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Review of YMT



Review of Ralf's talk

> After coarse-graining, nonperturbative YMT ground state
described by scalar field ¢(T)
[Herbst,Hofmann '04, Hofmann '05, Giacoa,Hofmann '05]

» Effective action for top. trivial sector

1
Selan] = [ dsa [ T (2 Guy Gy + DodDyus + NS~2
E l9u o X4 X 5 Tnw Spv nPLp

» In deconfining phase (T > A): SU(2) — U(1)
» Two tree-level massive modes (TLH) with mass
m?(T) = 4e*(T)|¢(T)|? = 4e®N3 /27 T,
one tree-level massless mode (TLM)

» Eff. coupling e(T) has plateau value epjatean ~ V8r ~ 8.8,
no PT but loop expansion

v

|| yields max. resolution
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Polarization Tensor, Motivation

» Effect TLH modes on propagation of TLM modes described
by polarization tensor >V,

A

A VR SN
» On one-loop level: TH = o 0 4 AN
(one-loop sufficient, cmp. talk by Darlush)
» simplest radiative correction
» generic radiative correction
> interesting consequences for physics



Polarization Tensor, Decomposition

U(1) gauge symmetry unbroken, = ¥*" 4D transverse: p,¥,, =0
Decomposition into spatially transverse and longitudinal part:

YT = G(p47p)Pl';'V + F(p47p)PlLuj

with b
vo_ p=p v

projecting also onto p.



Free Propagators

Free propagator for TLH and TLM modes in
> unitary gauge (particle content manifest)
» Coulomb gauge (VA =0)

~ 1
TLH,0
Dl“’:ab (k) - _5abD/“/k27’ {aa b} € {172}
TLM,0 1 u,u,
D,u,y,ab (p) = _5336b3 <PJ,_/ > II;Z

Uy, = Oay four-velocity of head bath.

D,,, projects out the component transverse to k
P‘#’ projects out the component transverse to p.
Gauge fixed completely = no ghost fields needed.



Dressed Propagator

Propagator for interacting TLM mode (imaginary time)

1 p? uuu
TLM _ pT nZv
Dyv.ab(P) = ~0a30b3 ( WETG PR F)

2\ —1
F(ps,p) = <1 — %) Y * describes propagation of longitudinal

mode Ay
For p || e3, G(ps,p) = ' = Y22 describes propagation of

transverse mode A;



Vertices and Momentum constraints

[HvP uvpo
[3]abc [4]abcd
» Momentum conservation at each vertex.

> Effective vertex contains modes with |p?| > |¢|?:

P> > o

» Exclude these modes in effective theory to avoid "double
counting” (already included in a%*; cmp. talk by Ralf)



Momentum constraints

|| yields maximum resolution in effective theory = constraints on
momentum transfer in vertex
s-channel: |(p1 + p2)?| < |¢|?
t-channel: ‘(pl —p)?| < o)

p
%\ 4 u-channel: ’(pg - p3)2‘ < |¢)?
P, ><p4: Pt Py P3
/ AN
Recall
Finite temperature QFT defined in imaginary time x4 with fields

being periodic in x4. Only discrete p, momenta allowed
(Matsubara sums).

Problem
Momentum constraints formulated in terms of physical, continuous
four momenta.



Real time propagators

Solution
Express Matsubara sums as integrals over continuous real time t.
[Kapusta, LeBellac]

Free propagator for TLH and TLM modes in unitary Coulomb
gauge and real-time formalism

—i
DTMO(p) = 6164 {PJV [pz — 28(p?) na(lpol/ )

+ 1€

Luply
T }

D0 (k) = —2m8,5 D d(K2 — m?) ng(lkol/T),  a,b e {1,2}

No vacuum propagator for TLH modes (cmp. talk by Ralf):

X% ek




Modified dispersion relation of TLM
Dressed propagator of transverse and longitudinal TLM mode (real

time)

DI (p0) = ~dbPL, | "+ 210(6% - G) nalon/ 7))
t
i

Z—F 276(p} — F) ”B(|P0,l|/T)}

2
p

DMTVL%(PI) 0230p3Uy, Uy L)/z
i

Poles yield dispersion relations (pp = w + i7, assume v < w):

wi(p;) = P? + ReG(w(py), p;) wi(py) = P} + ReF (wi(pr), p/)
v(ps) = —ImG(w(p,), py)/2w Yi(pr) = —ImF(wi(p)), p;)/ 2w



Diagrams for G and F
Chosing p || es3:

Glpop) =T =52
e\
Fmp) = (1-2) =

> " sum of two diagrams:

,,,,,,

Purely real: = yields dispersion

7 relation
One-loop level sufficient (see talk by Dariush)!

