

3k2 (8.39)

and finally

θ′ + Fθ + Sδ = −G2

∫
δ1δ2KEδD(k1 + k2 − k)d3k1d

3k2 (8.40)

= −G2

∫
θ1θ2KEδD(k1 + k2 − k)d3k1d

3k2 ≡ E (8.41)

where (after symmetrization)

KC =
k

2
(
k1

k21
+

k2

k22
) (8.42)

KE =
k · k′(k′ + k)2

2k2k′2
(8.43)
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We can now differentiate the θ equation and obtain

θ′ + δ′′ = 2G2

∫
δ1δ2KCδD(k1 + k2 − k)d3k1d

3k2 = C ′ (8.44)

Then we insert the θ′ equation, replace again θ = C − δ′ and obtain an equation for the second order δ alone

δ′′ + (−F (C − δ′)− Sδ + E) = C ′

or

δ′′ + Fδ′ − Sδ = C ′ − E + FC (8.45)

Putting δ(2) = G(2)δ
(2)
k , where δ

(2)
k depends only on k, and, as shown in Eq. (8.20), G(2) = αG2 (with

α = 17/21), we see that

δ′′ + Fδ′ − Sδ = [(G(2))′′ + FG(2)′ − SG(2)]δ = (4 + 2F − S)αG2δ
(2)
k =

7

2
αG2δ

(2)
k =

7

2
δ(2) (8.46)

then one has

δ(2) =
2

7
(δ′′ + Fδ′ − Sδ) = 2

C ′ − E + FC

7
(8.47)

=
2G2

7

∫
δ1δ2[2KC +KE +

1

2
KC ]δD(k1 + k2 − k)d3k1d

3k2 (8.48)

So we obtain

δ(2) =
G2

7

∫
δ1δ2[5KC + 2KE ]δD(k1 + k2 − k)d3k1d

3k2 (8.49)

=
2G2

7

∫
δ1δ2[5

k

4
(
k1

k21
+

k2

k22
) +

(k1 + k2)
2(k1k2)

2k21k
2
2

]δD(k1 + k2 − k)d3k1d
3k2 (8.50)

= G2

∫
δ1δ2F2(k1,k2)δD(k1 + k2 − k)d3k1d

3k2 (8.51)

where

F2 =
5KC + 2KE

7
=

2

7

[
5
k

4
(
k1

k21
+

k2

k22
) +

(k1 + k2)
2(k1k2)

2k21k
2
2

]
(8.52)

=
2

7

[
5

4
(2 + k1k2(

1

k21
+

1

k22
)) +

(k21 + k22 + 2k1k2)(k1k2)

2k21k
2
2

]
(8.53)

=
2

7

[
5

2
+

7

4
k1k2(

1

k21
+

1

k22
)) +

(k1k2)
2

k21k
2
2

]
(8.54)

=
5

7
+

1

2
k1k2(

1

k21
+

1

k22
)) +

2

7

(k1k2)
2

k21k
2
2

(8.55)

Similarly, one can write an equation for θ(2) alone

θ(2) + δ′(2) = θ(2) + 2GG
′
δ(2) = G2

∫
δ1δ2KCδD(k1 + k2 − k)d3k1d

3k2 (8.56)

from which, since GG′ = G2 in EdS,

θ(2) = −2G2

∫
δ1δ2F2δD(k1 + k2 − k)d3k1d

3k2

+G2

∫
δ1δ2KCδD(k1 + k2 − k)d3k1d

3k2
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or, using again θ = −δ for the linear terms inside the integral,

θ(2) = G2

∫
θ1θ2G2δD(k1 + k2 − k)d3k1d

3k2 (8.57)

with

G2 = −2F2 +KC = −10

7
− k1k2(

1

k21
+

1

k22
)− 4

7

(k1k2)
2

k21k
2
2

+
k1 + k2

2
(
k1

k21
+

k2

k22
) (8.58)

= −10

7
− k1k2(

1

k21
+

1

k22
)− 4

7

(k1k2)
2

k21k
2
2

+ 1 +
1

2
(
k2k1

k21
+

k1k2

k22
) (8.59)

= −3

7
− k1k2(

1

k21
+

1

k22
)− 4

7

(k1k2)
2

k21k
2
2

+
1

2
k2k1(

1

k21
+

1

k22
) (8.60)

= −3

7
− 1

2
k2k1(

1

k21
+

1

k22
)− 4

7

(k1k2)
2

k21k
2
2

(8.61)

In general, it happens that G(2) ∝ G2 even for non EdS models.
Whatever the cosmology, therefore, one always has the forms

θ(2) = G2

∫
θ1θ2G2(k1,k2)δD(k1 + k2 − k)d3k1d

3k2 (8.62)

δ(2) = G2

∫
δ1δ2F2(k1,k2)δD(k1 + k2 − k)d3k1d

3k2 (8.63)

where G is the linear growth function and

F2 =
5

7
+

k1k2

2k1k2
(
k1
k2

+
k2
k1

) +
2

7
(
k1k2

k1k2
)2 (8.64)

G2 = −
[
3

7
+

k1k2

2k1k2
(
k1
k2

+
k2
k1

) +
4

7
(
k1k2

k1k2
)2
]

(8.65)

Note that

F2(k1,−k1) = 0 (8.66)
G2(k1,−k1) = 0 (8.67)

The procedure can be extended to all orders by an iterative process. So one gets for instance

θ(3) = G3

∫
θ1θ2θ3G3(k1,k2,k3)δD(k1 + k2 + k3 − k)d3k1d

3k2d
3k3 (8.68)

δ(3) = G3

∫
δ1δ2δ3F3(k1,k2,k3)δD(k1 + k2 + k3 − k)d3k1d

3k2d
3k3 (8.69)

As will be shown shortly, we need also the third order for δ to derive the corrected power spectrum.

8.3 Bias and RSD
So far we have calculated the perturbations of matter at second order. What we observe, though, are galaxies,
i.e. a biased traced of the underlying matter perturbations. Moreover, the apparent distribution of galaxies is
distorted because we observe in redshift space, not in real space. As can be seen in Lecture notes on Cosmology,
these two effect modify the linear power spectrum as follows

Pgg,L = ⟨δ(1)g δ(1)∗g ⟩ = b2(1 + βµ2)2G2PL (8.70)

where b is the linear bias (defined as δg = bδm) and β = f/b is the redshift distortion (RSD) parameter. We
need now to see how bias and RSD modify the non-linear spectrum.
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At higher order, we need first to generalize the bias. Various tentative schemes have been introduced in the
literature, since we know very little about the exact mechanism of bias. A very general form is given e.g. in
Chudaykin et al (2020)

δg = bδm +
b22
2
δ2m + bGG2 + bΓΓ3 + ... (8.71)

where

G2 = (∂i∂jΦg)
2 − (∂2i Φg)

2 (8.72)
Γ3 = G2(Φg)− G2(Φv) (8.73)

and where Φg is the gravitational potential and Φv the velocity potential. One should then convert the second-
order calculation from δm and Φg,v to δg, and convert the real space coordinates into the redshift space ones,
resulting in modified kernels. Now there are four bias parameters, b = b1, b2, bG, bΓ that are only time-dependent,
and the Z2, Z3 functions that replace F2, F3 are

Z2(ka,kb) = b{F2(ka,kb) + βµ2G2(ka,kb)

+
βbµk

2

[
µaz
ka

(1 + βbµ
2
bz) +

µbz
kb

(1 + βaµ
2
az)

]
}+ b2

2
+ bGS1(ka,kb) (8.74)

(already symmetrized) and

Z3(ka,kb,kc) = b{F3(ka,kb,kc) + βµ2G3(ka,kb,kc) + βµkb[F2(ka,kb) + βabµ
2
abzG2(ka,kb)]

µcz
kc

+ βµkb(1 + βaµ
2
az)

µbcz
kbc

G2(kb,kc) +
(βµk)2

2
b2(1 + βaµ

2
az)

µbz
kb

µcz
kc

}

+ 2bGS1(ka,kb + kc)F2(kb,kc) + bGbβµk
µaz
ka

S1(kb,kc)

+ 2bΓS1(ka,kb + kc)(F2(kb,kc)−G2(kb,kc)) (8.75)

(to be symmetrized), where terms in b2 have been discarded because degenerate with other terms (also a b3
term which should appear here has been discarded for the same reason), and

S1(ka,kb) =
(ka · kb)2

k2ak
2
b

− 1 (8.76)

Indexes a, b, etc refer to the k vectors: e.g. βa = β(ka). Double letters, e.g. ab, refer to ka+kb. All µ’s are the
angles wrt the line of sight ẑ, except µ1 , which is the angle between k and k1. All angles can be expressed in
terms of µ, µ1, ϕ1 by the relations

µbz =
kbz

kb
=

(k− k1)z

|k− k1|
=

−kµ+ k1µµ1 + k1(1− µ2)1/2(1− µ2
1)

1/2 cosϕ1
(k21 + k2 − 2kk1µ1)1/2

(8.77)

µaz =
kaz

k1
= µµ1 + (1− µ2)1/2(1− µ2

1)
1/2 cosϕ1 (8.78)

and µabz, µbcz denote the angles between ka + kb and ẑ etc. The ϕ1 integration is always analytical and can be
included in the definition of the kernels.

8.4 Power spectrum at one loop
As we have already mentioned, the linear power spectrum including bias and redshift distortion is

Pgg,L = ⟨δ(1)g δ(1)∗g ⟩ = b2(1 + βµ2)2G2PL (8.79)
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where PL is the matter power spectrum at z = 0. Analogously, the power spectrum up to fourth order (the
third cancels out because the linear δ are Gaussian) is then

Pgg = ⟨δgδg⟩ = ⟨(δ(1) + δ(2) + δ(3))g(δ
(1)∗δ(2)∗δ(3)∗)g⟩

= (b+ fµ2)2G2PL +G4

∫
⟨δ∗k1δ

∗
k2δk3δk4⟩Z2(k1, k2)Z2(k3, k4)δD(k1 + k2 − k)δD(k3 + k4 − k)d3k1d

3k2d
3k3d

3k4

+ 2(b+ fµ2)G4

∫
⟨δ∗kδk1δk2δk3⟩Z3(k1, k2, k3)δD(k1 + k2 + k3 − k)d3k1d

3k2d
3k3 (8.80)

(all power spectra are taken at the present time). Now assuming the linear δ are Gaussian variable, one has
due to Wick’s theorem that

⟨δ∗k1δ
∗
k2δk3δk4⟩ = ⟨δ∗k1δ

∗
k2⟩⟨δk3δk4⟩+ ⟨δ∗k1δk3⟩⟨δ

∗
k2δk4⟩+ ⟨δ∗k1δk4⟩⟨δ

∗
k2δk3⟩ (8.81)

where

⟨δk1δ∗k2⟩ = ⟨δk1δ−k2⟩ = P (k1)δD(k1 − k2) (8.82)

So we have, e.g. for the first term, ⟨δ∗k1δ
∗
k2
⟩ = P (k1)δD(k1 + k2) and therefore∫

⟨δ∗k1δ
∗
k2⟩⟨δk3δk4⟩Z2(k1,k2)Z2(k3,k4)δD(k1 + k2 − k)δD(k3 + k4 − k)d3k1d

3k2d
3k3d

3k4 =∫
P (k1)δD(k1 + k2)P (k3)δD(k3 + k4)Z2(k1,k2)Z2(k3,k4)δD(k1 + k2 − k)δD(k3 + k4 − k)d3k1d

3k2d
3k3d

3k4 =∫
P (k1)P (k3)Z2(k1,−k1)Z2(k3,−k3)δD(−k)δD(−k)d3k1d

3k3 = 0

(8.83)

The other two terms instead do not vanish and give two identical contributions of this form:∫
P (k1)P (k4)Z2(k1, k4)Z2(k1, k4)δD(k1 + k4 − k)δD(k1 + k4 − k)d3k1d

3k4 =∫
P (k1)P (|k− k1|)Z2

2 (k1,k− k1)d
3k1 ≡ P22 (8.84)

Similarly,

⟨δ∗kδk1δk2δk3⟩ = ⟨δ∗kδk1⟩⟨δk2δ∗−k3⟩δD(k − k1)δD(k2 + k3) + (1 ↔ 2) + (2 ↔ 3) (8.85)

and each of the three term equals∫
⟨δ∗kδk1⟩⟨δk2δ∗−k3⟩δD(k− k1)δD(k2 + k3)Z3(k1, k2, k3)δD(k1 + k2 + k3 − k)d3k1d

3k2d
3k3 =∫

P (k1)P (k2)δD(k2 + k3)Z3(k,k2,k3)δD(k2 + k3)d
3k2d

3k3 =∫
P (k)P (k1)Z3(k,k1,−k1)d

3k1 ≡ P31 (8.86)

(changing the subscript of k in the last step). So finally

Pgg(k) = (b+ fµ2)2G2PL + 2G4P22 + 6(b+ fµ2)G4P31 (8.87)

This non-linear power spectrum, also called one-loop P (k), is however still not a good approximation to N-body
simulations even for relatively small k < 0.2h/Mpc, mostly due to the neglect of rotational velocity components.
To improve the agreement one has to add semi-empirical terms, called counterterms, of the form (see Fig. 8.1)

Pctr = −2P (k)k2(c0 + c2βµ
2 + c4β

2µ4) (8.88)

So finally

Pgg(k, µ, z) = B2PL + 2P22 + 6BP31 − 2P (k)k2(c0 + c2βµ
2 + c4β

2µ4) (8.89)

where B = b(1 + βµ2).
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Figure 8.1: Linear and non-linear spectra at z = 1.
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Chapter 9

Statistical methods in cosmology

As a technical introduction to the methods that will be discussed in the next chapter, we review some statistical
tools most employed in modern cosmology, e.g., likelihood analysis, Bayes’ theorem, model selection, Fisher
matrix, and principal component analysis. Note that some of these statistical methods have been implicitly used
in previous chapters for observational constraints on dark energy models. The Bayesian approach is particularly
suitable for dark energy research because of its flexibility in combining results from different observations and
in allowing a direct comparison between various parametrizations.

9.1 The likelihood function
Let us suppose we know, or have good reasons to suspect, that a random variable x, e.g., the apparent magnitude
of a supernova, has a probability distribution function (PDF) f(x; θ) that depends on an unknown parameter
θ, e.g., the absolute magnitude. The “;” is meant to distinguish the random variables x from the parameter θ.
Such a probability is called a conditional probability of having the data x given the theoretical parameter θ. We
may for instance suppose that the apparent magnitude m is distributed as a Gaussian variable with a given
variance σ2 (the observational error on m), but we do not know one of the cosmological parameters that enter
the expected value mth = 5 log10 dL(z; Ω

(0)
m ,Ω

(0)
Λ ) + constant, where dL is the luminosity distance.

If we repeat the measure and we obtain x1, x2, x3..., then the law of joint probability tells us that the
probability of obtaining x1 in the interval dx1 around x1, x2 in the interval dx2 around x2 and so forth is

f(xi; θ)d
nxi ≡

∏
i

fi(xi; θ)dxi = f1(x1; θ)f2(x2; θ)f3(x3; θ)...dx1dx2dx3... , (9.1)

if the measures are independent of each other. Clearly, for every θ this multivariate PDF will assume a different
value. It is logical to define the best θ as the value for which

∏
i f(xi; θ) is maximal. Indeed, if we generate ran-

dom variables distributed as f(x; θ), the most likely outcome for x is that value maximizing f(x; θ). Conversely,
if we have a particular outcome x, then our best bet is to assume that θ is such as to maximize the occurrence
of that x. We used as an example independent data and a single parameter but this is by no means necessary.
We define the best θi as those parameters that maximizes the joint function f(x1, x2, ..xn; θ1, θ2, ...θm). Since
in general we have many parameters to estimate, we write the function simply f(xi; θj), meaning all the xi’s
and all the θj ’s.

The maximum likelihood method of parameter estimation consists therefore in finding the parameters that
maximize the likelihood function f(xi; θj) by solving the system

∂f(xi; θj)

∂θj
= 0 , j = 1, ..,m . (9.2)

Let us denote the solutions of these equations as θ̂i. They are functions of the data xi and therefore are random
variables, just as the data are. So the classical frequentist approach would try to determine the distribution
of the θ̂js knowing the distribution of the xis; if this is possible, one can assign probabilities to θ̂j ’s ranges,
for instance determine the interval of θ̂j that contains 95% probability that a particular set of data has been
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drawn from the theoretical distribution. One problem with this approach is that it is often too difficult to derive
the θ̂j ’s distribution analytically and very demanding to derive them numerically through simulated datasets.
But the main problem is that this approach does not take into account what we already know concerning the
theoretical parameters, for instance the result of previous experiments. To handle this information properly we
need to switch to the Bayesian approach. Instead of looking for the probability f(xi; θj) of having the data
given the model, we estimate the probability L(θj ;xi) of having the model given the data.

This problem is solved by the fundamental theorem of conditional probabilities, the so-called Bayes’ theo-
rema:

P (T ;D) =
P (D;T )P (T )

P (D)
, (9.3)

where we denote the known data xi with D and the unknown theory (that is, the theoretical parameters θj)
with T . On the r.h.s., P (D;T ) is the conditional probability of having the data given the theory; P (T ) and
P (D) are the probability of having the theory and the data, respectively; finally, on the l.h.s., P (T ;D) is the
conditional probability of having the theory given the data. Bayes’ theorem is a consequence of the definition
of conditional probability P (A;B) ≡ P (A,B)/P (B) and of the symmetry of the joint probability P (A,B) (the
probability of having both A and B) under the exchange of A,B.

It follows that

L(θj ;xi) =
f(xi; θj)p(θj)

g(xi)
, (9.4)

where p(θi) is called the prior probability for the parameters θi, while g(xi) is the PDF of the data xi. The final
function L(θj ;xi) (or simply L(θj) for shortness) is called posterior although sometimes it is also loosely called
likelihood just as f(xi; θj) and generally denoted as L. The posterior contains the information we are looking
for: the probability distribution of the parameters given that we observed the data xi and that we have some
prior knowledge about the parameters themselves. In fact the whole method in the Bayesian context should be
called “the posterior method” rather than the “likelihood” method.

Since L(θj ;xi) is a probability distribution function for θj , it has to be normalized to unity:∫
L(θj ;xi)d

nθj = 1 =

∫
f(xi; θj)p(θj)d

nθj
g(xi)

, (9.5)

and therefore∫
f(xi; θj)p(θj)d

nθj = g(xi) . (9.6)

As we will see in the next section the integral on the l.h.s. is called evidence and the same name is sometimes
given also to g(xi). The function g(xi) does not depend on the parameters θi and therefore it is of no help in
estimating the parameters. From the point of view of L(θj) it is just a normalization factor. The prior p(θj)
is also often unknown. Normally we do not know the probability distribution of theories, that is, whether the
ΛCDM model is more probable, from an absolute point of view, than a modified gravity model or whether
Ω

(0)
Λ = 0 is more probable than Ω

(0)
Λ = 0.7. However, we often do know something which, while not quite

absolute in any sense, still represents some form of information independent of the data at hand. Namely, we
know the results of previous experiments. If an experiment convincingly excluded, say, Ω

(0)
m < 0.1, then we

could use this information, putting p(Ω(0)
m < 0.1) = 0. If instead we believe that h = 0.72± 0.08, then we could

use as p(h) a Gaussian with mean 0.78 and standard deviation 0.08. These are typical prior distributions.
Priors can be of many kinds. Beside including other experiments, we could simply exclude unphysical values,

e.g., Ω(0)
m < 0 or weigh down some regions of parameter space that we, perhaps subjectively, consider less likely.

What matters is not so much what we decide to include as prior but rather that we make this decision explicit
to the reader and to the potential user of our results. Every posterior, sooner or later, will become a prior for
us or for somebody else, and it is our responsibility to make it explicit which prior information we adopted, no

aReverend Thomas Bayes (1702–1761) studied what in modern terminology is the binomial distribution and introduced the
concept of conditional probability. His work was published posthumously in 1763.
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less to avoid that a future user includes twice the same information. The easiness of including prior information
of all kinds is one of the major advantage of the Bayesian approach.

