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Euclidean finite-temperature field theory

◮ representation of partition function Z (real scalar φ)
invented by Schwinger, Feynman 1950s, see e.g.
[M. Le Bellac “Thermal Field Theory”]

Z = Tr e−βH = N
∫ φ(x,β)=φα(x)

φ(x,0)=φα(x)

∏

x,τ ′

dφ(x, τ ′)×

exp

[

−
∫ β

0
dτ ′′

∫

d3y

(

1

2
∂τ ′′φ∂τ ′′φ+

1

2
∇φ · ∇φ+ V (φ)

)]

≡ N
∫ φ(x,β)=φα(x)

φ(x,0)=φα(x)

∏

x,τ ′

dφ(x, τ ′) exp

[

−
∫ β

0
dτ ′′

∫

d3y LE

]

,

where β ≡ 1/T .

◮ in gauge theory: admissible changes of gauge respect
periodicity of Aµ

◮ in gauge-theory PT: additional gauge fixing required
(Faddeev-Popov or better)



Euclidean finite-temperature field theory

◮ loop expansion of N-point functions in momentum space,
propagator D̄

D̄(p, ωn) =
1

ω2
n + p2 +m2

,

where ωn ≡ 2π nT (n ∈ Z) nth Matsubara frequency.

◮ re-expressing (but not changing the contour for τ ′′ integration
in Euclid. action) summation over n and integration over p,
∑

n

∫

d3p, by Cauchy’s integral theorem ⇒

− 1

ω2
n + p2 +m2

−→ i

p2 −m2
+ δ(p2 −m2)

2π

eβ|p0| − 1
,

where
∑

n

∫

d3p −→
∫

d4p.



Real-time interpretation of loop integrals

Remarks:

◮ A more elaborate τ ′′ integration contour in the action was
considered in [Umezawa, Matsumoto, and Tachiki (1982), Niemi

and Semenoff (1984)]. This doubles real-time DOEs to avoid
pinch singularities in PT.

◮ In Yang-Mills, where topological field configurations
constructed for 0 ≤ τ ′′ ≤ β (ground state!), such a change of
contour for physics of propagating excitations is inconsistent.



Perturbative approach to pressure in Euclidean formulation

◮ in [Linde 1980] uselessness of PT after order g6 pointed out
(scale-separation argument for g ≪ 1: momenta of order T
(hard), gT (soft), and g2T (ultrasoft);
hard and soft OK; ultrasoft: weak screening of magnetic
modes destroys perturbativity starting at g6)

◮ SU(3) pressure in pure-YM PT
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Trivial-holonomy calorons

◮ in singular gauge (winding number |k | = 1 is localized in a
point) there is a superposition principle of instanton centers
in prepotential Π [’t Hooft (1976), Jackiw and Rebbi (1976)]:

Ā+,a
µ (x) = −η̄aµν ∂ν log Π ,

Ā−,a
µ (x) = −ηaµν ∂ν log Π .

◮ can be used to satisfy at |k | = 1 periodic b.c. in strip
(0 ≤ τ ≤ β)× R3 [Harrington and Shepard (1978)]:

Π(τ, x; ρ, β, x0) = 1 +

l=∞
∑

l=−∞

ρ2

(x − xl)2

= 1 +
πρ2

βr

sinh
(

2πr
β

)

cosh
(

2πr
β

)

− cos
(

2πτ
β

) ,

where r ≡ |x|.



Trivial-holonomy calorons, cntd.

◮ holonomy of Ā±,a
µ (x) at r → ∞ trivial:

Π
r→∞
= 1 +

πρ2

βr
⇒ lim

r→∞
Ā±
4 ∝ lim

r→∞
1

r2
= 0 ⇒

P exp

[

i

∫ β

0
dτ Ā±

4

]

= 12 .

◮ Gaussian quantum weight [Gross, Pisarski, and Yaffe (1981)]:

Seff =
8π2

ḡ2
+

4

3
σ2 + 16A(σ) (σ ≡ π

ρ

β
) ,

A(σ) → −1

6
log σ (σ → ∞) A(σ) → −σ2

36
(σ → 0) .

Conclusion of semiclassical approx.:
Trivial-holonomy-caloron weight exponentially suppressed at
high T .