Purely imaginary: = yields v
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Approximation p? = 0

,,,,,,

Applying Feynman rules to ReG = ReX ! = AVAY YaVa
yields gap equation:

ReG(po,p) = Xg'(p) = 871'62/ [— <3 — k2) + klkl]
vEeTE (ph2I<I0P m) - mt

xng (|ko| / T)6 (k* — m?)

(2m)*

4 vertex imposes constraint |(p + k)?| < [¢|?

Difficulty
Equation (1) is a transzendental equation for G.

Approximation

Use p? = 0 in constraint [Schwarz,Giacosa,Hofmann '06].
Valid if G < p?. Check later!



Consequences of p?> = 0

p
Hence, no propagation of longitudinal modes.

-1
1. For finite %, F(po, p) = (1 — p—§> Y% vanishes.

_____

Momentum conservation at vertex vorbids TLM mode with
p? = 0 to split into two on-shell particles with mass m.

3. Diagram A = 0, hence no imaginary part of G, hence vy =0
and assumption v < w satisfied trivially.



Calculation of diagram B, p?> =0

With p? = 0:
k2 klkl
GUpl.p) =87¢? | (3o %)+ 5]
|2pk+k2|<|o[? m m
d*k
2 2
X nB(|k0|/T)(5(k —m )W

Via d-function, integration over kg yields ko — +v/k? + m?.
Using po > 0, p?> =0, k? = m? = 4€?|¢|, 6 = Z(p, k), and
ko = +1/k® + m? constraint reads:

’2\p] <i k? + 4e2|¢|2 — |k[cos¢9> + 4€2|p?

Integrand symmetric under kg — —kp, but constraint is not!

< [of?




Dealing with constraints, + sign

Consider + sign and observe:
’2\p] <+\/ k? + 4€2|¢|2 — || cos@) + 4€2|p?

1. Term in parentheses always positive.
2. e \V8r ~ 8.8
Hence, constraint never satisfied.

< [of?




Dealing with constraints, — sign

Using X = |p|/ T,y =k/|¢|, |¢|/T =2xA73/2, and A = 27T /A
constraint reads

-1< )\3/2 (\/ 2+4e2+y3>+4e <1

Convenient to use polar coordinates y; = pcosp, y» = psin .
Constraint then reads

4e2 — 17 2 At <4e2+17r
T x SVttt < —anm g

Integration over ¢ not constraint!



Dealing with constraints, — sign
4> — 17 4e® + 17
- - 2 2 2 - =
G x SVt tae by S oo

1. y3,p plane .




Dealing with constraints, — sign
4> — 17 / 4e® + 17
- - 2 2 2 - =

1. y3,p plane .

— 4e’+1
2. y3<}/max=)e\3_/t§




Dealing with constraints, — sign

4e2 — 17 4e2 4+ 1 7
- - 2 2 2 - =
32 XS\/p +y; +4e? 4+ y3 < B2 X

1. y3,p plane .
_ 4e’+1 B
2. y3 < Ymax = §3/_Z %
3. p < pmax(y3) = o
(2)? G2 _2r_detel
X) TR X 3372y, —4e?
for K

— w441 2)X32X €2
3 <y3 =355 \3/2 P P N |

20



Dealing with constraints, — sign

4e? — 17
W}S\/P2+Y§+4ez+}/3§

L. y3,p plane

2
2. 3 < Ymax = 4)6\3/_;1
3. p < pmax(y3) =

(1)2 (4e2+1)2  2r  4e2+1
X 23 X )\3/2y3,4e2

=

7w 4e241  2X\3/2X  ¢?

X )\3/2 T 4e2+1

(1)2 (4e2—1)2 27 4e2—1
X )\3 X )\3/2)/3—462

— 7 4e’—1 2A3/2X e
Y3 Sy3 = 2X N\3/2 T T 1 4e?-1

4e’ + 17

2\3/2

X

212

244 246

248 250 252 254

¥



Expression for G, p> =0

Constraint in terms of boundaries for (ys, p) integration:

G X, T y?f’" Pmax .y3’,VI Pmax
(-,-2 ) [/ dyz/ dp+/ dya/ dp
—00 v 0

min

R ng (27‘(‘)\_3/2\ [p? + y3 + 4e2>
Y ( - 4)
VPPt Y5 +4e?

4e?
X = |p|/ T momentum of external TLM mode in units of
temperature,
A =27 T /N temperature in units of YM scale A.
Integration performed numerically via Gaussian quadrature (unlike
Monte-Carlo for 3-loop, comp. talk by Dariush).




Result for G, p> =0

IG/T?|

101

102

108




Result for G, p> =0
All results based on |G/T?| < X!