There are two important facts to note about priors. First, priors matter. Clearly the final result depends
on the prior, just as our bet on the result of a football match depends on what we know about the teams based
on previous games (and on our personal interpretation of those results). One can say that priors quantify our
physical intuition. Second, priors are unavoidable. Even if we are not consciously choosing a prior, the way we
manage the statistical problem at hand always implies some form of prior. No prior on a parameter means in
fact p(θ) = 1 in the domain where θ is defined and p(θ) = 0 outside. Even when θ is defined in the whole real
range we are still choosing a “flat” prior, p(θ) = 1, over other possible choices. One could push this argument
as far as saying that our choice of theory and its parameters θ already constitute a strong prior. So, again, the
important issue is to specify exactly what prior is employed.

Once we have L(θj) we need to search the maximum to obtain the maximum likelihood estimators θ̂i.
Because of the priors, this will differ in general from the maximum of f(xi; θj). Equation (9.2) is then replaced
by

∂L(θi)

∂θi
= 0 , i = 1, .., n . (9.7)

If, as usually the case, we discard the denominator g(xi) in Eq. (9.4), the posterior L is not normalized and its
normalization has to be recalculated. The overall normalization N is the integral over the parameter space:

N =

∫
L(θi) d

nθi , (9.8)

where the integral extends to the whole parameter domain. From the normalized likelihood [i.e. L(θi)/N which
we keep calling L(θi)], we can derive the regions of confidence (or belief ) for the parameters. These are defined
as regions R(α) of constant L(θi) for which∫

R(α)

L(θi) d
nθ = α . (9.9)

The region R(α) is the region for which the integral above evaluates to 0 < α < 1 (remember that now L is
normalized and therefore its integral over the whole domain is 1). To find R one evaluates∫

L̂(Li) d
nθ = αi , (9.10)

where L̂(Li) = L if L > Li and 0 elsewhere (i.e. the volume lying within the curve of “height” Li, smaller than
the peak of L). By trial and error (or by interpolating over a grid of Li) one finds the preferred αi. The typical
choices are α = 0.683, 0.954, 0.997 (also denoted as 1, 2, 3σ, respectively, but sometimes other reference values
are also employed. The value Li that corresponds to αi is the level at which we have to cut L to find the region
R(αi).

Often, we are interested in some subset of parameters and consider the others as “nuisance” of which we would
gladly get rid of. For instance, if we are analyzing a set of supernovae apparent magnitudes mi and comparing
them to the theoretical predictions mth = 5 log10 dL(z; Ω

(0)
m ,Ω

(0)
Λ )+C, we may be interested in Ω

(0)
m ,Ω

(0)
Λ but not

in the constant C. This?? constant depends on the K correction and on the standard absolute magnitude M ,
to which we can add also the constant log10H

−1
0 . Our general likelihood is therefore a function of C,Ω(0)

m ,Ω
(0)
Λ

but we can transform it into a function of Ω(0)
m ,Ω

(0)
Λ alone by integrating out C:

L(Ω(0)
m ,Ω

(0)
Λ ) ≡

∫
L(C,Ω(0)

m ,Ω
(0)
Λ ) dC , (9.11)

where the integration extends over the domain of definition of C, which in absence of better information could
as well be from −∞ to +∞ [there should be no confusion by denoting both the “old” and the “new” likelihood
by the same symbol in Eq. (9.11)]. This very common procedure is called marginalization.

Often one wants to marginalize a multidimensional problem down to a more manageable and plottable
2-dimensional likelihood. Also, one could quote final confidence regions by marginalizing in turn to single
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parameters, e.g.,

L(Ω
(0)
Λ ) =

∫ ∞

0

L(Ω(0)
m ,Ω

(0)
Λ ) dΩ(0)

m . (9.12)

For instance, if the maximum likelihood estimator of Ω(0)
m is 0.3 and∫

R

L(Ω(0)
m )dΩ(0)

m = 0.683 , (9.13)

when R is the interval Ω(0)
m = [0.1, 0.4], we will write as our final result Ω(0)

m = 0.3+0.1
−0.2 at 68.3 % confidence level

(or, less precisely, at 1σ: notice that this will absolutely not imply that at 2σ one should expect −0.1 as lower
limit of Ω(0)

m !).
In the common case in which we want to marginalize over a constant offset or over a multiplicative factor

one can often obtain an analytical result. Here we work out the first case, leaving the second to the problem
[13.2].

Taking again the example of supernovae, suppose that we have N standard candle sources at redshifts zi
with apparent magnitudes mi and that our preferred cosmological model predicts magnitudes mth,i = M +
5 log10 dL(zi; θj) + 25, where dL(zi; θj) is the luminosity distance measured in Megaparsecs. The luminosity
distance is proportional to 1/H0. We can therefore take this factor out of the logarithm and write mth,i = α+µi,
where µi = 5 log10 d̂L(zi; θj) and α = M + 25− 5 log10H0 and d̂L is dLH0. We have very little information on
α, so we decide to marginalize it over:

L(θj) = N

∫
dα exp

[
−1

2

∑
i

(mi − µi − α)2

σ2
i

]
, (9.14)

where N is an unimportant normalization factor. Then we have

L(θj) = N

∫
dα exp

[
−1

2

∑
i

(mi − µi)
2 + α2 − 2α(mi − µi)

σ2
i

]

= N exp(−S2/2)

∫
dα exp(αS1 − α2S0/2)

= N exp

[
−1

2

(
S2 −

S2
1

S0

)]∫
dα exp

[
−1

2

(
α− S1

S0

)2

S0

]
, (9.15)

where S0 =
∑

(1/σ2
i ), S1 =

∑
yi/σ

2
i , S2 =

∑
y2i /σ

2
i , and yi = mi−µi. The integration in the region (−∞,+∞)

gives a constant independent of µi and therefore independent of the theoretical parameters that we absorb in
N :

L(θj) = N exp

[
−1

2

(
S2 −

S2
1

S0

)]
. (9.16)

This is then the new likelihood marginalized over the nuisance additive parameter α. Notice that the parameters
θj ended up inside µi which are inside S1, S2. A similar analytic integration can get rid of multiplicative
parameters. If the analytical integration is impossible, then one has to marginalize numerically.

Sometimes one prefers to fix a parameter, rather than marginalizing over it, perhaps because one wants to
see what happens for particularly interesting values of that parameter. So for instance one may fix Ω

(0)
Λ to be

Ω
(0)
Λ = 0 and evaluate L(Ω(0)

m ,Ω
(0)
Λ = 0). Then the result will obviously depend on the fixed value. When that

value is the maximum likelihood estimator, the likelihood is said to be maximized (as opposed to marginalized)
with respect to that parameter.

If this is your first encounter with maximum likelihood methods, warm up by proving that if we have the
Gaussian likelihood f(xi;µ, σ2)

f(xi;µ, σ
2) = (2πσ2)−n/2 exp

[
−1

2

n∑
i

(xi − µ)2

σ2

]
, (9.17)
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then the maximum likelihood estimator of µ is given by

µ̂ =
1

n

n∑
i

xi . (9.18)

Analogously, you can prove that the maximum likelihood variance estimator is

σ̂2 =
1

n

n∑
i

(xi − µ̂)2 . (9.19)

You may notice that this falls short of the standard result according to which the estimate of the sample
variance has (n − 1) instead of n at the denominator. In this case in fact the maximum likelihood estimator
is biased, which means that its expectation value does not equal the “true” or “population” value. Indeed,
maximum likelihood estimators are not necessarily unbiased although under some general conditions they are
asymptotically (i.e. for n→ ∞) unbiased.

Let us conclude on a philosophical tone. One could say that the use of priors constitutes the whole difference
between the Bayesian approach and the so-called frequentist one. The frequentist approach prefers not to deal
with priors at all and therefore refuses to use Bayes’ theorem to convert theoretical parameters into random
variables. Once a frequentist finds a maximum likelihood estimator (which as any other estimator is a function
of data and therefore is a random variable), he or she tries to determine its distribution as a function of the
assumed distribution of the data. In most cases, this is done by generating numerically many mock datasets
and calculating for each dataset the estimator, deriving then its approximate distribution. This Monte Carlo
approach is the hallmark of the frequentist approach. It is powerful, objective and general but by rejecting
priors fails to take into account previous knowledge. It is therefore suitable only when one can afford not
to fully consider previous knowledge. This applies for instance when new experiments are much better than
previous ones so that priors do not really matter and when each experiment measures only one parameter, say
the mass of a particle, so that the outcome does not depend on other poorly measured parameters. Both features
characterize most particle physics experiments and this explains why most particle physicists are frequentist.
Astrophysics and cosmology live in another experimental world: data are hard to come by, observations cannot
be twisted and repeated as easily as in a laboratory, models are characterized by many correlated parameters
and every drop of previous information, even loosely related to a given parameter, has to be taken into account.
Most of the evidence for dark energy comes from combining CMB and supernovae priors, each of them measuring
many correlated parameters at once. It is no surprise that Bayesian methods are so popular in astrophysics and
cosmology.

9.2 Model selection
So far we have been working within a given model. When we choose a model to test, we also select some free
functions that define the model and that we parametrize in some convenient way. If we decide to change a
model, e.g., from the uncoupled dark energy model with wDE = constant to a specific f(R) model, we have to
start a new process so that the likelihood will give us a new set of best fit parameters. But how do we decide
whether the f(R) model is better than the dark energy model with wDE = constant?

This is a problem of model selection, rather than model optimization. One possibility (the frequentist
approach) is to simply evaluate the “goodness of fit”: once we have the best fit parameters for models A and B,
we calculate the χ2 statistics of the model prediction with respect to data and choose the one with better χ2

statistics (which is not necessarily the one with lowest χ2 because the χ2 statistics depends also on the number
of degrees of freedom, namely on the number of independent data minus the number of free parameters). Beside
the intrinsic problem of any frequentist approach (e.g., lack of priors), this is often too rough a guide to selection,
mostly because if the model B includes a parameter that is poorly constrained by the data it would not help in
the fit but it would still be counted as an extra degree of freedom and this would unfairly penalize it. Imagine
for instance two very similar dark energy models, A and B, with two parameters each. Suppose that the model
B predicts some peculiar feature at the redshift z = 3, e.g., cluster abundance, and that feature depends on
a third parameter. The model B is interesting also because of this unique prediction but it would be unfairly
penalized by current constraints, since we have very limited knowledge of high-redshift clusters so far. A χ2 test
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would presumably conclude that the model A fits existing data as well as the model B but with one parameter
less and therefore it would win.

To overcome this problem we can instead use another model selection procedure, called evidence or marginal
likelihood. We have already seen in Eq. (9.6) that the evidence is defined as the likelihood integral over the
whole domain

E(x;M) =

∫
f(x; θMi )p(θMi ) dnθMi , (9.20)

where as before x = (x1, x2, ...) are random data, θMi are n theoretical parameters that describe the model M ,
f is the likelihood function, and p is the prior probability of the parameter θMi . Note that we have added a
superscript M to remember that the parameters refer to some model M .

If we want to compare two models M1 and M2, then we calculate the Bayes ratio [542]

B12 =

∫
f(x; θM1

i )p(θM1
i )dnθM1

i∫
f(x; θM2

i )p(θM2
i )dnθM2

i

. (9.21)

A Bayes ratio B12 > 1 (< 1) says that the current data favors the model M1 (M2). If we have any reason to
weigh the models in some way, we can assign a model prior p(Mj) and use Bayes’ theorem again to write

L(M ;x) ∝ E(x;M)p(M) , (9.22)

and evaluate the ratio
L(M1;x)

L(M2;x)
= B12

p(M1)

p(M2)
. (9.23)

Generally, however, one assumes that p(M1) = p(M2).
Suppose now that a certain parameter θn is very poorly constrained by the data xi. This implies that the

likelihood f(xi; θi) is practically independent of θn, that is, f remains almost constant when varying θn. Then
if the prior is factorizable (which is often the case) so that p(θi) = Πipi(θi), we see that the integral over θn
decouples. Since the priors are just standard probability distribution functions we have

∫
pn(θn)dθn = 1, so that

as expected θn does not enter the evidence integral. The evidence therefore correctly discards poorly constrained
parameters and does not penalize models for introducing them. The blame is where it belongs: poor data.

If the likelihood and the prior can both be approximated by Gaussian distributions, we can evaluate the
evidence analytically. Let us assume then an uncorrelated Gaussian likelihood with best fit parameters θ(B)

i

and variances σB,i and an uncorrelated Gaussian prior with means θ(P )
i and variances σP,i. The posterior can

be written as

L(θi) =
∏
i

f(x; θi)p(θi)

=
∏
i

fmax,i(2πσ
2
P,i)

−1/2 exp

[
− (θi − θ

(B)
i )2

2σ2
B,i

− (θi − θ
(P )
i )2

2σ2
P,i

]

=
∏
i

fmax,i(2πσ
2
P,i)

−1/2 exp

[
−1

2

(θi − θ∗i )
2

σ2
i∗

]
exp

[
−1

2

(θ
(B)
i − θ

(P )
i )2

σ2
B,i + σ2

P,i

]
, (9.24)

where fmax,i is the i-th likelihood maximum and where the posterior mean and variance for each i are

θ∗i =
σ2
B,iθ

(P )
i + σ2

P,iθ
(B)
i

σ2
B,i + σ2

P,i

, (9.25)

σ2
i∗ =

σ2
P,iσ

2
B,i

σ2
B,i + σ2

P,i

. (9.26)

The evidence is therefore

E =

∫
f(x; θi)p(θi)dθi

=
∏
i

fmax,i
σi∗
σP,i

exp

−1

2

(θ(B)
i

σB,i

)2

+

(
θ
(P )
i

σP,i

)2

−
(
θ∗i
σi∗

)2
 . (9.27)
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We see that the evidence is determined by three factors. The first, fmax,i, is the likelihood maximum and
expresses how well the model fits the data. The second is a ratio of parameter volumes: if we take the variance
as a measure of the available parameter space for the i-th parameter, this factor expresses how the parameter
volume changes from the prior to the posterior. Every factor σi∗/σP,i = σB,i/(σB,i + σP,i)

1/2 is smaller than
unity, so adding more parameters penalizes the evidence, quantifying Occam’s razor argumentb. If however the
data do not constrain the i-th parameter, i.e. if σB,i ≫ σP,i, then the i-th factor σi∗/σP,i is close to unity and
there is no penalization. Finally the third factor penalizes the evidence if the best-fit i-th parameter or the prior
mean differ appreciably from the posterior mean θ∗i : although the new data might justify that parameter, the
overall agreement including the prior does not seem to require it. Here again, if data constraints are very weak
(large σB,i) then there is no penalization. You can work out another example in the problem [13.3].

It is a matter of straightforward algebra to extend the expression to correlated Gaussian parameters. If the
evidence integral is

E =

∫
f(x; θi)p(θi)dθi

≈ fmax

∫
exp

[
−1

2
(θi − θ

(B)
i )Lij(θj − θ

(B)
j )− 1

2
(θi − θ

(P )
i )Pij(θj − θ

(P )
j )

]
dθi , (9.28)

where θ(B)
i are the best fit estimators, θ(P )

i are the prior means, Lij in the exponential factor is the inverse of
the covariance matrix of the likelihood (or Fisher matrix, see the next section) and Pij is the inverse of the
covariance matrix of the prior, we obtain

E = fmax
|F |−1/2

|P |−1/2
exp

[
−1

2
(θ

(B)
i Lijθ

(B)
j + θ

(P )
i Pijθ

(P )
j − θ̃iFij θ̃j)

]
, (9.29)

where F = P +L and θ̃i = (F−1)im[Lmjθ
(B)
j + Pmjθ

(P )
j ].

The evidence is often not easy to evaluate because it requires a multidimensional integration over the whole
parameter space. Several approximation or alternative model selection techniques have been proposed (see for
instance the excellent review [543]). They are however only justified in specific cases and may give conflicting
results, sometimes leading to controversies [544, 545]. Whenever possible, the evidence integral should be used
instead.

Let us now come back to the Bayes factors, i.e. the ratio of the evidences. Once we have calculated this
ratio we are still to decide how to gauge it in favor of the model A or B. There is no absolute way to achieve
this: large or small factors should incline us towards one of the two models over the other one, but there is
no absolute “statistics” to associate to any specific level. The scale most used in literature is called Jeffrey’s
scale. If | lnB12| < 1 there is no evidence in favor of any of the models (“inconclusive evidence”); if | lnB12| > 1
there is a “weak evidence”; | lnB12| > 2.5 means “moderate evidence”; | lnB12| > 5 means “strong evidence”.
Of course this terminology is purely suggestive and not to be taken literally. We can consider it as a practical
bookkeeping device. When the data promote a model from weakly to moderately to strongly “evident”, it is
time to take it seriously and challenge aggressively.

9.3 Fisher matrix
As straightforward and versatile as the likelihood method is, it is still often too complicated or computing-
expensive to implement, especially when there are more than a few parameters involved. In fact there are some
cases in which several tens or hundreds of parameters are present.

One could think that a model with more than 3 or 4 free parameters does not deserve the name of model
and even less that one of “theory”. However every theory begins by representing a vast dataset with a smaller
set of numbers. And since cosmological experiments may easily collect terabytes of data, reducing them to 10,
100, or 1000 numbers should be seen already as a great progress towards a unified description (if there is one!).

Anyway, the problem with the likelihood is that we need to evaluate L(θi) for every θi, or at least for many
θi, e.g., for a grid of, say, ten values for each dimension in parameters space. If there are 10 parameters, this

bWilliam of Ockham (c.1288-c.1348), a franciscan theologian, was known for his principle “Entia non sunt multiplicanda sine
necessitate” (although this particular formulation is probably apocriphal) - one should not multiply entities beyond necessity.
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means 1010 different evaluations. If each evaluation takes a second (say, a run of a CMB code), we are in for a
waiting time of a 300 years...

One way out is to use a Monte Carlo approach. Instead of building a full grid, one explores the landscape
with random jumps. The size of the jumps in turn may be related to the steepness of the function (smaller
jumps over rough terrain, larger ones over flatlands). This technique will grow with the number D of dimensions
(parameters) as D, instead of exponentially as in full grid method. But this might still be a lot: a typical Markov
chain exploration can take hundred of thousands of computations.

It is time to think of something faster: the Fisher matrix. The idea is straightforward: to approximate the
full likelihood with a (multivariate) Gaussian distribution,

L ≈ N exp

[
−1

2
(θi − θ̂i)Fij(θj − θ̂j)

]
, (9.30)

where the values θ̂i, the maximum likelihood estimators, are function of the data, and Fij , the Fisher (or
information) matrix, is the inverse of the correlation matrix. It is crucial to pay attention to the fact that the
likelihood is a Gaussian function of the parameters, not (or not only) of the data. We often assumed in the
previous sections the data to be Gaussian but never, so far, did the same for the parameters. The form (9.30)
is of course a crude approximation. One could hope however that it is a reasonable approximation at least near
the peak of the distribution, given that around a local maximum every smooth function (in this case lnL) can
be approximated as a quadratic function. Therefore we expect this approximation to work better for θi close
to their estimators θ̂i.

Expanding the exponent of a generic likelihood near its peak (i.e. near the maximum likelihood (ML) value
θ̂i of the parameters) as

lnL(θi) ≈ lnL(θ̂i) +
1

2

∂2 lnL(θi)

∂θi∂θj

∣∣∣∣∣
ML

(θi − θ̂i)(θj − θ̂j) , (9.31)

(naturally the first derivatives are absent because they vanish at the peak) we find, comparing with Eq. (9.30),
that the normalization N = L(θ̂i) depends only on the data and that the Fisher matrix (FM) is defined as

Fij ≡ −∂
2 lnL(θ)

∂θi∂θj

∣∣∣∣∣
ML

. (9.32)

Before proceeding further, let us remark that actually the FM is defined as the expected value of the matrix
−∂2 lnL/∂θi∂θj , to be obtained by averaging the matrix over the data distribution, i.e.