Nontrivial holonomy: Static magnetic dipoles

◮ construction based on [Ward 1977, Atiyah and Ward 1977,

ADHM 1978, Drinfeld and Manin 1978, Manton 1978, Adler 1978,

Rossi 1979, Nahm 1980-1983]

◮ explicitly carried out in [Lee and Lu 1998, Kraan and Van Baal

1998]: A4(τ, r → ∞) = −iut3(0 ≤ u ≤ 2π
β ).

action density of nontrivial-holonomy caloron with

k = 1 plotted on 2D spatial slice

exact cancellation
between A4-mediated
repulsion and
Ai -mediated
attraction;

caloron radius ρ and

thus monopole-core

separation D = π
β
ρ2

increase from left to

right (T and

holonomy fixed)



Nontrivial holonomy, cntd.

computation of functional determinant about nontrivial holonomy
carried out in [Gross, Pisarski, and Yaffe (1981), Diakonov et al. 2004]

in (relevant) limit D
β = π

(

ρ
β

)2
≫ 1

conclusions:

◮ total suppression for nontrivial static holonomy in limit
V → ∞

◮ attraction of monop. and antimonop. for small holonomy
(0 ≤ u ≤ π

β (1− 1√
3
); π

β (1 +
1√
3
) ≤ u ≤ 2 π

β )

◮ repulsion of monop. and antimonop. for large holonomy
(πβ (1− 1√

3
) ≤ u ≤ π

β (1 +
1√
3
))

◮ Instability of classical configuration under quantum noise ⇒
Nontrivial holonomy does not enter a priori estimate of
thermal ground state!



Inert field φ

Observations and principles constraining construction of φ:

◮ Fµν = ±F̃µν ⇒ vanishing energy-momentum:

Θµν = −2 tr
{

δµν

(

∓E ·B± 1

4
(2E ·B+ 2B · E)

)

∓(δµ4δνi + δµi δν4) (E× E)i

±δµiδν(j 6=i) (EiBj − EiBj)± δµ(j 6=i)δνi (EjBi − EjBi)
}

≡ 0 .

◮ spatial isotropy and homogeneity of effective local field not
associated with propagation of energy-momentum by
fundamental gauge fields ⇒ inert scalar φ

◮ modulo admissible gauge transformations φ does not depend
on time

◮ relevance of φ (BPS) by gauge-invariant coupling to
coarse-grained k = 0 sector (perturbative renormalizability) ⇒
φ adjoint scalar



Inert field φ

Observations and principles constraining construction of φ, cntd:

◮ Fµν ≡ ±F̃µν ⇒ any local “power” of Fµν with an insertion of
ta vanishes

◮ only trivial holonomy in Fµν ≡ ±F̃µν allowed

◮ |φ| is spacetime homogeneous ⇒ information on φ’s EOM is
encoded in phase φ̂ ≡ φ

|φ|

◮ definition of possible phases {φ̂}: due to BPS of A±
µ no

explicit T dependence, flat measure for admissible
integration over moduli (excluding temporal shifts and
global gauge rotations), Wilson lines between spatial points
along straight lines



Inert field φ

Unique definition of {φ̂} [Herbst and Hofmann 2004]:

{φ̂a} ≡
∑

±
tr

∫

d3x

∫

dρ ta Fµν(τ,0) {(τ,0), (τ, x)}

×Fµν(τ, x) {(τ, x), (τ,0)} ,

where

{(τ,0), (τ, x)} ≡ P exp

[

i

∫ (τ,x)

(τ,0)
dzµ Aµ(z)

]

,

{(τ, x), (τ,0)} ≡ {(τ,0), (τ, x)}† ,

and sum is over Harrington-Shepard (trivial-holonomy) caloron
and anticaloron of scale ρ.

Higher n-point functions, higher topol. charge k? No.

(Would introduce mass dimension d = 3− n −m of object, m > 1

number of dimension-length caloron moduli at k > 1, but d needs to

vanish.)



Inert field φ

Some observations, conventions:

◮ φ̂ indeed transforms as an adjoint scalar:

φ̂a(τ) → Rab(τ)φ̂b(τ) ,

where Rab is τ dependent matrix of adjoint rep.

Rab(τ)tb = Ω†(τ,0)taΩ(τ,0) .

◮ What about shift of spatial center 0 → z±?

0

z
Fµν

µνF

x

C,A

µν

Fµν

0

x

(a) (b)

Fta

ta

(a) graphical representation of definition

(b) only possible generalization to z± 6= 0

Shift of center amounts to

spatially global gauge

rotation induced by the

group element

Ω±
z = {(τ, 0), (τ, z±)}.