» X202 G<O
(anti-screening)

» Dip: G=0
» X <02 6G>0
(screening)

1612

» G < p?forX>0.2
» G =0at X ~ 0.2, dispersion relation solved selfconsistently

» G > p? for X < 0.1, approximation breaks down
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Full calculation of G

Gap equation:

k2 kil
ReG(po,p) = 87T€2/ {— (3 - 2> + 2]
[(p+k)2[ <[l m m

x ng (|ko| /T)6 (k* — m?)

= H(T,p,G)

Via d-function, integration over kg yields ko — +v/k? + m2.
With pg = ++/p? + G(po, p) and p || e3 constraint reads

‘G+2 (j:\/pz + GVk*+ m2 — pk3> + m2‘ < |¢f?



Full calculation of G
Strategy to solve ReG(po,p) = H[T,p, G(po, p)]
[Ludescher,Hofmann '08]:
1. fix T and p (integrand in H independent of py = G = G(p))
prescribe any value of Gy
calculate H(T,p, G1) using Monte-Carlo integration
repeat steps 2 and 3 to obtain H(T,p, G)

AR

solve G = H(T,p, G) numerically using Newton's method



Selfconsistent result for G, real part

IG/T?|




Selfconsistent result for G, real part

» X2>02: G<O0
(anti-screening)

» Dip: G=0
» X<02: G>0
(screening)

16/T?

L L L L Loy
0.0 0.1 02 03 04 05 06

Comparison with approximate result:

» Zeros of G agree (must be)

» For X 2 0.2, approximate agrees with selfconsistent result
(expected)

» Results different when G > X? (not suprising)



Selfconsistent result for G, imaginary part

Imaginary part: ImG S
At left vertex: particle with mass v/ G decaying into two on-shell

particles with mass m only possible if

G m2 5 e

» G < 0: condition (2) never satisfied
» G >0:

G(X=0,T) 1 e? 413
TE o 5 < B4 5 ~ 5 x 102
condition (2) never satisfied

Diagram A =0, hence no imaginary part of G, hence v =0 and
assumption v < w satisfied trivially.
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Full Calculation of F

Assume F € R (turns out to be selfconsistent)

»»»»»»»

Apply Feynman rules to p?> = ReX® = A RENN
yields gap equation:

k2 kOkO
p’ =28 (p) = 87Te2/ [(3 - 2> T
l(p+k)2|<|o[? m m

X ng (|k0| /T)(S (k2 — m2) d4k

Strategy to find F similar to that of finding G
[Falquez,Hofmann,Baumbach '11].

|




Selfconsitent Result for F

vi= e = JHEED 4 8 X = b/ T

Yi

1.50+

1.25¢+

1.00+

0.75

0.50 -

0.25+




Selfconsitent Result for F

vi= e = JHEED 4 8 X = b/ T

» 3 branches

> Y, defined only for
T S e X <0.34

» superluminal group
velocity




Selfconsistent Result for F, Interpretation

Interpretation in terms of magnetic monopoles
[Falquez,Hofmann,Baumbach '11]

» longitudinal modes due to charge density waves
> light like propagation:
» stable (yet unresolved) monopoles released by large holonomy
caloron dissociation [Diakonov et al. '04]
> density disturbance can only be propagated by radiation field,
which propagates at the speed of light

o\ /o

M M

» superluminal propagation:
» unstable monopoles contained in small holonomy caloron
» extended calorons provide instantaneous correlation between
monopoles, leading to superluminal propagation

caloron
[
e >

(@)
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2-Loop Corrections

» "“Bubble diagrams” yield pressure (cmp. talk by Dariush)

» For T > T, only relevant diagram: ©<>

N » AP ox —4x1074T*

0.0002?\ » Temperature of TLM
oo | gas reduced!

0.0000 - \

-0.0001 -
\

-0.0002 -
-0.0003 -

-0.0004 [ I




Monopole Properties

Explanation

Energy used to break up calorons, creating monopole
anti-monopole pairs [Schwarz,Giacosa,Hofmann '06].

Detailed analysis shows [Ludescher,Keller,Giacosa,Hofmann '08]:

> average monopole-antimonopole distance d < |¢|™*
= monopoles unresolved in effective theory

» screening length /s due to small-holonomy calorons: /s = 3.3d
= magnetic flux of monopole and antimonopole cancel (no
area law for spatial Wilson loop)
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Summary and Outlook

» Coarsegrained YMT ground state described by scalar field ¢(T),
su@) % u(1)

|| constrains loop momenta

Calculated polarization tensor #* for TLM mode on 1-loop level
Approximation p? = 0 in constraint

» Constraint solvable analytically
» Dispersion relation for transverse mode;
no propagating longitudinal mode
Selfconsistent calculation

v

vy

v

» Constraint implemented numerically
» Dispersion relation for transverse- and longitudinal mode

» In YMT monopoles are unresolvable and screened

Question
Is 1-loop calculation sufficient?

Answer Thank you. (%

See talk by Dariush! .
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