Fij ≡ −
〈
∂2 lnL(θ)

∂θi∂θj

〉
= −

∫
∂2 lnL(θ)

∂θi∂θj
L(x;θ)dx . (9.33)

However, within the approximation (9.30), the two definitions coincide.
You may say now that in order to find the ML estimator we still have to build the full likelihood: does this

again require the 1010 evaluations of L(θi) that we mentioned above? Well, we could answer that there are fast
numerical methods to search for maxima in a multi-dimensional function without spanning the whole parameter
space. For instance, in one dimension, if we can guess that the parameter is near θ(0) then we can expand the
derivative of the log-likelihood L = − lnL as follows

L,θ(θ) ≈ L,θ(θ(0)) + L,θθ(θ − θ(0)) , (9.34)

and estimate the minimum of L (i.e. the maximum of L) by putting L,θ(θ) = 0. Then we find the approximation

θ(1) = θ(0) − L,θ
L,θθ

∣∣∣∣
θ(0)

, (9.35)

which could be iterated by assuming as new guess θ(1) instead of θ(0). This method, called Newton-Raphson,
is extremely fast for well-behaved likelihood functions and can be directly generalized to the multi-dimensional
case. However perhaps the most useful application of the Fisher formalism is to the cases in which we do not
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need to search for the likelihood peak because we already know from the start the ML estimator: when we are
simulating an experiment.

Suppose we want to forecast how well a future supernovae experiment, which is supposed to collect n =
10, 000 supernovae light curves and to derive their peak magnitude mi with errors σi, is capable of constraining
the cosmological parameters Ω

(0)
m ,Ω

(0)
Λ . Let us start by assuming that the n random variables mi(zi) follow a

PDF with known variance σi and mean mth(zi; Ω
(0)
m ,Ω

(0)
Λ ) = 5 log10 dL(zi; Ω

(0)
m ,Ω

(0)
Λ )+C. Here we take the PDF

to be Gaussian but we could also assume any other PDF that we have any reason to describe the data. Since
the data PDF is assumed to be Gaussian we can immediately form the likelihood (neglecting the normalization
constant):

Lm ≈ exp

[
−1

2

∑
i

(mi −mth(zi))
2

σ2
i

]
= exp

(
−1

2
µiC

−1
ij µj

)
. (9.36)

Here we have expressed the argument of the exponential in a slightly more general way: we have introduced the
vector µi ≡ mi −mth(zi) and the correlation matrix Cij , that in this particular case is rather trivial

C = diag(σ2
1 , σ

2
2 , σ

2
3 ...) . (9.37)

When we discuss dark energy, we are interested in the parameters such as Ω(0)
m ,Ω

(0)
Λ . So we wish to produce

a likelihood function of Ω(0)
m ,Ω

(0)
Λ , something in the form of Eq. (9.30) like

L(Ω(0)
m ,Ω

(0)
Λ ) = exp

[
−1

2
(Ω

(0)
i − Ω̂

(0)
i )Fij(Ω

(0)
j − Ω̂

(0)
j )

]
, (9.38)

where Fij is of course our Fisher matrix and i, j run over the subscripts m,Λ. Since real data are not yet
present, we do not have the ML estimators Ω̂

(0)
i . However we are simulating the future experiment, so we

may take for estimators the values mth(zi; Ω
(0)F
m ,Ω

(0)F
Λ ) obtained using some fiducial cosmology Ω

(0)F
m ,Ω

(0)F
Λ ,

for instance Ω
(0)F
m = 0.3,Ω

(0)F
Λ = 0.7. This means that we will find the confidence regions only around this

particular parameter set. If we decide to change fiducial values, we have to redo our calculations and all our
results will change in some way.

The Fisher matrix of the likelihood (9.36) is then

Fij = − ∂ lnLm

∂Ω
(0)
i ∂Ω

(0)
j

∣∣∣∣
F

=
∑
n

1

σ2
i

∂2mth(zn; Ω
(0)
m ,Ω

(0)
Λ )

∂Ω
(0)
i ∂Ω

(0)
j

∣∣∣∣∣
F

. (9.39)

Notice that Fij is not diagonal even if the original correlation matrix Cij was. Since the same Ω
(0)
m ,Ω

(0)
Λ appear

in all mth(zn), we vary the likelihood of obtaining all mi by varying Ω
(0)
m,Λ. We can now use Eq. (9.38) to derive

the confidence errors for Ω
(0)
m ,Ω

(0)
Λ . In practice, what we have developed so far is a formalism to propagate the

errors from the observational errors σi to the cosmological parameters. The errors σi, in turn, must be based on
the expected performance of the experiment and often their derivation is the most complicated step, involving
many fine details of the observations. Calculating numerically the second order partial derivatives in the Fisher
matrix requires only a few estimations of the likelihood for each of the parameters; if we have 10 parameters
this makes few tens of calculations instead of the 1010 we mentioned at the beginning of this section.

Once we have reduced our likelihood into a Gaussian form, the Fisher matrix is all we need to derive all the
properties. The rest of this section is concerned with various ways to manipulate the Fisher matrix to achieve
several results.

Suppose we decide to switch from a set of parameters xi to another one yj(xi), for instance from Ω
(0)
m ,Ω

(0)
Λ

to the spatial curvature Ω
(0)
K = 1− Ω

(0)
m − Ω

(0)
Λ and their ratio RmΛ = Ω

(0)
m /Ω

(0)
Λ . If we know the Fisher matrix

for xi, the approximated likelihood is

L = exp

(
−1

2
x̃iF

(x)
ij x̃j

)
, (9.40)
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where x̃i = xi − xML
i . Approximating yj near xML

i as

yj ≈ yML
j +

∂yj
∂xi

∣∣∣∣
ML

(xi − xML
i ) , (9.41)

where yML
j ≡ yj(x

ML), we can write

ỹj ≡ yj − yML
j = J−1

ji x̃i . (9.42)

Here Jji ≡ (∂xj/∂yi)ML is the transformation Jacobian evaluated on the ML estimators. Then we have

x̃i = Jiℓỹℓ , (9.43)

and we can find the new Fisher matrix by substituting into Eq. (9.40) simply as

F
(y)
ij = JiℓF

(x)
ℓm Jmj , (9.44)

which is summed over indices. We can say that the Fisher matrix transforms as a tensor. Notice that the
Jacobian matrix does not need to be a square matrix. The old parameters xj can be projected in fact onto a
smaller number of new parameters yi.

One may wonder why the Jacobian does not enter also in the transformation from the volume element
dxidx2... to the new element dyidy2..., so that L(yj) = |J |L[xi(yj)]. This would imply an additional loga-
rithmic term ln|J | in the transformed probability function, spoiling the Gaussian approximation altogether.
However near the ML values we can approximate |J | with |JML| and include this constant factor in the overall
normalization. That is, forget about it.

Let us apply the transformation technique to an interesting problem. We have used extensively the parametriza-
tion around a0 = 1 of the equation of state wDE(a) = w0 + w1(1 − a) [Eq. (1.97)]. We could however have
expanded wDE(a) around any other point ap and write instead wDE(a) = wp + w1(ap − a), where

wp = w0 + w1(1− ap) . (9.45)

We can now ask the question whether the constraint we obtain on wp (i.e. σ2
w0

) is tighter than the one on w0,
that is whether we can better rule out say wDE = −1 at ap than at a0. The problem consists therefore in finding
the value ap (called pivot point) that minimizes the variance of wDE(a). Denoting the maximum likelihood
estimators (or fiducial values) with ŵ0, ŵ1, this occurs for the value of a which is the solution of the following
equation,

d

da

[
⟨[(w0 − ŵ0) + (1− a)(w1 − ŵ1)]

2⟩
]

=
d

da

[
σ2
w0

+ (1− a)2σ2
w1

+ 2(1− a)ρσw0σw1

]
= −2(1− a)σ2

w1
− 2ρσw0

σw1
= 0 . (9.46)

Here σ2
wi

≡ ⟨(wi− ŵi)
2⟩ for i = 0, 1 and ρ ≡ ⟨(w0 − ŵ0)(w1 − ŵ1)⟩/(σw0

σw1
) is the correlation coefficient. Then

we obtain [546]

ap = 1 +
ρσw0

σw1

. (9.47)

In terms of the two-dimensional Fisher matrix Fij for w0, w1, we can write

σ2
w0

= (F−1)11 , σ2
w1

= (F−1)22 , ρσw0
σw1

= (F−1)12 . (9.48)

The transformation from p = (w0, w1) to q = (wp, w1) is achieved by using Eq. (9.44) with the transformation
matrix

J =
∂p

∂q
=

(
1 1− ap
0 1

)
. (9.49)

It is straightforward to verify that with this transformation the new matrix F p = J tFJ is diagonal (the
superscript t denotes transpose) and its inverse is:

F−1
p =

(
σ2
w0

(1− ρ2) 0
0 σ2

w1

)
. (9.50)
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The parameters wp, w1 are therefore uncorrelated and their confidence regions are circular. Moreover, as ex-
pected, the error on wp, σ2

wp
≡ σ2

w0
(1− ρ2) , is always smaller than σ2

w0
.

What if we want to maximize the likelihood with respect to some parameter? This means, if you remember,
to fix one of the parameters to its maximum likelihood estimator. With the Fisher matrix this is really trivial,
since fixing a parameter to its maximum likelihood estimator means putting the difference θi − θ̂i = 0 and
therefore to discard all entries in the Fisher matrix related to the i-th parameter. In practice, this means that
one removes from the Fisher matrix the rows and columns of the maximized parameters.

What about marginalization then? Take a general 2-dimensional Gaussian PDF

G(x1, x2) = N exp

[
− 1

2(1− ρ2)

(
x21
σ2
1

+
x22
σ2
2

− 2
ρx1x2
σ1σ2

)]
, (9.51)

where ρ is the correlation factor. This PDF can be written as

G(Xi) = N exp

[
−1

2
(XiC

−1
ij Xj)

]
, (9.52)

where Xi ≡ xi − µi (generalizing to non-zero µ’s), and

C =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
. (9.53)

Let us now evaluate the integral
∫
G(x1, x2) dx2 over the whole real domain. The result is given by

G(x1) = Ñ exp[−x21/(2σ2
1)] , (9.54)

where Ñ is a new normalization constant. The new correlation “matrix” is now simply C11 = σ2
1 .

In terms of the Fisher matrix F = C−1 we see that the outcome of the marginalization has been the removal
from F−1 = C of the rows and columns related to the second parameter. This trick remains true for any
number of dimensions: to marginalize over the j-th parameter, one simply needs to remove from the inverse of
the Fisher matrix F−1 the j-th row and column; to marginalize at once over several parameters, one removes all
the rows and columns related to those parameters. As a consequence, the diagonal of the inverse Fisher matrix
contains the fully-marginalized 1σ errors of the corresponding parameters (i.e. the errors one gets on the i-th
parameter after marginalizing over all the others)

σ2
i = (F−1)ii . (9.55)

This latter property is probably the most useful and time-saving feature of the whole Fisher method. Be warned
however that the procedure of inverting and striking out rows and columns is in general numerically unstable if
the matrix contains small eigenvalues. There are more stable algorithms that perform this operation [546].

Often we want to reduce the Fisher matrix to a 2× 2 matrix F2 for two parameters, say θ1, θ2, because then
it is easy to plot the resulting 2-dimensional confidence regions, defined as the regions of constant likelihood that
contains a predetermined fraction of the total likelihood volume. Since the problem has been reduced from the
start to gaussianity, we will necessarily have ellipsoidal confidence regions on the plane θ1, θ2. Looking at the
form of the 2-dimensional Gaussian PDF (9.51), you will realize that the semiaxes of the ellipses are oriented
along the eigenvectors of F−1

2 , that is, they form an angle

tan 2α =
2ρσ1σ2
σ2
1 − σ2

2

, (9.56)

with the coordinate axes. Moreover, the semiaxes ratio is equal to the square root of the eigenvalues ratio.
The length of the semiaxes depends clearly on the level of confidence. If we take the semiaxes length along the
i-th eigenvector equal to

√
λi, where λi is the i-th eigenvalue, we are finding the 1σ region, but because we are

in two dimensions, this level does not contain 68.3% of the probability but rather less than 40%. Instead, we
find by integrating a 2-dimensional Gaussian that the one-dimensional “1σ” region corresponding to 68.3% of
probability content is found for semiaxes which are roughly 1.51 times the eigenvalues. Regions at 95.4% and
99.7% correspond to semiaxes 2.49 and 3.44 times the eigenvalues, respectively. The area of the 68.3% ellipses
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is πab, if a and b are the semiaxes length, that is 1.51 times the eigenvalues. The area is therefore equal to
(1.51)2π(detF2)

−1. Since an experiment is more constraining when the confidence region is smaller, one can
define a simple but useful figure of merit (FOM) as [546]

FOM = detF2 . (9.57)

Notice however that the FOM is often defined to be the area at 95%, or some other similar but not equivalent
choice.

The FOM is particularly relevant to dark energy parameters such as w0, w1 [see, e.g., Eq. (1.97)]. The
FOM naturally depends on how many parameters have been marginalized. Every parameter marginalization
increases (or more exactly, does not reduce) the amount of uncertainty with respect to a maximized likelihood
and therefore decreases the available information and the FOM of the final set of parameters, as we show in
Fig. 9.1.

All these simple rules are really good news for practical work. The bad news comes when they do not work.
The major problem, in practice, is when the Fisher matrix itself is singular. Then there is no inverse and no
marginalization. But the Fisher matrix can be singular only when rows or columns are not linearly independent.
It is easy to see when this happens. If L(θ1, θ2) depends on the two parameters through a linear combination,
e.g., aθ1 + bθ2, then the Fisher matrix will be singular.

Let us turn this bug into a feature. If the Fisher matrix is singular, then it means that there is a linear
combination of two or more parameters hidden somewhere in the likelihood. Therefore, we can substitute a new
parameter θ̂ in place of that combination, e.g., θ̂ = aθ1+ bθ2 and remove the singularity by restricting ourselves
to θ̂ instead of the original pair. Actually we should have done this from the start, since if the physics depends
only on the combination aθ1+ bθ2 there is no way we can distinguish between θ1, θ2. It is only this combination
that matters and we should replace it by θ̂. We say in this case that there is a degeneracy between θ1 and θ2.
Sometimes, however, it is not obvious at all that this was the case and the singularity of the Fisher matrix is a
warning for us to look better.

The only real problem is when there is almost a singularity. If the combination is given by aθ1 + bθ2 + cθ21,
then there should be no singularity because of the non-linear term. However, if a, b are of the order of unity
while c = 10−10, then there is a high degree of degeneracy, albeit not a total one. In this case the Fisher
matrix may behave in a dangerous way, with extremely small eigenvalues and unstable inversions. This is the
case that requires a human brain. It is our duty to understand the physical cause of this quasi-degeneracy and
redefine the parameters, perhaps giving up the possibility of discriminating between θ1, θ2 and focusing on the
combined term θ̂ = aθ1+bθ2+cθ

2
1. Or we may find additional priors (e.g., other experiments) that give separate

information on one of the quasi-degenerate parameters and break the degeneracy.
This brings us to another advantage of the Fisher matrix approach. How do we add priors to a Fisher matrix

Fij? If the prior is the outcome of another experiment and we have the Fisher matrix F (p)
ij of that experiment,

then the problem reduces to multiplying a Gaussian likelihood by another Gaussian likelihood, obtaining a new
Gaussian likelihood. If the experiments have the same ML estimators or the same fiducial model, as in the case
in which we simulate them, the new Fisher matrix is given by

F
(tot)
ij = Fij + F

(p)
ij . (9.58)

As simple as this: combining the information from two forecasts (with the same fiducial model) means summing
their Fisher matrices. In so doing one has to ensure that the parameters and their order is exactly the same
for both matrices: trivial, but a most likely source of practical confusion. If one of the experiments constrains
only a subset of the total parameters (for instance, supernovae experiments do not constrain the primordial
perturbation slope ns), it means that it contains no information on that subset, and therefore the corresponding
rows and columns are to be put to zero. This means that the two Fisher matrices are rendered of the same
rank by filling the one with less parameters (say F (p)) with zeros in the correct position. For instance if we only
want to add the information that the single m-th parameter comes with an error σm then we add the Fisher
matrix (no sum on m)

F
(p)
ij =

δmi δ
m
j

σ2
m

. (9.59)

So you see that in this case F (p) would be utterly singular but the total F (tot) is not (unless of course F was
singular as well for the same parameter, bad luck really).
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Figure 9.1: The first bar on the right is the FOM for w0, w1 with the parametrization (1.97) in a weak lensing
experiment assuming all the other cosmological parameters have been fixed to their fiducial values. When
additional parameters (listed on the top of the histogram) are marginalized, instead of being held fixed, the
FOM reduces. In the figure Ωm, Ωb, n, and Σ0 correspond to Ω

(0)
m , Ω(0)

b , ns, and Σ in our notation, respectively.
From Ref. [496].

Let us mention the final point about the Fisher matrix. A statistical theorem known as Cramer-Rao in-
equality states that the minimal variance of an unbiased estimator cannot be less than (F−1)ii (which means
first to take the inverse and then take the i-th term on the diagonal). In this sense the Fisher matrix gives the
minimal error one can hope to achieve. If you are very optimist then the Fisher matrix is your tool. Notice,
however, that the maximum likelihood estimators need not be unbiased estimators at all, although they are
unbiased for large samples (asymptotically unbiased) otherwise they would be of little utility. So we could end
up in producing the best possible error estimate for some unbiased estimators which we do not know how to
determine!

Once we accept the Gaussian approximation, the Fisher matrix embodies all the information we have on the
problem. The manipulation of the Fisher matrix therefore is all we need. To recapitulate, there are five golden
rules of fisherology :

1. To transform variables, multiply the Fisher matrix on the right and on the left by the transformation
Jacobian.

2. To maximize over some parameters, remove from the matrix the rows and the columns related to those
parameters.

3. To marginalize over some parameters, remove from the inverse matrix the rows and the columns related
to those parameters (being careful about the numerical instability pointed out above).

4. To combine Fisher matrices from independent experiments with the same fiducial, sum the corresponding
Fisher matrices, ensuring the same order of parameters, and, if necessary, inserting rows and columns of
zeros for unconstrained parameters.

5. The ellipsoidal confidence regions have semiaxes lengths equal to the square root of the eigenvalues of the
inverse Fisher matrix, while the semiaxes are oriented along the corresponding eigenvectors. The area of
the ellipse (or volume of ellipsoid) is proportional to the determinant of the inverse Fisher matrix. The
determinant of the Fisher matrix is an indicator of performance or a figure of merit.

If one wishes, one could define a new set of parameters by diagonalizing the Fisher matrix, obtaining circular (or
spherical) confidence regions. In some cases this is useful because it reveals hidden properties. There are other
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cases in which the new parameters are so remote from any physical direct meaning that the exercise is futile.
Notice that the confidence region volume (and therefore the FOM) does not change under the diagonalization.

9.4 The Fisher matrix for the power spectrum
Now we have all the tools to derive a very useful result, the Fisher matrix for an experiment that measures the
galaxy power spectrum.

Suppose a future experiment will provide us with the Fourier coefficients δk of a galaxy distribution and
their power spectrum calculated for a set of m wavenumbers ki in some redshift bin z, z + ∆z. Our theory
predicts the spectrum P (k, z; pi) as function of, say, pi ≡ Ω

(0)
m ,Ω

(0)
b , h, ns etc. In any real survey with a galaxy

density n(z), however, the power spectrum will include the Poisson noise part (see Lecture notes on Cosmology
for a derivation):

∆2
k ≡ ⟨δkδ∗k⟩ = ⟨δkδ−k⟩ = P (k, z) +

1

n
. (9.60)

Since the average galaxy density is estimated from the survey itself we have by construction ⟨δ(x)⟩ = 0 and
therefore ⟨δki⟩ = 0 for any ki. The coefficients δki are complex variables in which the real and imaginary parts
obey the same Gaussian statistics. So now we calculate the Fisher matrix for only, say, the real parts of δki

and the Fisher matrix for the whole δki
is simply the sum of two identical Fisher matrices, i.e. twice the result

for the real parts. However when we count the total number of independent modes we have to remember that
only half of them are statistically independent since δ∗k = δ−k so in fact we should finally divide by two the final
result. That is, we can forget both factors.

If we assume the galaxy distribution to be well approximated by a Gaussian we can write the likelihood:

L =
1

(2π)m/2Πi∆i
exp

[
−1

2

m∑
i

δ2i
∆2
i

]
, (9.61)

(where to simplify notation we write ∆i = ∆ki
, δi = Re δki

) assuming that the measures at every ki are
statistically independent. When we simulate a future experiment, P (k, z) is taken to be the theoretical spectrum
of our fiducial model described by the parameters p(F )

j . Then we have

L = − lnL =
m

2
ln(2π) +

∑
i

ln∆i +
∑
i

δ2i
2∆2

i

. (9.62)

We further simplify the notation by suppressing the index i running over the k bins from ∆i, δi and denote the
differentiation with respect to the j-th parameter as ∆,j . Now from Eq. (9.32) the Fisher matrix for a particular
z bin is

Fℓm =

〈
∂2L

∂pℓ∂pm

〉
=
∑[

∆,ℓm

∆
− ∆,ℓ∆,m

∆2
− ⟨δ2⟩

(
∆,ℓm

∆3
− 3

∆,ℓ∆m

∆4

)]
=

1

2

∑
i

∂ lnPi
∂pℓ

∂ lnPi
∂pm

(
nPi

1 + nPi

)2

, (9.63)

[where we used ⟨δ2⟩ = ∆2 from Eq. (9.60)] calculated on the fiducial model.
For a more compact expression we can now approximate the sum with an integral over k. To do this we

need to count how many modes lie in the bin defined by the modulus interval k, k+dk and cosine interval dµ,,
i.e. in the Fourier volume 2πk2dkdµ. The number of modes we can really use is limited by two factors: the
size of the volume and the shot noise. Modes larger than the survey volume cannot be measured. Short modes
sampled by only a few galaxies cannot be reliably measured either.

To take into account these limitations we discretize the Fourier space into cells of volume Vcell = (2π)3/Vsurvey,
so that we have 2πk2dkdµ/Vcell = (2π)−2Vsurveyk

2dkdµ modes in the survey volume. The integral form of the
Fisher matrix is therefore given by [547, 548]

Fℓm =
1

8π2

∫ +1

−1

dµ

∫ kmax

kmin

k2dk
∂ lnP (k, µ)

∂pℓ

∂ lnP (k, µ)

∂pm

[
nP (k, µ)

nP (k, µ) + 1

]2
Vsurvey . (9.64)
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The factor

Veff =

[
nP (k, µ)

nP (k, µ) + 1

]2
Vsurvey , (9.65)

can be seen as an effective survey volume. When nP ≫ 1 the sampling is good enough to derive all the
cosmological information that can be extracted from the survey and there is no need of more sources. For
nP ≪ 1 the effective volume is severely reduced. If we subdivide the data into several z independent bins, we
can simply sum the Fisher matrices for every bin.

It is straightforward to extend the Fisher matrix calculation to a more general likelihood with full correlation.
Consider a set of n Gaussian data x with mean µ and covariance matrix C distributed according to the likelihood

L =
1

(2π)n/2
√
detC

exp

[
−1

2
(x− µ)C−1(x− µ)t

]
, (9.66)

where t denotes the transpose. We define the data matrix D = (x − µ)t(x − µ). Then the covariance matrix
is defined in all generality as the expected value of D:

⟨D⟩ = C . (9.67)

We can write, up to a constant

L = − lnL =
1

2
[ ln detC +TrC−1D] =

1

2
Tr [ lnC +C−1D] , (9.68)

where we used the matrix identity: ln detC = Tr lnC. We suppose now that the theoretical parameters θ are
both in µ and in C. The Fisher matrix is then the expected value

Fij =

〈
∂2L
∂θi∂θj

〉
≡ ⟨L,ij⟩ , (9.69)

To calculate ⟨L,ij⟩ we use the fact that for Gaussian data ⟨x⟩ = µ , and consequently

⟨D,i⟩ = 0 , ⟨D,ij⟩ = µ,iµ
t
,j + µ,jµ

t
,i . (9.70)

Notice that ⟨D,i⟩ ≠ ⟨D⟩,i . Then we have

2L,i = Tr [C−1C,i(I −C−1D) +C−1D,i] , (9.71)

(I is the identity matrix) which averages to zero,

⟨L,i⟩ = 0 . (9.72)

This result is actually true for any distribution, not just Gaussian, since it corresponds to the derivative with
respect to the parameters of the norm of the distribution. Notice that the average only acts on D since the
random variables, the data, are only there, while of course derivatives act only on C and µ since parameters
are only there. To evaluate ⟨L,ij⟩ we notice that all first derivatives ⟨D,i⟩ vanish and that ⟨I − C−1D⟩ = 0.
Then we are finally left with [549, 550]

Fij ≡ ⟨L,ij⟩ =
1

2
Tr
[
C−1C,iC

−1C,j +C−1⟨D,ij⟩
]
=

1

2
C−1
ℓm

∂Cmn
∂θi

C−1
np

∂Cpℓ
∂θj

+ C−1
ℓm

∂µℓ
∂θi

∂µm
∂θj

, (9.73)

(sum over repeated indices) where in the last equality we have written down the full index expression to be
more explicit. Equation (9.63) is recovered when µ = 0 and Cℓm = ∆2

mδℓm.



Chapter 10

Cosmology with galaxy clusters

Galaxy clusters occupy a special position in cosmology, since they are the largest gravitationally bounded object
in the Universe. They are therefore a bridge between linear scales, where the memory of the initial conditions is
still fully traceable, and the strongly non-linear scales in which other non gravitational phenomena take place.
Galaxy clusters can be studied by looking at the dynamics of member galaxies, at the X-ray emission of the hot
intra cluster gas, at weak and strong lensing, and at the Sunyaev-Zel’dovich effect on the CMB photons. We
will discuss some of these topics in this chapter.

10.1 Quick summary
• Galaxy clusters are the largest gravitational bounded object on the Universe

• They can be studied by internal dynamics, strong and weak lensing, X-ray emission of the hot intracluster
component, Sunyaev-Zel’dovich effect

• All these probes point to a large amount of dark matter, ten times the baryonic component

• Clusters are a direct probe of cosmology also because their number density depend sensitively on pertur-
bation growth and on volume measurements

10.2 Mass of clusters
Galaxy clusters are groups of hundreds to thousands galaxies within roughly 1 Mpc radius from their center.
The closest cluster is Virgo (15 Mpc/h away); the closest rich and regular cluster is Coma (65 Mpc/h). The
most regular among them appear as relatively isolated, almost spherical, groups in equilibrium (i.e. without
significant subclustering neither in space nor in velocity).

There are at least three independent methods to determine the mass of clusters: (i) hydrostatic equilibrium
between the intra-cluster medium (ICM) and the gravitational potential, (ii) dynamics of member galaxies, and
(iii) lensing. We discuss here the first method.

Hydrostatic equilibrium for the ICM gas means that the gradient of the pressure Pgas equals the gravitational
force:

∇Pgas = −ρgas∇ΦN , (10.1)

where ρgas is the density and ΦN is the gravitational potential. Assuming spherical symmetry we obtain

dPgas

dr
= −GMρgas

r2
, (10.2)

where we have used ΦN = −GM/r. Assuming the ideal gas equation of state

Pgas =
N

V
kBT =

ρgas
µmp

kBT , (10.3)
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where µ ≈ 0.6 is the mean molecular weight for a gas with the expected primordial compositiona and mp is the
proton mass, we obtain for the mass within a radius r:

M(r) = − r

G

kBT

µmp

(
d lnρgas
d lnr

+
d lnT

d lnr

)
. (10.4)

This provides a relation between the gas temperature T , the density profile ρgas, and the total cluster mass
profile M(r). In turn, the gas temperature can be estimated by comparing the X-ray bremsstrahlung emission
with plasma models. The gas density profile is often parametrized by the so-called β-model distribution

ρgas =
ρ0

[1 + (r/rc)2]3β/2
, (10.5)

where β = µmpσ
2
r/(kBT ) is the ratio of the gas kinetic energy (σr is the line-of-sight velocity dispersion) to

temperature. If, in addition, the temperature gradient d lnT/d lnr is negligible (isothermal distribution) then
the mass-temperature (M-T) relation reduces to

M(r) =
3βkBT (r)

Gµmp

r3

r2c + r2
≈ (1.1× 1014h−1M⊙)β

T (r)r3

r2c + r2
, (10.6)

where r and T are in units of h−1 Mpc and keV, respectively. Although β is in principle measurable, it is always
left as a free parameter in order to take into account at some level departures from the various assumptions
(spherical model, ideal gas equation of state, isothermal distribution, etc.).

More complicated, and hopefully more realistic, models for the M-T relation have been proposed. Using
such mass-temperature relations the mass of several clusters has been established, for instance, by the satellites
Chandra and XMM-Newton. Averaging over many clusters it is also possible to fit a universal simple mass-
temperature relation. The simple fit provided by Vikhlinin et al (2006) is

M =M5

(
T

5 keV

)α
, (10.7)

with α ≈ 1.5-1.6 and M5 ≈ 1014M⊙. A value α = 3/2 is indeed predicted for a virialized cluster, since in
this case the velocity V 2

vir scales as M/R ∼ R2 i.e. as M2/3 and the gas kinetic energy is proportional to the
temperature, so that V 2

vir ∝ M2/3 ∝ T . Ultimately, a calibration of the mass-temperature relation will be
provided by lensing mass estimations. Once one has a well-calibrated M-T relation, it is possible to infer the
cluster masses directly by measuring the temperature of the hot gas through a comparison of their X-ray spectra
to plasma models (the Bremmstrahlung spectrum goes like exp(−hν/kBTg) and contains often lines from highy
ionized iron). From the mass of several clusters one can finally reconstruct the mass function and compare it
to the theoretical prediction.

10.3 Baryon fractionb

Clusters can contribute to constrain dark energy parameters in another way, first proposed by Sasaki and
Pen, expanding over previous work. As we have seen for the supernovae, what is needed for cosmology is
not necessarily a standard candle but rather a standardizable candle, i.e. a source whose absolute luminosity
depends in a known way on an independent observable. If in clusters the mass of baryons that emit light, either
X-ray emitting hot intracluster gas or optical galaxies, is a fixed universal fraction of the total mass, then by
estimating the total mass we can estimate the total baryon mass and the total luminosity. This works just as
for the supernovae: there, we estimate the total luminosity correlating it with the light-curve width; here, we
correlate it with the total mass. In both cases we do not need to know the value of the absolute luminosity but
only that it is constant or varies in a controlled way.

aThe molecular weight is the mass of a molecule in units of the proton mass, or of 1/12 of 12C. A fully ionized gas can be
considered composed of a mixture of “molecules” formed by either nuclei (mostly protons) or electrons. Since the electron mass is
negligible, the mean molecular weight is 1/2. Adding a bit of Helium nuclei we obtain µ ≈0.6.

bAdapted from Amendola & Tsujikawa, Dark Energy. Theory and Observations, CUP 2010.
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Figure 10.1: X-ray temperature vs. mass in clusters selected by the Chandra satellite (Vikhlinin et al.
Astrophys.J.640:691-709, 2006)

In clusters most of the baryons are actually in the intra-cluster medium, so for sake of simplicity we only
consider the X luminosity. The fundamental assumption is that

Mgas

Mtot
=

Ωb
Ωm

= constant , (10.8)

for all clusters. This is indeed likely because clusters are very large: to make up their mass, one has to pile
up all the matter in a radius of roughly 10 Mpc. It is difficult to imagine such large volumes containing wildly
varying proportions of baryons and dark matter. There would simply be no time for any reasonable process to
segregate matter on such large scales.

So at least in standard cosmology, one expects all clusters to contain the fixed ratio of baryons to total
matter set by cosmology. Now, the X-ray thermal bremsstrahlung luminosity that comes from those baryons
is proportional to the volume V ∝ r3 of the emitting region and to the square of the electron density ρe, i.e.
to ρ2er

3. Since the mass Mgas is in proportion to ρeV , it follows that LX ∝ M2
gas/r

3 or Mgas ∝ (LXr
3)1/2.

We also notice that the X-luminosity is measured by an observed flux FX = LX/(4πd
2
L), so we can also write

Mgas ∝ dLr
3/2. On the other hand, from the hydrostatic equilibrium condition (10.4), we deduce that the

total mass is Mtot(r) ∝ r (see also Eq. 10.6 at large r), if we assume an isothermal distribution and that
d lnρgas/d lnr depends weakly on r (which is true for instance for all power-law ρgas ∼ rn). So finally we have

Mgas

Mtot
∝ dLr

3/2

r
∝ dLr

1/2 . (10.9)

There is a final step to make. The size r of the emission region is seen under the angle θ = r/dA (dA is the
angular diameter distance) and therefore the gas fraction within a fixed angle θ scales as

fgas =
Mgas

Mtot

∣∣∣∣
<θ

= A1dLr
1/2 = A2dLd

1/2
A = A3d

3/2
A , (10.10)

where A1, A2, A3 are constants or observable quantities like θ and z. Note that we have used the Etherington
relation in the last step. The Ai’s factors contain a lot of interesting physics but no cosmological parameters,
so we are not concerned with them here. Then we see that fgasd

−3/2
A is an observable quantity independent of

cosmological parameters. So for instance if we have two clusters, taking the ratio of fgasd
−3/2
A gives the ratio

of their angular diameter distances; so if we know the distance of one cluster we can estimate the distance to
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the other. So fitting fgasd
−3/2
A to the real data obtained by converting X-ray flux and temperature within the

angle θ, we can constrain the cosmological parameters in dA.
The simple fgas prediction above relies on many things, from hydrostatic equilibrium to universal composi-

tion. Some approximations are easy to improve. For instance we can take into account the baryons contained
in the galaxies rather than in the ICM. Other effects can be estimated from N -body, such as the typical de-
parture from hydro-equilibrium or from universal composition. Some other uncertainties can be marginalized
over in the likelihood. Allowing for considerable freedom in parametrizing these effects, a table of constraints
on various cosmological parameters have been derived in Allen et al. (2008) from 42 clusters observed by the
Chandra X-ray satellite. The constraint from the fgas test alone gives for the equation of state of dark energy
wDE = −1.14 ± 0.31, for flat space and constant wDE (all results here and below are at 1σ). The results in
Ettori et al. on a different cluster dataset give Ω

(0)
m = 0.32+0.04

−0.05 and wDE = −1.1+0.60
−0.45. In combination with SN

Ia and CMB, these constraint tightens to wDE = −0.98± 0.07.

10.4 Virial theorem
The mass of clusters can also be estimated by the dynamics of the member galaxies, through the virial theorem
and the Jeans equations. Given a system of N particles of equal masses m with position rk and momenta
pk = mṙk, we define the quantity

G =

N∑
k

rk · pk (10.11)

summing over all particles. We assume the system is at rest, i.e. the average ⟨ṙk⟩ is zero. The derivative of G is

dG

dt
=

∑
k

(mṙk · ṙk + ṗk · rk) (10.12)

=
∑
k

(mṙ2k + Fk · rk) (10.13)

= 2T +
∑
k

Fk · rk (10.14)

where T is the total kinetic energy

T =
1

2
m
∑
k

ṙ2k =
1

2
Mσ2

rr (10.15)

where σ2
rr =

1
N

∑
k ṙ

2
k − ⟨ṙk⟩2 = 1

N

∑
k ṙ

2
k is the particle velocity dispersion and M = Nm the total mass, and

Fk is the force acting on the k-th particle. Now we write this force as the sum of all the forces from the other
particles

Fk =

N∑
j=1

Fjk (10.16)

so that∑
k

Fk · rk =
∑
k

(
∑
j<k

Fjkrk +
∑
j>k

Fjkrk) =
∑
k

∑
j<k

Fjkrk +
∑
k

∑
j>k

Fkjrj =
∑
k

∑
j<k

Fjkrk +
∑
j

∑
k>j

Fjkrk =

(10.17)∑
k

(
∑
j<k

Fjkrk +
∑
j>k

Fjkrk) =
∑
k

∑
j<k

Fjk(rk − rj) (10.18)

where we have used Newton’s third law, Fjk = −Fkj and the identity
∑
k

∑
j<k =

∑
j

∑
k>j . Then if we

have a potential that depends only on the distance rjk =
√

(rj,x − rk,x)2 + (rj,y − rk,y)2 + (rj,z − rk,z)2 (eg a
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gravitational or Coulomb potential) we have

drjk
drjk

= { drjk
d(rj,x − rk,x)

,
drjk

d(rj,y − rk,y)
,

drjk
d(rj,z − rk,z)

} (10.19)

=
rk − rj
rjk

(10.20)

and therefore

Fjk = −∇rjkV = − dV

drjk

drjk
drjk

= − dV

drjk

(
rk − rj
rjk

)
(10.21)

Then we have
dG

dt
= 2T +

∑
k

∑
j<k

Fjk(rk − rj) (10.22)

= 2T −
∑
k

∑
j<k

dV

drjk

(
|rk − rj |2

rjk

)
(10.23)

= 2T −
∑
k

∑
j<k

dV

drjk
rjk (10.24)

For a stationary object (often denoted as a virialized system), G does not depend on time and then

2T =
∑
k

∑
j<k

dV

drjk
rjk (10.25)

For the gravitational potential, V (rjk) = m2r−1
jk and we obtain

2T = m2
∑
k

∑
j<k

r−1
jk = −Vtot (10.26)

where Vtot is the total gravitational potential energy. A generalization to V ∼ rn is immediate. So by measuring
the total kinetic energy of a system, i.e. in practice its velocity dispersion, we can estimate the total potential
energy, which depends essentially on the mass distribution.

For instance, for a homogeneous sphere of uniform density ρ, the potential energy of every shell of thickness
dr is dV = −G( 4π3 ρr

3)(4πr2ρdr)r−1 so we have

m2
∑
k

∑
j<k

r−1
jk = −

∫ R

0

dV =
16π2G

3

∫ R

0

ρ2r4dr (10.27)

=
16π2Gρ2

3

R5

5
(10.28)

=
3

5

GM2

R
(10.29)

so that in this case

σ2
rr =

3

5

GM

R
(10.30)

If we use as velocity dispersion the line-of-sight velocity dispersion (the only observable one) then this value has
to be multiplied by 3 since it represents only one of the three components of velocity. Typical values for galaxy
clusters are σrr ≈ 1000 km/sec and R ≈ 1Mpc so

M ≈ 1045kg ≈ 1015M☼ (10.31)

The luminosity of a cluster is around L = 1013L☼ in the visible bands, so the mass-to-light ratio is roughly
100 times the solar one. Even accounting for a large quantity of ionized gas that emits in the X-ray band and
not in the visible, the mass of clusters is at least ten times larger than the baryonic mass. This is one of the
strongest evidences in favor of the existence of dark matter.
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10.5 Sunyaev-Zel’dovich effect
CMB photons passing through a cluster of galaxies have a 1% chance of scattering with a electron of the hot
intra-cluster medium, the fully ionized, hot (107÷8K) gas component that is trapped in galaxy clusters by their
gravitational field. The scattering is an inverse Compton scattering, meaning that the photons gain, rather
than lose, energy. This implies that CMB photons of low energy are boosted to high energy and the black-
body spectrum is therefore distorted by roughly 1mK: this is the thermal Sunyaev-Zel’dovich (SZ) effect. Since
we still approximate the distorted spectrum by a black-body spectrum, we just express the SZ distortion by a
frequency-dependent change in CMB temperature (Fig. 10.2). See e.g. Carlstrom et al., 2002 ARA&A..40..643C
for more on cosmology with galaxy clusters.

The relative energy injection to the photons after a single scattering is

kBTe
mec2

≪ 1 (10.32)

where Te is the electron temperature and me the electron mass. Taking into account the Thomson cross section
σT , the total number of scatterings in a electron plasm with number density ne along the line of sight dℓ is
neσT dℓ and the total energy shift is then

y =

∫
ne
kBTe
mec2

σT dℓ (10.33)

(called Compton y-parameter). Then the change in effective black-body temperature for the distribution of
photons as a function of the dimensionless frequency x = hν/kBTCMB is (non-relativistic limit)

∆T

TCMB
|SZ =

(
x
ex + 1

ex − 1
− 4

)
y (10.34)

This function changes sign around 220 GHz. Clusters will then appear on CMB maps as circular shadows below
this frequency and as sources above it. Typical values of y are around 10−4. The Planck satellite (2015) has
detected more than a thousand SZ clusters in its CMB maps.

An important property of the SZ effect is that it is independent of redshift, so it can be used to map clusters
at very high redshifts (of course within the experiment resolution).

The total integrated SZ (ISZ) effect in a cluster is obtained by integrating over the solid angle occupied by
the cluster on the sky

∆ISZ =

∫
∆TdΩ ≈ D−2

A

∫
ne
kBTe
mec2

σT dℓdA =
kBσT
mec2

D−2
A

∫
neTedV (10.35)

= αNeTeD
−2
A = α′MTeD

−2
A (10.36)

where Ne is the total number of electrons, Te the density-averaged temperature, α, α′ are constants independent
of the cluster, M is the total mass of the cluster (assuming is universally proportional to Ne, i.e. to the gas
mass) and DA is the angular diameter distance of the cluster, which enters because by definition dΩ = dA/D2

A.
So if we can estimate Ne or M we can obtain the distance to the cluster. In fact M can be independently
estimated through X-ray observations (see Eq. 10.7) so we can use clusters also to map the cosmic expansion
independently of supernovae or other distance estimators. The current results are however still not competitive.

An additional SZ effect, called kinetic SZ, is due to the Doppler shift induced on the CMB photons if the
cluster is moving with velocity vpec with respect to the CMB; the kinetic SZ is proportional to vpec,ℓ/c, where
vpec,ℓ is the projection along the line of sight. The kinetic effect at first order does not distort the black body
spectrum and can therefore be distinguished from the thermal one.

Appendix: The Jeans equations
The virial theorem applies to averages over the entire system. If we wish to reconstruct the density profile of
galaxies and clusters we need to consider the equilibrium dynamics in more detail.

A flow of particles that are neither destroyed nor created and do not collide against each other is governed
by the collisionless Boltzmann equation. Stars in a smooth galactic gravitational potential, or galaxies in galaxy



CHAPTER 10. COSMOLOGY WITH GALAXY CLUSTERS 116

Figure 10.2: The distortion of the Cosmic Microwave Background (CMB) spectrum due to the Sunyaev-
Zel’dovich effect (SZ) (solid line), here amplified by a factor of 1000 for readability. The CMB effective tem-
perature decreases at frequencies below approximately 218 GHz and increases at higher frequencies. (From
Carlstrom et al., 2002 ARA&A..40..643C)

clusters, satisfy these conditions since they very rarely collide. Let the number dN of particles in a space volume
dV and with velocities within a velocity volume dvxdvydvz be

dN = f(t,x,v)dxdydzdvxdvydvz (10.37)

where f is the distribution function and the space-velocity volume element is called the phase-space volume.
Since the particle number is conserved, the number of particles with velocity vx entering in a space volume
dxdydz in direction x in the time interval dt is ρdxdydx = ρvxdtdydz where ρ is the number density of particles,
minus the number exiting from the other side; if the particles move only along x, this has to be equal to the
change in the number of particles inside the volume itself, dρdV . Then we have the continuity equation (the
incoming velocity is taken negative)

dρdV = −d(ρvx)dtdydz (10.38)

or

∂ρ

∂t
= −∂(ρvx)

∂x
(10.39)

For particle moving in any direction and also with any velocity, we have the general phase-space continuity
equation

∂f

∂t
+

6∑
i=1

∂(fẇi)

∂wi
= 0 (10.40)

where w = {x, y, z, vx, vy, vz} = {x,v} is the phase-space vector of coordinates. Now we have v̇i = − ∂Φ
∂xi

where
Φ is the gravitational potential, and

∂ẇi
∂wi

= { ∂vi
∂xi

,− ∂

∂vi

∂Φ

∂xi
} = 0 (10.41)
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since the velocity vector is independent of the coordinates and the gravitational potential Φ is independent of
the velocities. Then finally

df

dt
=
∂f

∂t
+

6∑
i=1

ẇ
∂f

∂wi
= 0 (10.42)

or the collisionless Boltzmann equation

∂f

∂t
+ v · ∇f −∇Φ · ∇vf = 0 (10.43)

This equation can be written in any system of coordinates, eg cylindrical (useful for disk-like galaxies) or
spherical (for spherical galaxies or clusters). In spherical coordinates we have

∂f

∂t
+ ṙ

∂f

∂r
+ θ̇

∂f

∂θ
+ ϕ̇

∂f

∂ϕ
+ v̇r

∂f

∂vr
+ v̇θ

∂f

∂vθ
+ v̇ϕ

∂f

∂vϕ
= 0 (10.44)

where we can also write ṙ = vr, θ̇ = vθ/r and ϕ̇ = vϕ/r sin θ (here we have defined the velocity components as
the projection of the cartesian velocity along the directions r, θ, ϕ, respectively).

The relation of the accelerations in terms of the potential derivatives should be derived by transforming the
corresponding cartesian expressions. Here we give directly the equations:

v̇r =
v2θ + v2ϕ

r
− ∂Φ

∂r
(10.45)

v̇θ =
v2ϕ cot θ − vrvθ

r
− 1

r

∂Φ

∂θ
(10.46)

v̇ϕ =
−vϕvr − vϕvθ cot θ

r
− 1

r sin θ

∂Φ

∂ϕ
(10.47)

We assume from now on that the potential is purely spherical. Then we can write

∂f

∂t
+vr

∂f

∂r
+
vθ
r

∂f

∂θ
+

vϕ
r sin θ

∂f

∂ϕ
+

(
v2θ + v2ϕ

r
− ∂Φ

∂r

)
∂f

∂vr
+

(
v2ϕ cot θ − vrvθ

r

)
∂f

∂vθ
+

(
−vϕvr − vϕvθ cot θ

r

)
∂f

∂vϕ
= 0

(10.48)

Then we multiply by vr and obtain

vr
∂f

∂t
+ v2r

∂f

∂r
+
vrvθ
r

∂f

∂θ
+

vrvϕ
r sin θ

∂f

∂ϕ
+ vr

(
v2θ + v2ϕ

r
− ∂Φ

∂r

)
∂f

∂vr

+vr

(
v2ϕ cot θ − vrvθ

r

)
∂f

∂vθ
+ vr

(
−vϕvr − vϕvθ cot θ

r

)
∂f

∂vϕ
= 0 (10.49)

Now we put ν(t,x) =
∫
fdvrdvθdvϕ , which is then a density independent of velocity, and integrate the above

equation over the velocities. We have for instance terms like∫
∂f

∂vr
dvrdvθdvϕ =

∂

∂vr
ν(x) = 0 (10.50)∫

vr
∂f

∂r
dvrdvθdvϕ = −

∫
∂vr
∂r

fdvrdvθdvϕ = − ∂

∂r
v̄r (10.51)∫

vrvθ
∂f

∂θ
dvrdvθdvϕ = −

∫
∂(vrvθ)

∂θ
fdvrdvθdvϕ = − ∂

∂θ
σrθ +

∂

∂θ
(v̄rv̄θ) (10.52)

(we applied integration by parts) where v̄r is the average of vr and

σ2
ij =

∫
vivjfdvrdvθdvϕ − v̄iv̄j (10.53)
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is the velocity covariance. We now simplify our problem by assuming that: a) the system is stationary (all time
derivatives vanish and v̄r = 0; b) the kinematics has spherical symmetry: i.e. there is no rotation (v̄θ = v̄ϕ = 0)
and also σ2

rθ = σ2
rϕ = σ2

θϕ = 0; c) finally, we also impose σ2
θθ = σ2

ϕϕ ≡ σ2
t . Then we have the Jeans equation

1

ν

∂

∂r
(νσ2

rr) + 2
σ2
rr − σ2

t

r
= −∂Φ

∂r
= −GM(r)

r2
(10.54)

or

1

ν

∂

∂r
(νσ2

rr) + 2σ2
rr

β

r
= −∂Φ

∂r
= −GM(r)

r2
(10.55)

where

β = 1− σ2
t

σ2
rr

(10.56)

is the anisotropy parameter, and it can take values in −∞ < β ≤ 1. Notice that here the mass M includes all
sources of gravity while the density ν might refer only to a particular population, e.g. stars or galaxies, and
not necessarily to all the matter in the system. If velocities are isotropic, σ2

rr = σ2
t we obtain the condition of

spherical hydrostatic equilibrium

1

ν

∂

∂r
(νσ2

rr) = −GM(r)

r2
(10.57)

The Jeans equation can be written in a form that directly gives the mass profile as a function of observables

M(r) = −rσ
2
rr

G

[
d lnν

d lnr
+
d lnσ2

rr

d lnr
+ 2β(r)

]
(10.58)

Notice the similarity to the hydrostatic equation (10.4). However, the function β(r) is very difficult to estimate,
since we only directly measure the line-of-sight velocity.



Chapter 11

Dark matter

We have mentioned several times the dark matter and have seen some of the evidence in favor of it. This chapter
is devoted to the main observational techniques to “observe” dark matter beyond those already mentioned and
to a short review of the candidates.

Quick summary
• Dark matter is very likely non-baryonic and composed of free particles.

• Several particle physics models of DM have been proposed but the so-called WIMPs (predicted in super-
symmetry) are probably the most widely accepted candidate

• WIMPs of mass 10-100 GeV would have the right amount of density to explain all of the DM

• DM can be detected directly or indirectly, or even produced in accelerators, but so far no conclusive
evidence has been reported

• Direct detection might occur when the galaxy halo DM particles cross the Earth and hit a nucleus in the
underground detectors

• Indirect detection occurs if DM annihilates when encountering other DM particles in high-density regions
(central Milky Way, dwarf galaxies, clusters etc) or decays: we can then observe the products as high
energy monochromatic photons, neutrinos, charged leptons.

• Current cold DM models cannot explain easily the galaxy inner profiles and the number of dwarf satellites:
this could be a problem related to baryonic physics or require a modification of the standard DM models.

11.1 Dark matter candidates
Dark matter can be composed in principle by any sort of matter that escapes direct observation in every
electromagnetic waveband, from γ-rays to radio. However we know from big bang nucleosynthesis and CMB
constraints that the baryons can only amount to 5% at most of the cosmic density, while we need around 30%
of matter to explain spiral rotation curves, X−ray ICM, CMB, cosmic expansion etc. This DM must be cold
enough to remain within galaxy and cluster halos: relativistic particles would easily escape the gravitational
potentials. Moreover, the DM particles obviously have to have a mass sufficient to provide the required density.
So the natural candidates are massive, cold, stable particles that do not interact electromagnetically. Since
the existence of an abundant number of micro black holes and in general of unseen compact objects is severely
limited by many constraints (for instance, limits coming from microlensing), it is likely that the DM is a gas of
such particles freely floating around in galaxies and clusters.

DM particles that feel weak interaction (beside of course gravitational interaction) are called WIMPs (weakly
interacting massive particles). In this case, one can estimate their present number density since we know the
epoch when weak interacting particles left thermal equilibrium with the other particles (freezing) in the early
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Figure 11.1: Matter power spectrum in models with massless and massive neutrinos (from Wong, Y., Ann.Rev.
Nucl.Part.Sci. 61, 2011). The data points are from the 2dF survey (Cole et al. 2005).

universe. It turns out that particles with weak-scale mass around 100 GeV will have automatically more or less
the density required to provide all the DM we need: this is called the WIMP miracle. This feature makes the
WIMPs the perfect candidate for DM. However, so far no WIMP has ever been captured or produced.

Supersymmetric theories provide a host of new partner particles to the standard model, all with masses above
several GeV (otherwise they would have been produced in accelerators; this does not apply to the gravitino
however). The lightest supersymmetric particle must be stable because there are no symmetry-conserving
particles they can decade to, so supersymmetry provide naturally at least one kind of WIMP, often identified
with the neutralino o gravitino or, generically, LSP, “lightest sypersymmetric particle”, whichever it be. Most
experiments are therefore geared at capturing 10-100 GeV WIMPs passing through the Earth. The fact that
the LHC is not finding new physics at these mass scales is generating tension with the WIMP-DM connection
scenario.

Another dark matter candidate is the axion, a particle proposed in order to understand why QCD does not
violate parity to a higher degree. Its mass is constrained to be very small, of the order of µeV, but it is still
of the “cold” type because it has never been in thermal equilibrium with the other particles. Searches for the
axion have been unsuccessful so far and large chunks of the interesting parameter space have been excluded.

Many other types of DM have been proposed, also of the “warm” type, for instance sterile neutrinos with
mass around keV. One type of DM is certainly realized in nature: neutrinos. Since their mass is constrained
to be below roughly 1eV, they are born relativistic (temperature of freezing in the early universe much higher
than their mass) and might be becoming non-relativistic just now. Such a small mass implies that they cannot
contribute to a large fraction of the DM, at most 1%. Moreover, their large velocity will not allow them to
cluster along with baryonic matter so that they will in general decrease the overall matter clustering. In fact,
by measuring accurately the matter power spectrum one can infer upper limits to the abundance, and therefore
mass, of the neutrinos. In agreement with neutrino oscillation experiments, cosmology constrains the neutrino
mass to be at or below the eV level (see Fig. 11.1).

11.2 Direct detection
If dark matter forms a giant halo around the bulge and disk of the Milky Way then the DM particles should
cross the Earth and can be in principle detected through their weak interaction with nuclei. The density of the
halo should be roughly 100 times the background density, i.e. around 0.3 proton mass per cm3 so if the DM
particles have a mass of say 100 GeV there should be one DM particle every liter of space. If the DM halo is
slowly rotating, the Earth will feel a wind of DM particles at a velocity of 220 km/sec (the velocity of the Sun
around the Milky Way center), with a little annual modulation along the Earth’ orbit around the Sun, for a
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Figure 11.2: Typical exclusion plot cross section versus DM mass collecting the results of many experi-
ments (XENON collaboration, 2012). The closed contours (DAMA, CoGent, CRESST) are positive de-
tections, which appear therefore in contrast with the excluded regions from other experiments. (Credits:
http://xenon.astro.columbia.edu/XENON100_Experiment/ and Phys. Rev. Lett. 109, 181301 (2012))

total rate of 104÷5 particles per square centimeter per second.
Some of these non-relativistic particles will hit, although with a very low probability, the nuclei of the

detectors currently located in various underground laboratories, shielded from the cosmic ray noise by kilometers
of rock. A typical event rate could be up to a few events per day per kilogram of detector. Since we expect
a good mass range to be around 10-100 GeV, the DM detectors normally employ nuclei with similar mass like
Germanium, Silicon, Iodium in order to maximize the recoil. The energy of the recoil is in any case extremely
small, up to 100 keV. The recoil can then be measured because, depending on the detector substance, it creates
crystal dislocations, ionization, phonons, scintillations.

The main problem is separating true DM events from background, mostly due to natural radioactivity of
the rocks and of the detector material itself. Another way is to search for the small annual modulation due to
the Earth orbit: the experiment DAMA at Gran Sasso, Italy, claims since several years a positive detection but
so far it has not received robust confirmation. Most experiments produced regions of excluded parameter space
in the plane cross section versus mass (Fig. 11.2). Low cross sections and low masses are clearly more difficult
to constrain and ample regions of parameter space are still unconstrained.

Another form of “almost direct” detection is DM production at high-energy accelerator like LHC at CERN.
If the collision of two protons or other particles generates products that do not add up to the original energy,
it means some particles have escaped detection. A careful series of tests on backgrounds and on already known
elusive particles might in principle lead to the conclusion that the escaped particles are DM candidates.

11.3 Indirect detection
DM particles can be indirectly detected if we can observe signals that are linked to DM decay or self-annihilation.
One possibility is that after many interactions some DM particles lose energy and are eventually gravitationally
captured by the Sun (or even the Earth). If they accumulate for billion years in the core of the Sun their
density might become large enough that their annihilation rate becomes significant. Neutrinos generated by
the annihilation will be much more energetic than thermonuclear solar neutrinos and will impact the Earth
atmosphere and rock, creating muons. If in a underground laboratory a highly energetic muon traveling upward
is observed, it cannot come from cosmic rays hitting the atmosphere, so one possibility is that it comes from
neutrinos generated in the Earth or Sun’s core by DM annihilation. The high-energy neutrinos can also be
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Figure 11.3: Excess of antiproton/proton ratio from the experiments PAMELA and AMS-02. The data are just
above the uncertainty band (from Giesen et al. 2015, Journal of Cosmology and Astroparticle Physics, Issue
09, article id. 023, (2015)).

directly captured by neutrino detectors like AMANDA and IceCube.
Another signal from annihilating or decaying DM can be obtained looking for 100 GeV-range γ-ray photons

from space, perhaps from regions where we expect a high angular concentration of DM, for instance in the
direction of M31 (Andromeda galaxy), the Large Magellanic Cloud, dwarf galaxies in the Local Group, the
Milky Way center, galaxy clusters. Since the annihilation is a two-particle process, it is proportional to the DM
density squared and this might help revealing the effect and distinguishing it from astrophysical backgrounds
(for instance pulsars and supernovae remnants). The photons should have exactly the energy of the DM particles
and therefore appear as a sharp line on the continuum coming from high-density regions (redshifted if coming
from a moving source). Notwithstanding various temptative detections, so far the satellite Fermi-LAT has
excluded WIMP masses up to 100 GeV. Cherenkov detectors, like HESS, MAGIC, VERITAS on Earth can also
collect the particle showers generated from the impact of the high-energy photons with the atmosphere.

DM annihilation/decay products could also be pairs of charged fermions (protons, electrons and their antipar-
ticles). The antiparticles will generate an excess over the standard astrophysical background particle/antiparticle
ratio and could be revealed by the satellite PAMELA and the instrument AMS on board the ISS. Here again
several detection claims have arisen but none has proven to be conclusive evidence of new physics (see Fig.
11.3).

11.4 The problems of the cold dark matter
Although the CDM is widely regarded as the most likely form of dark matter, it is not without problems. The
main problem is the excess of small substructure we see (and expect to see) in N -body simulations with respect
to what we observe in galaxies (Fig. 11.4). The high-mass end disagreement is not so critical because large halos
will in general host groups or clusters instead of individual galaxies. Since CDM does not dissipate efficiently
because weakly interacting, and because the theoretical power spectrum has no natural cut-off scale, the CDM
lumps formed under gravitational instability live practically forever as satellites within the halos of large galaxies
as ours. But around the Milky Way we observe only a few dozen dwarf galaxies, although we cannot easily
estimate how many (perhaps hundreds) we are missing due to low surface brightness. Of course we do not know
whether every DM lump should contain stars or instead just remain dark either because not enough baryons
are collected or because they remain too hot to collapse into stars. So in fact the DM subclustering problems
is probably just a manifestation of our uncertainties about baryonic physics, that is, of exactly how and when



CHAPTER 11. DARK MATTER 123

Figure 11.4: Halo mass function from N -body simulations (dahed lines) compared with the galaxy
mass/luminosity function from real data (continuous and dotted lines). The discrepancy means that there
is a non-linear relation between halos and galaxies. In particular, at the small mass end, the simulations show
much more halos than galaxies (from Baldry et al., On the galaxy stellar mass function, the mass–metallicity
relation and the implied baryonic mass function, Mon. Not. R. Astron. Soc. 388, 945–959 (2008)).

exactly stars finally form.
The clustering problem of DM arises at small scales and its consequence is not just an excess of satellites

but also a inner halo profile that seem much steeper (cuspy) that the one that best fits galaxy rotation curves:
this is called the cusp-core problem. Here again the DM evidence comes from N -body simulations, well fitted
by the steep NFW profile, while observations refer to luminous sources, so baryonic physics might very likely
play an important role. Alternatively, DM could depart from the simplest theoretical expectations and allow
for a stronger self-interaction that introduces some form of dissipative friction that erases substructure.



Chapter 12

The Cosmic 21cm Background

Since observations of the Cosmic Microwave Background were able to accurately constrain cosmology, further
cosmological backgrounds come into focus. This chapter introduces the most prominent ’new’ background, the
21cm cosmic background of neutral hydrogen.

Quick summary
• Through the forbidden spin-flip transition of neutral hydrogen radiation is emitted at 21cm rest-frame

wavelength.

• The 21cm signal of neutral hydrogen is measured as a brightness temperature relative to the CMB back-
ground; depending on the properties of the gaseous medium and other radiative backgrounds the signal
is seen in absorption or emission.

• The 21cm brightness temperature depends on the so-called spin temperature, density and ionisation state
as well as cosmology.

• During reionization the before neutral medium becomes ionised (again) through the radiation of the first
galaxies.

• The 21cm signal is a tracer of the large-scale structure. During reionization it traces the neutral hydrogen
distributed in the intergalactic medium (IGM), after reionisation hydrogen shielded in galaxies.

12.1 Fundamentals of the 21cm signal of neutral hydrogen
Hydrogen is the most abundant element in the Universe. After the end of recombination around z = 1000, the
cosmic hydrogen remained neutral until the UV photons emitted by the first stars and galaxies began to ionize
it at redshifts around 10. Investigating this Epoch of Reionization (EoR) is extremely useful to understand the
early evolution of stars and galaxies. Furthermore, measuring the growth of structures during reionization is
probably one of the most important goals for today’s cosmology in order to close the gap between the CMB and
lower-redshift studies such as galaxy clustering. The EoR ends around z ≈ 6 but pockets of neutral hydrogen
remain inside or nearby structures, e.g. along filaments, protected by ionizing radiation by their own high
density (called self-shielding). Since these clouds are associated with large scale structure, they can constitute a
valuable way to reconstruct matter fluctuations up to redshifts of 5-6. Fig. 12.1 presents a sketch that positions
the process of reionization in our cosmic timeline.

Neutral cold hydrogen has no energy levels in the optical nor in the radio, the two best windows for ground
observations, see Fig. 12.2. However, the two possible electron spin states, parallel or antiparallel with respect
to the proton, have a slightly different energy, the parallel state being higher by roughly E01 = hν = 5 · 10−6

eV, as first pointed out by Van de Hulst in 1942. A transition is accompanied by absorption or emission of a
photon of wavelength 21 cm, or ≈ 1.42 GHz frequency. At redshift z, this hyperfine line, a forbidden spin-flip
transition, becomes 21(1 + z) cm, of the order of meters. Being a sharp monochromatic radio wavelength, the
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Figure 12.1: A timeline showing the evolution of the Universe. As the first stars and galaxies began to form,
they illuminated the dark ages and reionized the Universe. (Credit: NAOJ).

Figure 12.2: Windows in the atmospheric absorption. (Image: NASA)

21 cm line can easily be seen through dust and allows both very accurate galactic rotation curves and precise
redshift measurement at very high redshifts. The presentation below can only roughly sketch the cosmological
evolution of the 21cm signal of neutral hydrogen, due to the complexity of the problem. Much more information
can be found e.g. in Furlanetto et al., astro-ph/0608032.

In the following we use subscript 0 for the anti-parallel singlet state (multiplicity g0 = 1) and subscript 1 for
the parallel triplet state (g1 = 3). Neutral hydrogen before and during the EoR is excited mainly by the CMB
radiation with temperature Tγ = T0(1+ z), where T0 = 2.7K, which is hot enough to saturate the higher levels,
Tγ ≫

(
kB
E01

)
, where we define a spin temperature TS as the temperature one should have in thermodynamic

equilibrium to maintain a density of population n0, n1 in the two states. We have then

n1
n0

=
g1
g0
e
− E01

kBTS ≈ g1
g0

= 3 (12.1)

because the spin temperature turns out to be close to Tγ . That is, three atoms out of four will be in the excited
state. We can also write the total number density of HI atoms as nHI = n0 + n1 = 4n0.

The 21cm signal at each epoch in emission or absorption is characteristic by the state of the gaseous medium,
radiative backgrounds such as the CMB, and sources of ionizing radiation such as stars and galaxies. To estimate
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TS three processes are important: 1) absorption and stimulated emission of CMB photons; 2) collisions with
other hydrogen atoms, free electrons, and protons; and 3) Lyman-α photons (UV) scattering. The coupling of the
excitation or spin temperature of neutral hydrogen to the Lyman-α background is also known as Wouthuysen-
Field coupling. We denote with B01 the coefficient for absorption (from state 0 to state 1) and with B10 the
emission one (1 → 0), and with C10, P10 the de-excitation rates per atom from collisions and UV scattering,
and with C01, P01 the corresponding excitation rates. At equilibrium we have then

n1(C10 + P10 +A10 +B10Iγ) = n0(C01 + P01 +A01 +B01Iγ). (12.2)

The Einstein coefficients depend on the quantum mechanical properties of the atom. One can use the standard
relation among Einstein coefficients (see e.g. K. Lang, Astrophysical Formulae, Eq. 2-27)

B01 =
3c3A10

8πhν3
, (12.3)

where the Einstein coefficient are furthermore related by B01/B10 = g1/g0. Finally A10 is the spontaneous
emission coefficient, estimated to be A10 = 2.85× 10−15s−1 (i.e., one spin flip every 10 million years!). Now we
can replace Iγ with Tγ using the Rayleigh-Jeans relation. Then we can invoke equilibrium and write

C01

C10
=
g1
g0
e
− hv

kBTK ≈ 3

(
1− hν

kBTK

)
, (12.4)

where TK is the kinetic temperature, and similarly define an effective “color temperature” of the UV ionizing
field Tc via

P01

P10
≡ 3

(
1− hν

kBTc

)
. (12.5)

Putting all this into (12.2) we find

T−1
S =

T−1
γ + xcT

−1
K + xαT

−1
c

1 + xc + xα
(12.6)

where

xc =
C10

A10

hν

kBTγ
(12.7)

xα =
P10

A10

hν

kBTγ
(12.8)

are the coupling coefficients for collisions and scattering, respectively. In the limit in which the couplings are
small, this becomes TS = Tγ as one should expect. In most cases we can assume Tc → TK. The exact estimation
of TS can be achieved only numerically. Depending on which process dominates, one can have TS larger or
smaller than Tγ .

12.2 Evolution during the Epoch of Reionization
To observe the 21cm signal during the EoR, one compares at a given redshift z the radiation intensity of the
21cm line with the CMB temperature. Depending on whether the spin temperature TS is higher or smaller than
Tγ , one sees absorption or emission. In this way, it is possible to create maps of HI emission or absorption at
several z’s. Current radio interferometers statistically measure the power spectrum of the 21cm signal during
reionization and are working towards measuring the cosmological signal among foregrounds. The task of imaging
the EoR is still to be achieved, but the ambitious large-scale project of the Square Kilometre Array (SKA) is
currently set up in South Africa and Australia.

Qualitatively, different regimes for the evolution of the redshifted 21 cm signal are depicted in Fig. 12.3. We
briefly describe the evolution here. Starting with the Dark Ages after recombination and before the first galaxies
form, the gas temperature TK is coupled to the CMB temperature Tγ , and therefore the spin temperature TS



CHAPTER 12. THE COSMIC 21CM BACKGROUND 127

Dark	
  Ages	
  Lyα	
  coupling	
  X-­‐ray	
  hea6ng	
  Reioniza6on	
  

1	
  Gyr	
   100	
  Myr	
   20	
  Myr	
  300	
  Myr	
  

Figure 12.3: 21cm signal from neutral hydrogen (from Mesinger, Greig, Sobacchi, 2016, MNRAS 459, 3, image
publicly available here: http://homepage.sns.it/mesinger/EOS.html).

is effectively coupled collisionally to Tγ in a sufficiently dense and neutral medium, setting TS = Tγ . Around
redshifts of 30 ≲ z ≲ 200 the gas cools adiabatically and begins to thermally decouple from the CMB with
TS < Tγ , resulting in a shallow absorption feature. When the density becomes low enough for collisional
coupling between TS and Tγ to be negligible, so that no more absorption takes place, then radiative coupling
sets TS = Tγ again. There is no 21cm signal, neither in absorption nor in emission. When the first galaxies form
at z ≳ 30, they start to emit both Lyα (UV) and X-ray radiation. At lower emissivities Lyα coupling occurs
first and the temperature of the cold gas and the spin temperature get coupled, so that TS < Tγ , resulting in
a deep absorption feature. Fluctuations in emissivity and density are the most important now, until the Lyα
coupling saturates. An increasing X-ray temperature heats the intergalactic medium (IGM) above the CMB
temperature, so that neutral hydrogen becomes visible in 21cm emission at redshift between 10-15. Fluctuations
in the 21cm line are sourced by temperature fluctuations, and when the gas is heated everywhere, increasingly
by density and ionization fluctuations. When the gas temperature reaches the post-heating regime of TK ≫ Tγ ,
with TS ∼ TK, the dependence of the 21cm brightness temperature on the spin temperature becomes negligible.
As the ionizing UV and X-ray radiation proceeds with reionizing the initial neutral medium, the 21cm signal
slowly decreases, until the Universe is (almost) fully ionized around a redshift of ∼ 6.

Let us now imagine a background radiation field Tγ whose brigthness or specific intensity is Iγ and a gas of
HI at spin temperature TS and brigthness IS. (Brightness is related to the flux density Sν as Sν =

∫
Iν cos θdΩ,

while the total flux over all frequencies is S =
∫
Sνdν.) Since the 21cm wavelength is much longer than the

peak CMB radiation, the Rayleigh-Jeans region of the black body spectrum is a good approximation, and the
brightness and the temperature are simply proportional, T = Ic2/2kBν

2. We can write the observed temperature
at frequency ν by solving the radiative transfer equation along a radial coordinate s,

dIν
ds

= −α(ν)Iν + α(ν)IS (12.9)

which simply says that the intensity of a radiation field (here identified with the CMB radiation) along propaga-
tion decreases because of absorption and increases because of the medium emissivity IS, assumed not to depend
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on s. We define the optical depth

τ =

∫
α(ν)ds (12.10)

where α(ν) is the absorption coefficient at frequency ν and ds integrates along the line of sight. Note that all
frequencies in what follows are rest frame values, not redshifted ones. The solution for the observable brightness
IB is

IB = IS
(
1− e−τ

)
+ Iγe

−τ . (12.11)

Since in the Rayleigh-Jeans regime the temperature T is proportional to brightness I, we can also write

TB = TS
(
1− e−τ

)
+ Tγe

−τ (12.12)

where also TB scales with redshift as (1 + z). Intuitively, if the material is optically thick, τ ≫ 1, we see the
spin temperature, if optically thin, τ ≪ 1, we see the CMB background. This relation can also be written as

TB0(1 + z) = TS
(
1− e−τ

)
+ T0(1 + z)e−τ (12.13)

and therefore

δTB ≡ TB0 − T0 =
TS − Tγ
1 + z

(
1− e−τ

)
. (12.14)

The quantity δTB, called brigthness offset temperature, is the main observable: the difference between the
observed and the CMB temperature at the desired frequency. Now we need to estimate τ , while TS follows Eq.
12.6.

The absorption coefficient gives the loss of energy per unit frequency of a radiation field resulting from
absorption of photons (0 → 1) minus stimulated emission (1 → 0). Since τ is dimensionless, α(ν) has dimensions
m−1. We need to introduce then the Einstein coefficients Bab for the transition a → b: the Einstein coefficient is
the probability per unit time per unit spectral energy density, where the spectral energy is the energy density per
unit frequency, so Bab has units J−1m3s−2. The rate (i.e. the probability per unit time) of absorption/emission
is then given by Babhνnϕ(ν), where n is the number density of absorbers (atoms), ϕ(ν) the line profile normalized
so that

∫
ϕ(nu)dν = 1 and hνnϕ(ν)dν is the radiation energy density in the range dν. Dividing the rate by c, one

gets αab = Babhνnϕ(ν)/c, the probability of transition per unit distance. This quantity, summing all possible
absorptions and substracting all possible emissions, defines the net absorption coefficient: once integrated over
distance, it gives the optical depth.

Denoting again with B01 the coefficient for absorption (from state 0 to state 1) and with B10 the emission
one (1 → 0), the absorption coefficient is then given by the expression

α(ν) =
hν

c
(B01n0 − n1B10)ϕ(ν). (12.15)

The Einstein coefficients are related by B01/B10 = g1/g0 and thus

α(ν) =
hν

c
n0B01

(
1− n1

n0

B10

B01

)
ϕ(ν) =

hν

c
n0B01

(
1− e

− hν
kBTS

)
ϕ(ν) ≈ hν

c
n0B01

hν

kBTS
ϕ(ν) (12.16)

(we replaced E01 with hν). Therefore we find the dimensionless optical depth

τ =

∫
α(ν)ϕ(ν)ds =

hν

c
B01

hν

kBTS
ϕ(ν)

∫
n0ds =

hν

c
B01

hν

kBTS

NHI

4
ϕ(ν) (12.17)

where NHI =
∫
nHIds is the column density of HI atoms.

The line profile is broadened, in general, by thermal motion, Doppler shift and cosmological recession. Here
the dominating effect is the latter one, in which a frequency ν is spread over a range ∆ν

ν ≈ ∆V
c where ∆V is

the velocity spread given by ∆V = sH(z). Therefore we can approximate ϕ(ν) ≈ 1/∆ν ≈ c/(sH(z)ν). Then
we have

τ = A
xHInH
TSH(z)

(12.18)
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where A = 3c3hA10

32πν2kB
and we write the column density across a distance s as NHI = xHInHs, xHI(z) being the

neutral hydrogen fraction and nH(z) the density of hydrogen atoms. We can use now the relation

nH = (1 + δb) ρb = (1 + δb)
3H2

0

8πGmp
Ωb,0 (1− YHe) (1 + z)3 (12.19)

(the factor of mp, mass of the proton, is needed to convert the energy density ρb into the number density nH)
where δb is the fluctuation in the baryon content and YHe ≈ 0.245 is the fraction in mass in Helium (all the
rest being hydrogen). We use also H(z) = H0Ω

1/2
m,0(1 + z)3/2, and finally we obtain from (12.14) and τ ≪ 1 the

brigthness

δTB ≈ 3

8πGmp
A

(
1− Tγ

TS

)
xHI(1 + δb)Ωb,0 (1− YHe)H

2
0 (1 + z)2

TSH(z)
(12.20)

=
3H0A (1− YHe)

8πGmp

(
1− Tγ

TS

)
xHI(1 + z)1/2

Ωb,0

Ω
1/2
m,0

(12.21)

≈ 27xHI (1 + δb)

(
1− Tγ

TS

)(
1 + z

10

0.15

Ωm,0h2

)1/2(
Ωb,0h

2

0.023

)
mK (12.22)

where the last expression allows an immediate estimation of the order of magnitude, since all factors are of order
unity. This expression can be further corrected by multiplying it by H/(dv/dr + H), where dv/dr gives the
contribution to the line width due to the peculiar velocities along the line of sight. If TS > Tγ , the brigthness
offset δTB is positive (emission). Detection of δTB can therefore map the history of reionization via ionization
fraction xHII(z) = 1− xHI(z), measure a combination of Ωb and Ωm, and map the spatial and time structure of
the fluctuations in the baryon component δb. When measuring fluctuations, the 21cm fluctuations δ21 (x, z) for
the 21 cm brightness temperature offset at position x and redshift z are calculated as

δ21 (x, z) =
δTB (x, z)

T̄21 (z)
− 1 , (12.23)

with average 21 cm temperature T̄21 = δ̄TB (z); analogous for fluctuations in surface brightness. The dimen-
sionless 21 cm power spectrum is defined as

∆̃21 (k) =
k3

(2π2V )

〈
|δ21|2

〉
k
, (12.24)

and the dimensional power spectrum can be expressed as ∆21 (k) = T̄ 2
21∆̃21 (k). The power spectrum is sensitive

to the reionization and cosmological model parameters, especially as it measures model-dependent behaviour
over a large range of scales. The bottom panel of Fig. 12.3 shows the example of a power spectrum prediction
at fixed scale k as a function of redshift.

12.3 The 21cm-galaxy cross-correlation during reionization
Bringing the 21cm signal together with galaxy surveys helps to (1) remove foregrounds and systematics, (2)
to break degeneracies between model parameters, and (3) constrain the properties of the galaxies that are too
faint to be observed with galaxy surveys. We will therefore investigate the power of cross-correlations between
the 21cm signal and galaxies in more detail now.

The Lyα line (transition from n = 2 to n = 1 orbitals of hydrogen) is a prominent line in so-called Lyman-
alpha emitters (LAE) that allows for precise redshift estimates. The Lyman-α rest frame wavelength of 1215
angstroms (≈100 nm) falls in the UV region. When redshifted by a factor of 1 + z equal to 3 to 8, therefore,
the line falls in the visible to near infrared part of the electromagnetic spectrum and can be detected from
the ground. For reionization scenarios and LAE models, the 21cm-LAE cross correlations exhibit signatures
sensitive to the neutral fraction ⟨χHI⟩. This largely stems from the large-scale anti-correlation between the
neutral 21cm signal and the LAEs. As LAEs are located in ionised regions the corresponding cross-correlations
also traces the size of ionised regions around LAEs. Here we will showcase fundamental analytical relations for
the 21cm-LAE cross-correlation signal.
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We use the following definition for the 21cm-LAE cross correlation function ξ21,LAE

ξ21,LAE(r) = ⟨δ21(x+ r) δLAE(x)⟩ (12.25)

which gives us the excess probability as compared to random distributions of both 21cm signal and LAE at
position x and for distance between both of r. Here the galaxy, or LAE, overdensity is taken smoothed as

δLAE(x) =
NLAE(x)

N̄LAE
− 1, (12.26)

with number of LAEs per voxel NLAE(x) and mean number N̄LAE, similar to the 21cm fluctuations defined in
Eq. 12.23.

The cross correlation amplitude at LAE positions
We start by calculating the cross correlation amplitude for distance r = 0 and, therefore, at the LAE positions
themselves. It reads

ξ21,LAE(r = 0) =
1

Nbins

∑
x

δ21(x) δLAE(x) (12.27)

≃ 1

Nbins

∑
x

(
1− Tγ

TS(x)

)
xHI(x)

ρg(x)

⟨ρg⟩
δLAE(x)

(12.28)

where ρg(x) is the local gas density at position x, and ⟨ρg⟩ is the mean gas density across the measured region.
On the one hand, we see from equation 12.26 that δLAE adopts only positive values at LAE locations and
remains otherwise negative with a value of −1. On the other hand the 21cm signal vanishes in ionized regions
(xHI = 0). Since LAEs are located in ionized regions, the 21cm signal is approximately fully absorbed at LAE
locations, δ21 = 0. Hence, the only regions contributing to the 21cm-LAE cross correlations ξ21,LAE(r = 0) are
the neutral regions where no LAEs can be found. Hence, the 21cm-LAE cross correlations at very small scales
can be re-calculated as

ξ21,LAE(r = 0) =
1

Nbins

∑
xHI

δ21(x) δLAE(x)︸ ︷︷ ︸
=−1

+
∑
xHII

δ21(x)︸ ︷︷ ︸
≃0

δLAE(x)


= − 1

Nbins

∑
xHI

(
1− TCMB

Ts(x)

)
xHI(x) (1 + δg(x))

≃ − ⟨χHI⟩
〈(

1− TCMB

Ts

)
(1 + δg)

〉
HI

. (12.29)

Assuming the post-heating regime Ts ≫ TCMB to be valid in neutral patches, the 21cm-LAE cross correlation
at very small scales becomes

ξ21,LAE(r = 0) ≃ − ⟨xHI⟩ ⟨1 + δ⟩HI. (12.30)

The small-scale cross-correlation thus directly depends on the progress of reionization via xHI, and the average
gas density and thus matter fluctuations in neutral regions. This limit also applies for any representation of δ21
that solely shifts the zero-point, e.g. δ21(x) = (δTb(x)− ⟨δTb⟩)/T0.

The cross correlation amplitude profile around LAEs
We now derive the 21cm-LAE cross correlation profile as a function of distance r. Here we limit our calculations
to the post-heating regime of the EoR. Separating the 21cm–LAE cross correlation functions into pixels, or
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positions, containing (δLAE > −1) and devoid (δLAE = −1) of LAEs, we get

ξ21,LAE(r) =
1

Nbins

Nbins∑
n=0

δ21(x+ r) δLAE(x)

=
1

Nbins

Nbins−NLAE∑
n=0

−δ21(x+ r)|x ̸=xLAE

+
1

Nbins

NLAE∑
n=0

Nbins

NLAE
δ21(x+ r)|x=xLAE

≃ −⟨δ21(x)⟩x +
1

NLAE

NLAE∑
n=0

δ21(x+ r)|x=xLAE

= −⟨δ21⟩+ ⟨δ21⟩LAE(r)

Here ⟨δ21⟩LAE is the average 21cm signal profile around LAEs, while ⟨δ21⟩ is the average overall 21cm signal, for
Nbins total number of bins. Correspondingly, xLAE

HI (r) and (1 + δLAE)(r) are the average neutral fraction and
density profiles around LAEs. We rewrite the previous equation to get

ξ21,LAE(r) = −⟨xHI⟩⟨1 + δ⟩HI

[
1− χLAE

HI (r)

⟨xHI⟩
(1 + δLAE)(r)

⟨1 + δ⟩HI

]
.

(12.31)

Key factor determining ξ21,LAE(r) are the average neutral hydrogen profile around LAEs, xLAE
HI (r) and the

average density profile around LAEs. While xLAE
HI (r) is determined by the sizes of the ionized regions around

LAEs at small r values, it converges to the average neutral hydrogen fraction ⟨xHI⟩ as r increases beyond the
typical sizes of the ionized regions around LAEs.

12.4 The 21cm signal post-reionization
We have seen in the previous section that during the Epoch of Reionization the 21cm signal of neutral hydrogen
and galaxies that trace peaks in the matter density fields (corresponding to halos of a certain mass range)
tend to be anti-correlated. This holds if reionization has progressed sufficiently so that high density regions
are already ionized (in the so-called ’inside-out’ scenario where regions of highest density ionize first). After
the completion of reionization the neutral hydrogen is confined to high-density self-shielded system that are
protected against radiative ionizing backgrounds. They now are discret sources and tend to positively correlate
with the underlying dark matter density. Just as for galaxy redshift surveys, the 21cm linear power spectrum
can then be a considered a biased tracer such that

P21(z, k, µ) = T̄ 2
21(z)

[
(bHI(z) + f(z)µ2)2Pm(z, k) + PSN

]
, (12.32)

where T̄21(z) is the mean 21cm brightness offset temperature, bHI(z) is the HI linear bias, f(z) the linear growth
rate, µ = k̂ · ẑ, Pm(z, k) the total matter power spectrum and PSN is the HI shot noise (Poisson noise) due to
the discreteness of HI clouds.

The factor (1 + f(z)/bHI) in Eq. 12.32 accounts for redshift space distortions (RSD). RSDs come from the
fact that the real-space position of a source in the radial direction is modified by peculiar velocities due to local
overdensities. The standard analysis of RSD nowadays focuses on galaxy redshift surveys and makes use of
this so-called Kaiser formalism [98]. It relies on several simplifying assumptions, including the linear regime
and the distant observer approximation. While the matter power spectrum and the growth function f(z) are
determined by our cosmological model, the linear HI bias bHI is constrained via observations and simulations.

For the mean 21cm brightness offset temperature we take the average of Eq. 12.22

T̄21 (z) ≈ 27x̄HI

(
1 + z

10

0.15

Ωm,0h2

)1/2(
Ωb,0h

2

0.023

)
mK, (12.33)
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where again Ωb and Ωm are the baryon and total matter density parameters today and x̄HI is the mean fraction
of neutral hydrogen that in principle still can evolve with redshift after reionization ended. As evolution is much
slower post-reionization and due to observational constraints it is often either assumed that x̄HI = ΩHI/ΩH is
constant with neutral hydrogen matter density ΩH = 0.74Ωb and ionized hydrogen matter density ΩHI ∼ 10−3,
or slowly evolving as ΩHI = 10−3 (1 + z)

β with power-law index β. The linear bias bHI(z) is modelled from
numerical (hydrodynamical) simulation results [648]. Lastly, the linear growth rate f(z) is model-dependent
and is here assumed to only depend on redshift. It can be calculated for models beyond ΛCDM, where generally
scale dependence of the growth rate can occur.

12.5 Simulation-based approaches to the 21cm background
As measurements of the 21cm background cover a wide range in time (from the present-day Universe up to
reionization and even beyond) and scale (from the globally averaged signal to galaxy-scale fluctuations), so does
our toolbox. On the one hand we need approaches that can model the 21cm signal fast over extremely large scales
to investigate the Universe’s large-scale structure, and on the other hand we need modelling that can access
smaller scale information encoded for example in galaxies. In this chapter three common approaches to model
the cosmic 21cm background are introduced. These are analytical approaches, semi-numerical simulations, and
full numerical simulations that rely on N-body and hydro-dynamical simulations. The three approaches are
grouped in ascending order from fast to computationally expensive and from simple to increased realism and
complexity of the signal.

12.5.1 Analytical models
Analytical models rely on scaling relations or analytical formulae to describe our signal and relate emission to
the underlying dark matter field. As mentioned in section 12.4, since galaxies trace the underlying distribution
of dark matter we can relate their emission to dark matter density fluctuations. Fluctuations of line intensity or
brightness δIν can then be related to dark matter fluctuations δm (where we neglect redshift space distortions
for now) via

δIν = b̄ν Īνδm (12.34)

where ν stands for our rest-frame frequency of interest, which is the 21cm line. As dark matter fluctuations
at a given scale and redshift can be calculated knowing our cosmological model and initial conditions, we are
missing expressions for the mean bias b̄ν and mean intensity Īν . Note that in the case of the 21cm background,
the Jeans approximation holds well and we thus can easily switch between brightness temperature and intensity.
Instead of assuming a value or scaling for x̄HI as above in section 12.4, in an approach that divides the matter
density field into halos of dark matter (the halo model [649]), we can not only calculate the matter power but
also mean intensity via

Īν(z) =

∫ Mmax

Mmin

dM
dn

dM

Lline(M, z)

4πD2
L

y(z)D2
A, (12.35)

where Mmin and Mmax are the minimum and maximum halo masses of halos that host galaxies emitting 21cm
radiation, dn/dM is the halo mass function (i.e. the number density of dark matter halos per halo mass
M), and DL and DA are the luminosity and comoving angular diameter distance, respectively. The factor
y(z) = dr/dν = λline(1 + z)2/H(z), where r is the comoving distance, λline is the rest-frame wavelength of an
emitted line.

The direct way to estimate the mean intensity of an emission line is to use the observed line luminosity
functions (LFs). A common functional form for LFs is the Schechter function [650]

Φ(L)dL = ϕ∗

(
L

L∗

)α
exp

(
− L

L∗

)
dL

L∗
, (12.36)

where ϕ∗, α, and L∗ are the free parameters obtained by fitting observational data. We can replace the terms
dn/dM and dM by Φ(L) and dL. The observed mean intensity can then be estimated from

Īν(z) =

∫ Lmax

Lmin

dLΦ(L)
L

4πD2
L

y(z)D2
A (12.37)
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for a minimum Lmin and maximum Lmax luminosity. Lastly, the galaxy bias b̄line is the halo bias b(M, z) [524]
weighted by the luminosity of the emitted line, and is given by

b̄line(z) =

∫Mmax

Mmin
dM dn

dM Lline b(M, z)∫Mmax

Mmin
dM dn

dM Lline

. (12.38)

Both halo bias b(M, z) and halo mass function dn/dM can be derived analytically or numerically depending on
the cosmology assumed. See arXiv:2303.08752 for a comprehensive review on the halo model in cosmology.

Having estimated the line luminosity, or temperature, in the way described here, we can estimate statistical
properties of the 21cm brightness offset fluctuations field, such as its power spectrum. While quite non-expensive
to compute, analytical models cannot predict certain representations such as imaging of the 21cm signal. Lastly,
the relations discussed here apply to times when reionization has finished. During reionization, we need to take
into account the gas evolution and ionization states across different non-galactic scales, which do not necessarily
positively correlate with the dark matter field as discussed in previous chapters.

12.5.2 Semi-numerical simulations
Semi-numerical simulations are able to create 2D/3D (imaging/tomography) representations of 21cm fluctuation
fields. They can do so faster, meaning computationally faster, than numerical hydrodynamical simulations. This
allows us to both create larger volumes and explore more possible models. Semi-numerical simulations rely on
the assumption of first and second order Lagrangian perturbations for the dark matter density field.

To calculate the 21cm offset brightness temperature, we need to simulate a) the dark matter density field,
b) the ionizaton field, or ionized fraction of neutral hydrogen, c) the spin temperature field that depends not
only on gas densities and ionization state, but also on gas temperatures and intensities of background radiation.
If we work in the post-heating regime TS >> Tγ , we can restrict our calculation to fields a) and b).

Evolved density fields can be approximated by moving mass particles according to the velocity field derived
in the Zel’dovich approximation that was introduced earlier in Sec. 7.1, starting from a Gaussian random field
for initial density fluctuations. In this approximation at linear perturbative order, the density fields evolve in
redshift as δ (z) = δ (0)D (z), where D (z) is the linear growth factor with D (0) = 1. The position of each
mass particle, or equivalently density voxel in our simulation, is then corrected at each redshift with the linear
displacement expected from the velocity field. To obtain dark matter halos from the density field, it can be
filtered in an excursion-set approach (see Press-Schechter formalism) assuming spherical or ellipsoidal collapse.
In the case of ellipsoidal collapse, a collapse threshold δc (M, z) which depends both on redshift and filtering
scale is employed. The filtering iteself works as follows. At each point x, starting from the largest scales, the
field is smoothed with a filtering function, often a real-space top-hat filter, in order to find the largest scale,
or mass, such that the the density at that scale fulfills δ (x,M) > δc (M, z). Is this condition met, mass and
position of a new halo have been found. In this simple approach each new halo is not allowed to overlap with a
previous halo. Like for the density field itself, positions of halos found through this procedure are displaced at
each redshift with the linear displacement expected in the Zel’dovich approximation.

In addition, peculiar velocities, or redshift space distortions on the 21cm signal caused by these, can easily
be simulated in the quasi-linear regime. This can be done by correcting Eq. 12.22 with the derivative of the
line-of-sight velocity dvr/dr. In k-space the velocity field at first order can be written as

v(k, z) =
ik

k2
Ḋ(z)δ(k) , (12.39)

and so the derivative of the line-of-sight velocity vr can be written in k-space as

dvr
dr

(k, z) = ikrvr(k, z)

≈ −k
2
r

k2
Ḋ(z)δnl(k) , (12.40)

where differentiation is performed in k-space.
The ionization field during the reionization process is generated with an excursion-set approach for identifying

ionized HII regions. To do so, we filter the evolved density field at different radii, similar as the procedure
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described above for halos. From larger to small scales, progressively smaller filtering scales (again often a top-
hat filter) are applied at each point of the density field, until the largest scale is found at which the condition

fcoll (x,M, z) ≥ ζ−1 (12.41)

holds. Here the collapsed mass fraction fcoll designates the fraction of mass collapsed to halos at a scale that
corresponds to a mass M . The critical parameter is the ionization efficiency ζ, which parametrizes the strength
of the radiative field of ionizing radiation. Physically, it is a combination of the fraction of baryons in stars f∗,
the number of ionizing photons produced per stellar mass Nγ/b and the escape fraction of ionizing photons from
galaxies into the IGM fesc. It can be parametrised as

ζ = 30

(
fesc
0.1

)(
f∗
0.05

)(
Nγ/b

4000

)(
1.5

1 + nrec

)
. (12.42)

In this equation the same ionizing efficiency is assumed for each halo. Generally though for example the escape
fraction can have a dependence on halo mass. An alternative filtering approach, which includes spatial variation
in the radiation field due to differences in recombinations per volume and radiative feedback, simulates the
number of ionizing photons per volume e.g. due to recombinations, and then filters ionized regions by requiring
the number of ionizing photons produced in a region is equal or higher than the recombination rate. Investigating
the impact of these different filtering assumptions on photon conservation in simlations is an ongoing research
topic.

Lastly, at times (before reionization and early on during reionization) when the post-heating approximation
TS ≫ Tγ does not hold, we need to follow the evolution of the spin temperature field. As the Wouthuysen-Field
effect couples the spin temperature to the kinetic gas temperature TK (and the effective colour temperature
of the UV radiation field Tc, with TK → Tc in most situations), we need to evolve the gas temperature field.
Several processes can contribute to heating, such as shock heating from the formation of structures, UV photons
and X-rays. During early times, heating through X-rays is the most important process, and we thus discuss
here an example of how X-ray emission is modelled in semi-numerical simulations.

Under the assumption that the emission is proportional to the mass fraction in halos, or collapsed fraction,
fcoll, the X-ray emission rate (in photons s−1) can be expressed as

dṄX
dz

= ζXf∗Ωbρcrit,0
(
1 + δRnl

) dV
dz

dfcoll
dt

, (12.43)

where ζX is the X-ray efficiency, i.e. the number of X-ray photons per solar mass, f∗ the fraction of baryons
converted to stars, δRnl the non-linear density at scale R corresponding to the smallest mass sources, and dV
the comoving volume. This emission rate enters the arrival rate (dϕX/dz) of X-ray photons of frequency ν,
i.e. the number of photons s−1 Hz−1 seen at position (x, z). Integrating the evolution of the gas temperature
equation (12.49), with X-ray heating as the dominant heating source, gives the total X-ray heating rate per
baryon ϵX . This heating rate also determines part of the Lyα background, where the rate of X-ray conversion
to Lyα is given by

ϵX,α = ϵX
fLyα
fheat

, (12.44)

with fraction fLyα of X-ray energy that goes into Lyα photons, and the fraction fheat of electron energy deposited
as heat. This gives for the Lyα flux due to X-ray heating (in photons cm−2 s−1 Hz−1 sr−1) at position (x, z)

Jα,X (x, z) =
c

4πHνα

ϵX,α
hPlνα

. (12.45)

The second dominant component of the Lyα background is direct stellar emission, that redshifts into Lyman-n
resonance, given by

Jα,∗ (x, z) =

nmax∑
n=2

frecycle (n)

∫ zmax

z

dz′
1

16π2r2p

dϕ∗
dz′

, (12.46)
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with stellar emissivity (dϕ∗/dz
′) and proper separation rp between z and z′. The stellar emissivity (photons

s−1 Hz−1) can, similar to equation (12.43) for the the X-ray emissivity, be written as

dϕ∗
dz

= ϵ (νn) f∗n̄b,0
(
1 + δRnl

) dV
dz

dfcoll
dt

, (12.47)

with the number ϵ (νn) of photons per Hz per stellar baryon, for rest frame frequency νn at redshift of emission.
In this exemplary model, the Lyα background is produced by X-ray heating and stellar emission, while neglecting
other possible sources such as quasars or annihilation of dark matter candidates.

The evolution itself of the kinetic gas temperature TK depends on the local heating history and is coupled
to the evolution of the ionized fraction of free electrons xe of the predominantly neutral regions. The evolution
equations can be written as

dxe (x, z)

dz
=

dt

dz

[
Λion − αACx

2
enbfH

]
, (12.48)

dTK (x, z)

dz
=

2

3kB (1 + xe)

dt

dz

∑
p

ϵp +
2TK
3nb

dnb
dz

− TK
1 + xe

dxe
dz

, (12.49)

with total baryonic number density nb = nb,0 (1 + z)
3
[1 + δnl], the heating rate ϵp of process p per baryon,

ionization rate per baryon Λion, case-A recombination coefficient αA, clumping factor C (that depends on the
simulation cell size) and hydrogen number fraction fH.

12.5.3 Hydrodynamical simulations
In a nutshell, hydrodynamic simulations go beyond dark-matter simulations such as N-body codes that only
include the effect of gravity on matter. They also include a fully numerical description for the treatment of gas.
For cosmological simulations of structure formation and thus also reionization, mostly two approaches for such a
description have been used. Firstly, smoothed particle hydrodynamics (SPH), where the mass of a gaseous fluid
is discretised into a number of particles. These particles then move under the combined forces of gravity and
hydrodynamics. Secondly, Eulerian or mesh-based methods such as adaptive mesh refinement (AMR), where
space is divided into a grid. Gas flow and evolution are then followed in an Eulerian way between neighbouring
grid cells. This tracing of gas flows or particle movement and properties becomes computationally expensive
for larger volumes and resolved structure formation. Therefore, few models can be explored and volumes that
can be simulated are limited. For effects that are computationally too expensive to resolve, especially when
aiming to model large-scale effects of the intergalactic medium such as reionization, sub-grid modelling for
galaxy formation and evolution such as the typical energy feedback from supernovae needs to be included as
well.

If besides the hydrodynamical evolution we need to include the effect of varying ionizing backgrounds as is the
case for the modelling of the cosmic 21cm background, we need to include radiative transfer. In simulations that
include radiative transfer, rays of radiation are traced for each point through the simulation. Thus the effects
of diffuse ionizing radiation propagating through a given inhomogeneous cosmological density field, dependent
on on the physical conditions of the gas, can be included. As for each point in the simulation we now need to
trace a multitude of line-of-sights through the simulation volume, this surpasses hydrodynamical simulations
alone in terms of computational cost. At the same time, hydrodynamical simulations together with radiative
transfer are the most ’realistic’, or detailed, look one can take at the reionization epoch with computers.



Chapter 13

Cosmological Inference with Machine
Learning

Cosmological backgrounds such as the Cosmic Microwave Background or the 21cm background of neutral hydro-
gen are valuable tools to constrain large-scale structure. To derive (cosmological) model parameters from these
mappings, we usually rely on suitable summary statistics such as power spectra. This chapter takes a novel look
at cosmological inference using machine learning techniques such as deep learning models for simulation-based
and likelihood-free inference.

Quick summary
• Likelihood-free inference relies on a forward model that can simulate data, and a model that can use this

information to approximate the posterior.

• This type of inference is useful when the exact full likelihood is not known and/or cannot be computed.
This is often the case when our (cosmological) signal is not Gaussian.

• An early example is Approximate Bayesian Computing, where the difference between observed and simu-
lated data is quantified.

• Deep neural networks are models that can be trained with forward-modelled data and corresponding
parameter sets to approximate posterior likelihoods.

• Depending on the type of deep learning model, these can learn posteriors for example by variational
inference, direct density estimation or inversion.

13.1 Likelihood-free Inference
In cosmology, but also other fields in science, for a given observation the exact full likelihood is typically
intractable. Usually, cosmologist rely on writing down a ’good enough’, meaning close enough to the true
form, likelihood that captures expected theoretical and observational effects. Alternatively, we can strive to
take ’complex enough’ models to estimate this likelihood from data (observed and synthetic) that need not be
analytical. This likelihood ’approximators’ are implicit insofar as no likelihood form is typically written down.
They always rely on comparing either a learned expectation or simulated data to real data in one form or another.
Two common approaches exist for this comparison. In the first one, density estimation methods are used to
approximate the likelihood. One method that has become popular very recently are neural density estimators
based on neural networks. Here, neural density estimators are for example trained (fitted) with simulated data
to represent the desired probability density. Given a set of points {x} ∼ p(x), the goal is to estimate the
corresponding probability density p(x). Secondly, methods such as approximate Bayesian computation (ABC)
compare observed and simulated data sets based on some distance measure between the two sets and thus offer
a quite direct route to simulation-based inference. But why is this useful?

136
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For example, radio interferometric measurements such as the mapping of the 21cm background of neutral
hydrogen have to deal with high levels of foregrounds and noise. Already intrinsically the cosmological fluctuation
signal we aim to measure is non-Gaussian, meaning, power spectra as summary statistics do not encode all
potentially interesting physical information present in the signal. Other summary statistics and measures such
as bispectra or cross-correlations can partly detect this, but lack the flexibility for example of deep learning
models. These modern machine learning methods offer the possibility to extract and discard highly non-
Gaussian information. In the end, they can also be used to derive cosmological parameters directly from maps.
Advantages of modern inference methods rooted in machine learning include the possibility to explore high-
dimensional parameter spaces fast, and the fact that inferred parameter values are not biased by the chosen
summary statistics (’let the network choose’) or likelihood form. An important final word of warning, the
prediction capabilities of machine learning methods for inference often rely on the availability of simulations.
These need to be computationally efficient to generate large samples of synthetic data, while being as close
enough as possible to the observed signal of interest.

13.2 An example: Approximate Bayesian Computing
Until recently before the wider use of deep learning, the probably most well-known method for likelihood-
free inference was Approximate Bayesian Computation (ABC), with applications for example to parameter
estimation in supernovae cosmology. [651] It is employed in parameter inference in cases where the true likelihood
function is intractable, be it because it is unknown or computationally too expensive to be computed. The ABC
method relies on the ability to forward simulate synthetic data based on a set of model parameters and the
comparison between observed and mock (simulated) data.

Bayesian inference is based on prior distributions of model parameters and the definition of a likelihood for
a new set of data drawn from the underlying model. Its goal is to find the posterior distribution of parameters
given (observed) data. The posterior likelihood can be calculated either analytically or be sampled for example
with Markov Chain Monte Carlo (MCMC [652]). An analytical description for the likelihood function is not
always possible. A common solution is to assume a general form for the likelihood function (e.g. Gaussian)
followed by MCMC sampling, with the expectation that the assumption on the likelihood is not too far from
the true shape. Precondition of the ABC approach is the capability to closely imitate observed data with fast
and reliable simulations. To explore the likelihood in this type of inference based on forward simulation we
need to quantify the distance between simulated and observed sets of data. The closer a simulation for certain
model parameters reproduces observations, the closer it is to the ”true” underlying model. A range of different
algorithms were developed to optimise the sampling of the parameter space as well as the appropriate distance
measure used to compare observations and synthetic data.

The following ingredients are thus indispensable for an ABC algorithm

• prior distributions for input parameters p(θ) (Bayesian priors),

• a forward model of synthetic data (the simulator),

• a distance function ρ (d1,d2) to compare data set d1 and d1.

An ABC algroithm then consists of three main steps:

1. Randomly draw parameter values θi from the prior p(θ) and generate the corresponding synthetic data
(simulations) di.

2. Calculate the distance between the synthetic data di and the observed data d, ρi (d,di).

3. Approximate the posterior L(θ;d) with the fraction of θi that has respective smallest distances.

The choice of the distance function is a crucial step in the design of the ABC algorithm. Possible choices include
the Kullback-Leibler (KL) divergence and the Wasserstein distance, which both are also widely used in neural
network training.

Let us remind you of Bayes’ Theorem and its use to determine the probability of a set of model parameters
θ given the data d, or

L(θ;d) =
f(d; θ)p(θ)

g(d)
. (13.1)
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As before, p(θ) is the prior probability, g(d) is the PDF of the data, and L(θ;d) is the posterior likelihood.
Formally, in ABC the likelihood can be written as

f(d; θ) =

∫
Kϵ [ρ (d,dS(θi))] f(d; θ)dθ (13.2)

where again ρ (d,dS(θi)) measures the distance between observed and synthetic data, and the kernel Kϵ allocates
smaller weight to higher distance ρ for a chosen bandwidth, or tolerance, ϵ of the kernel. The likelihood can
then be approximated as a drawing of n synthetic sets of data with parameter values θi as

f̂(d; θ) ≈ 1

n

n∑
i=1

Kϵ [ρ (d,dS(θi))] . (13.3)

We know from Bayes’ Theorem that posterior and likelihood times prior are proportional to each other. In a
last step, the approximate posterior is then sampled from the approximate likelihood weighted with the prior.
Note that in the limit ϵ → 0, inference with ABC becomes exact, but for continuous, non-discrete, data the
acceptance probability becomes zero. In practice, small values of ϵ require unfeasibly many simulations. For
large ϵ, sample efficiency is increased at the expense of inference quality. We thus in practice have to look for a
balance between the quality of the likelihood approximation and computational speed.

13.3 Deep learning for inference

13.3.1 A very quick guide to the basics of Deep Learning
This chapter introduces basic terminology and concepts of deep learning models. Goal is not to give a complete
introduction to deep learning. This chapter instead strives to give enough information to follow the examples of
deep learning models in the following, which will showcase the use of neural networks as a tool for cosmological
inference.

Generally, artificial neural networks are build of connected units. They are inspired by the way biological
neurons operate in brains. For example, the work of David Hubel and Torsten Wiesel on the hierarchical
processing of information in the visual cortex (for which they received the nobel price of medicine in 1981)
inspired the neocognitron developed by Kunihiko Fukushima in 1980. [653] The neocognitron is a hierarchical
multi-layered artificial neural network that laid the groundwork for convolutional neural networks important
today for image recognition and scientific analysis tasks. In their simplest form, the connected units that form
neural networks are neurons, or nodes, that each take (usually multiple) input signals, process these, and pass
them on. Such a node performs a simple matrix multiplication on an input vector bj to derive an output vector
ai

zi = Σjwijbj + ci , (13.4)

where wij is the weight for the connection between input element j and output element i and ci is the bias
added to output element i. Both weight and bias for each node are learned, or fitted, parameters of the model.
The weight increases or decreases the strength of the input signal, while the bias adds an extra offset. Since
this operation alone would be only linear, consecutive linear operations would effectively collapse into one
single linear operation. For instance, when using two consecutive steps with the operations a × B + c = a′

and a′ × B′ + c′ = a′′, the operation can be rewritten by defining a matrix D = B × B′ and a bias vector
d = c×B′+ c′, collapsing the two layers into a single linear operation a×D+d = a′′. Before a node outputs its
value thus a non-linear activation function is applied that adds non-linearity to the network model. The choice
of activation function(s) is a crucial hyperparameter for network design. For each node the operation thus reads

ai = fi(zi) = fi (Σjwijbj + ci) (13.5)

so that the activation function fi is applied. Depending on use-case and data structure, a toolbox of common
activation functions exists. One example is the sigmoid defined by f(x) = 1

1+e−x . It returns 0.5 for x = 0,
converges to one for high x and converges to zero for high negative values of x. The sigmoid function is often
applied to the output layer of classification problems. Another widely used example is the tanh activation
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function given by f(x) = tanh(x) which returns values between -1 and 1. The Rectified Linear Units (ReLu)
activation function is one of the more popular activation functions. It is defined by f(x) = max(0, x). On an
intuitive level, the ReLu function might allow to discard output from certain network regions by setting it to
negative values.

Typically nodes are aggregated into layers to form network architectures. Here an input signal enters a
layer, is processed by every node of the layer, and then passed on to the next layer until the output layer is
reached. The layers in between input and output are so-called hidden layers and in their presence one typically
talks about a deep neural network. An important type of network layers are dense, also called fully connected,
layers. Here in each hidden layer each neuron is connected to each single neuron in the layer before and after.
Dense layers are for example very much suited to regress parameters and provide an output vector of a given
length. Another very common type of layer that is a building block for many neural network architectures
are convolutional layers used in the before-mentioned convolutional neural networks. Instead of the matrix
multiplication that dense nodes use, they apply convolution kernels, also called filters, whose shape is learned
during training of the model. They can be regarded as N-dimensional tensors of weights. The kernel size of
the filters are hyperparameters of the architecture. The output of these convolutions are known as feature
maps, which are shift invariant. The more filters per layer, the more complex the information that can be
captured. Very similar to assembly of information in biological visual processing, layers of convolutions are
able to pinpoint hierarchical patterns in data and assemble notions of increasing complexity, going from simple
shapes and patterns such as lines to complex representations of objects (such as the famous ability of networks
to distinguish objects in images, the ’is this a cat or a dog?’).

In the end, neural networks are simply a model like any other that take a set of values as an input, apply some
mathematical operations and derive output values or predictions. What makes them special is the hierarchical
nature of how information is processed and condensed between different layers, their complexity and flexibility,
as well as their ability to improve performance when confronted with increasing amounts of data. In a supervised
setting, the free model parameters of a neural network are fitted, a process called training, by guidance of a
labelled dataset where true values are known. Network models can easily reach tens of thousands of parameters
up to millions or even billions for the largest networks. As a basic rule of thumb, the more the model parameters,
the more data we need for fitting, also applies to neural network models. The labels themselves can be created
by humans or machines who inspect the data, or be known a priori in case of simulated data. The design choices
of the network architecture, like the type of layers, the number of layers as well as details of the training process,
are hyperparameters that need in addition be optimised for a given task.

For training, network models are required to be differentiable. They loop over several epochs, where in
each epoch predictions are derived with a forward-pass through the network. The quality of predictions is then
quantified with a loss, or cost, function L that compares predictions to the ’true’ labels of the training dataset.
The network parameters themselves are optimised with gradient descent, where for fixed input x and output
y the network parameters (weights) can vary. Summarising the weight matrix per layer as W l = wlij the loss
between output y and prediction ŷ reads

L(y, ŷ) = L(y, f l(W lf l−1(W l−1f l−2(...(W 2f1(W 1x)))))) . (13.6)

In each layer l the gradients ∂L/∂wlij for each weight with input j and i can then be calculated. Backpropagation
efficiently computes the weight gradients at each layer by passing backwards from output to input through the
network. At each step, gradients are calculated following the chain rule of differentiation. Starting from the
output layer we get

∂L

∂W l
=
∂L

∂ŷ

∂ŷ

∂W l
. (13.7)

For layer l− 1 we get

∂L

∂W l−1
=
∂L

∂ŷ

∂ŷ

∂al−1

∂al−1

∂W l−1
. (13.8)

For layer l− 2 this reads
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and so on. There thus will be terms shared between subsequent derivatives. Finally, in this optimisation loop,
weight (network parameter) values are then each epoch updated depending on their gradient value. To do so,
different optimiser algorithms for networks exist. The simplest solution is stochastic gradient descent where
weights are updated according to w → w − η∇L for a chosen learning rate η.

To give some examples, the loss function L for regression problems can be as simple as the mean squared
error (MSE)

L =
1

n

n∑
i=1

(vi,true − vi,pred)
2
. (13.10)

Here and in the following equation n is the number of data such as images times the total pixel number of output
values, vi,true is the value of the label for image i and vi,pred the corresponding prediction. The MSE works well
with a Gaussian distribution of labels and has a high preference on reducing outliers. Another common loss
function for regression tasks is the mean absolute error (MAE)

L =
1

n

n∑
i=1

|vi,true − vi,pred|. (13.11)

The MAE works better if the dataset is noisy and has more outliers than a Gaussian distribution.
In practice during training, data is is divided into a training, validation and test set. After each epoch, the

neural network is applied on the validation set to compare the accuracy of the predictions on the validation
set to those of the training set and to make sure that the neural network is not overfitting on the training set.
After the training is stopped when the model has sufficiently converged, the network model is used to evaluate
the test set in order to judge its performance on previously ’unseen’ data.

Finally, given the high number of network model parameters, overfitting is a common problem. When
overfitting occurs, network prediction on the data it was trained on are better than on data it has not seen
before. Therefore, a set of anti-overfitting measures exist. They include max or average pooling layers that
split the input into areas of the same size and only keep the maximum or average value from each area. Often
dropout is applied to layers, meaning a fraction of the layer input is set to zero. Also batch normalisation is
possible that normalises the layer input to a Gaussian distribution with zero mean and unit standard deviation.
The idea is to reduce influence from outliers and at the same time smooth out the loss function to increase the
likelihood of finding a better local minimum.

13.3.2 Examples of Deep Learning Models for inference
Recently, using neural networks for inference tasks has come into focus, given their ability to explore high-
dimensional parameter spaces. We here describe neural network models that are able to characterise the error
on parameter estimates. We start with the idea of moment density networks that are designed to estimate
moments of probability distributions, such as mean and variance as well as higher moments such as skewness
and kurtosis. Beyond estimates of moments, in cosmological inference we strive to estimate the full shape of
the posterior likelihood, while requiring the ability to update likelihoods given new data. Both Bayesian Neural
Networks and invertible networks are examples of likelihood-free or simulation-based inference of likelihoods.

Moment density networks
In practice, posterior estimates often serve to compute moments of the estimated distribution, starting with the
(co)variance. Therefore in [654] Moment Networks were introduced to side-step the problem of estimating the
full posterior and directly estimate its moments. This concept allows for the use of far simpler neural network
architectures and thus for example in training faster convergence of results.

Let us first define a model, or function, F(x) of our data x that minimises a mean-squared loss over the
distribution p(x,θ) of possible training datasets {xi} for parameters {θi},

J0 =

∫
||θ −F(x)||2p(x,θ) dx dθ , (13.12)

then F evaluated for the observed data is the mean of the posterior distribution F(xobs) = ⟨θ⟩θ|xobs
. In our

case F is represented by a neural network model. Therefore, a hierarchy of networks generates further moments
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of the posterior distribution. For example, let us take a second network model G after F is trained and held
fixed. If we find a G that minimises

J1 =

∫
||(θ −Ffixed(x))

2 − G(x)||2p(x,θ) dx dθ , (13.13)

then G(xobs) represents the posterior variances. This hierarchy of network models and moments can easily
be continued. In practice, one samples the parameter space from the prior p(θ), and combines the functions
F and G to output the mean, variance, etc for subsets of the full parameter set. When training the network
models, marginalisation over the remaining parameters is implicitly done. This result is exact and independent
of the true posterior or prior distribution. Moment Networks thus derive moments of marginal posteriors by
construction.

Variational inference with Bayesian neural networks
The idea of Bayesian neural networks is based on the notion that network (model) parameters themselves do
not need to be point estimates, but instead they themselves can follow a distribution. By choosing a family of
distributions, for example each network weight parameter can follow a Gaussian distribution that is characterised
by its mean and variance. Instead of one parameter (the weight) in this case we now have two (mean and variance
of a Gaussian distribution for this one weight parameter). This way we can capture uncertainties on parameters
stemming both from statistical scatter within the data (aleatoric) and from uncertainty on the learner, i.e. the
network model uncertainty (epistemic). The true posterior is thus approximated by a parameterised probability
distribution, which we can use for variational parameter inference. In variational inference, a parameterised
probability distribution q(w|θ) over network parameters w given the parameters θ of a family of distributions
(e.g. mean and variance for Gaussians) is thus defined as a variational approximation to the true Bayesian
posterior L(w|d) given the data d. The goal of variational inference is to find the set of parameters θ which
most closely approximate the true posterior.

The difference between the variational posterior and the exact posterior is determined using a distance
measure that compares distributions. Here this distance is typically measured using the Kullback-Leibler (KL)
divergence [655]. If a family of distributions with parameters θ is set, the following optimisation problem is then
solved during network training

θ∗ = argmin
θ

KL[q(w|θ)||L(w|d)], (13.14)

where d denotes the training data and the loss function F (d, θ) that we seek to minimise is

F (d, θ) = KL[q(w|θ)||L(w|d)]. (13.15)

Using the formula for KL divergence, for distributions a and b,

KL[a(x)||b(x)] =
∫
a(x) log

a(x)

b(x)
dx, (13.16)

one can write for the loss function

F (d, θ) =

∫
q(w|θ) log q(w|θ)

L(w|d)
dw

=

∫
q(w|θ) log q(w|θ)

p(w)p(d|w)
dw

=

∫
q(w|θ)[log q(w|θ)

p(w)
dw −

∫
q(w|θ) log p(d|w)] dw

= KL[q(w|θ)|p(w)]− E[log p(d|w)]q(w|θ). (13.17)

This loss function can now be seen to be composed of two components: the first term depends on the prior over
the weights p(w) and penalises complexity, and the second term depends on the data and describes how well
the model fits to the data in terms of the likelihood.
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Equivalently to minimising the above loss function, often the so-called Evidence Lower Bound (ELBO), or
variational free energy, is maximised [656]. It reads

ELBO(q) = Eq(w) log p(w, d)− Eq(w)[log q(w)]

= Eq(w) log p(d|w) + Eq(w) log p(w)− Eq(w)[log q(w)]

= Eq(w) log p(d|w)−KL(q(w)|p(w)). (13.18)

This function is called ELBO as the log evidence is bounded by it such that: log p(d) ≥ ELBO. In this way,
Bayesian inference is reduced by variational inference to an optimisation problem, which can be solved with
standard deep learning optimisation algorithms.

In practice, often the so-called Bayes by Backdrop is performed [657]. To do so, the loss function is refor-
mulated as an expectation with respect to the variational posterior as

F (d, θ) =

∫
q(w|θ)[log q(w|θ)− log p(w)− log p(d|w)] dw. (13.19)

To calculate gradients needed for optimisation, this loss function is made differentiable with the reparame-
terization trick [658]. It maps a sample obtained for the variational posterior q(w|θ) to a known probability
distribution function q(ϵ) with a differentiable change of variables, such that

q(w|θ) dw = q(ϵ)dϵ. (13.20)

Now that differentiable samples from the variational posterior can be calculated, by drawing Monte Carlo
samples w(i) ∼ q(w(i)|θ), the loss function reads

F (d, θ) ≈
n∑
i=1

log q(w(i)|θ)− log p(w(i))− log p(d|w(i)), (13.21)

made differentiable for network model optimisation.

Neural density estimators and likelihood-free inference
Another way to estimate the full posterior likelihood for likelihood-free inference is direct density estimation
with (neural) density estimators. See for example [659] for its application to cosmology. A variety of neural
density estimators (NDEs) exist, that all are able to learn complex distributions from data and simulations.

For likelihood-free inference with density estimators main steps are:

1. Generate parameter-data pairs (θ, d) by running a simulator at parameter values θ.

2. Fit a density estimator p(d|θ;w) with parameters w to the simulated parameter-data pairs (θ, d).

3. Evaluate the estimated density for observed data d0 to obtain the (learned, approximate) likelihood
p(d0|θ;w).

As often the data d is high-dimensional, in order to ensure convergence of the density estimator, the data is
compressed (sometimes as well via a summary neural network) to a set of summaries d→ t of lower dimension,
which also reduces the number of simulations required.

Invertible neural networks
Often, the forward process from parameter space to observations is a well-defined function, meaning we can
create ’mock’ observations with simulations. The inverse problem, on the contrary, tends to be ambiguous: one
measurement can map to different parameter sets. This can pose a challenge when the posterior parameter
distribution, conditioned on an input measurement, is to be determined for parameter inference. Here we want
to introduce a particular class of artificial neural networks that is suitable by construction for this inference
task, Invertible Neural Networks (INNs). [660] The simulation-based inference approaches presented before aim
at directly solving this ambiguous inverse problem, while INNs are able to learn the inverse solution jointly with
the well-defined forward process. After training in order to learn to forward process, conditional INNs [661]
can be given a specific measurement conditional on random latent variables for the inverse pass through the
network. When sampling these latent variables and inputting them together with the observed data, passing
inversely (’backwards’) through the network efficiently samples the full likelihood distribution.

Two main properties are important for INNs:
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1. They are bijective, i.e. both the mapping from inputs to outputs and the inverse exist and can be
computed.

2. Both the forward and backward pass, or mapping, through the network have a tractable Jacobian.

In this case it is possible to explicitly calculate posteriors. In practice this means for our task of cosmological
parameter inference:

1. A well-defined forward process from input model parameters θ to output d, θ → d, is used to simulate
(synthetic) data d.

2. The invertible network model fw is trained, i.e. network parameters w are adjusted, until the differ-
ence between true posterior likelihood L(θ|d) and approximated posterior qw(θ|d) is minimised such that
qw(θ|d) ≈ L(θ|d) (for the associated loss function the Jacobian is needed, see below).

3. The inverse function f−1
w maps dobs → θ for observed data dobs by evaluating the network ’backwards’ for

both dobs and random latent space variables z as input and as output the associated parameter set θ.

4. A multitude of samplings of θ via f−1
w evaluated for random z together with fixed dobs is used for fast

exploration of the posterior.

As mentioned, here additional latent output variables z capture input information lost in the output d. The
pairs [d, z] of output and latent variables therefore have to be uniquely mapped by the trained function (network
model) f(θ) = [d, z]. When the model f(θ) is optimised for, also its inverse function θ = f−1(d, z) = g(d, z)
is determined. For the latent variables z the distributions p(z) that we map to in training need to be chosen.
Usually, they are taken to be Gaussian. Other distributions are in principle also possible. Finally, the INN
infers the approximate posterior qw(θ|d) by the inverse mapping θ = g(d, z) of the known distribution p(z) to
the input space θ, conditional on the output d (for inference tasks the input space is the set of parameters
that we would like to infer). Similar as before for Bayesian neural networks, we use the Kullback-Leibler (KL)
divergence between the true and the approximated posterior as the loss to be minimised. In this case this means

w∗ = argmin
w

Ep(d)[KL(L(θ|d)||qw(θ|d))] (13.22)

with the expectation E over all possible data p(d). As the true posterior L(θ|d) does not depend on network
parameters w this can be rewritten as

w∗ = argmin
w

Ep(d)[EL(θ|d)[− log qw(θ|d)]]. (13.23)

As fw(θ; d) = z we can express the approximate posterior by change of variable for probability distributions to
be

qw(θ|d) = p(fw(θ; d))

∣∣∣∣det(∂fw(θ; d)∂θ

)∣∣∣∣ (13.24)

where we need to compute the Jacobian Jfw = ∂fw(θ;d)
∂θ . To obtain the loss function for network optimisation,

in practice the expectations above are calculated via Monte Carlo estimate for pairs of simulated data d and
corresponding parameter set θ.
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