Inert field φ

Some observations, conventions, cntd:

◮ one has
∫ (τ,x)

(τ,0)
dzµAµ(z)|± = ±

∫ 1

0
ds xiAi(τ, sx)

= ±tbxb ∂τ

∫ 1

0
ds log Π(τ, sr , ρ) ⇒

integrand in the exponent of {(τ,0), (τ, x)}± varies along a
fixed direction in su(2) (a hedge hog); Path-ordering can be
ignored.

◮ temporal shift freedom in A±
µ : set τ± = 0 and re-instate later

◮ parity: Fµν(τ, x)+ = Fµν(τ,−x)− and

{(τ,0), (τ, x)}+ =
(

{(τ, x), (τ,0)}+
)†

= {(τ,0), (τ,−x)}−
=

(

{(τ,−x), (τ,0)}−
)† ⇒

− contribution to the integrand in definition obtained by
x → −x in + contribution



Inert field φ

Some observations, conventions, cntd:

after tedious computation [Herbst and Hofmann 2004]

+ contribution to integrand in definition reads:

− i β−2 32π
4

3

xa

r

π2ρ̂4 + ρ̂2(2 + cos(2πτ̂ ))

(2π2ρ̂2 + 1− cos(2πτ̂))2
× F [ĝ ,Π] ,

where ρ̂ ≡ ρ
β , r̂ ≡ r

β , τ̂ ≡ τ
β , and functional F is

F [ĝ ,Π] = 2 cos(2ĝ)

(

2
[∂τΠ][∂rΠ]

Π2
− ∂τ∂rΠ

Π

)

+sin(2ĝ)

(

2
[∂rΠ]

2

Π2
− 2

[∂τΠ]
2

Π2
+

∂2
τΠ

Π
− ∂2

r Π

Π

)

,

and

{(τ,0), (τ, x)}± ≡ cos ĝ ± 2itb
xb

r
sin ĝ .

One shows that ĝ saturates exponentially fast for r̂ > 1.



Inert field φ

discussion:

◮ angular integration would yield zero if radial integration was
regular

◮ but: radial integration diverges logarithmically due to term
∂2
r Π
Π ; this term arises from the magnetic-magnetic correlation

(recall: no convergence in PT due to weakly screened
magnetic sector!)

◮ zero×infinity yields undetermined, multiplicative, and real
constants Ξ±

◮ without restriction of generality (global choice of gauge),
angular integration regularized by defect azimuthal angle in
1-2 plane of su(2) for both + and − contributions ⇒
Members of {φ̂} all move in hyperplane of su(2)!

◮ re-instate τ → τ + τ± ⇒



Inert field φ

discussion, cntd:

result:

{φ̂a} = {Ξ+(δ
a1 cosα+ + δa2 sinα+)A (2π(τ̂ + τ̂+))

+Ξ−(δ
a1 cosα− + δa2 sinα−)A (2π(τ̂ + τ̂−))} , where

2 π τ
β

2 π τ
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saturation property (cutoff independence) for ρ̂ integration.



ξ dependence of Ξ±
ρmax ≡ ξβ:

∫

dρ →
∫ ζβ

0
dρ , (ζ > 0) .

◮ Ξ± = 272 ζ3 × unknown, fixed real, (ζ > 10)

◮ integral over ρ is strongly dominated by contributions just
below upper limit

◮ semiclassical discussion of nontrivial-holonomy calorons in

limit D
β = π

(

ρ
β

)2
≫ 1 [Diakonov et al. 2004] is justified.



Kernel of a differential operator D and potential for φ

◮ set {φ̂} contains two real parameters for each “polarization”:
Ξ± and τ±; {φ̂} is annihilated by linear, second-order

differential operator D = ∂2
τ +

(

2π
β

)2
⇒

{φ̂} coincides with kernel of D and determines D uniquely

◮ linearity ⇒ also Dφ = 0

◮ but: D depends on β explicitly, not allowed
(BPS, caloron action given by topolog. charge)

◮ therefore seek potential V (|φ|2) such that (Euclidean) action
principle applied to

Lφ = tr
(

(∂τφ)
2 + V (φ2)

)

.

yields solutions annihilated by D, where Lφ does not depend
on β explicitly; demand that energy density Θ44 = 0 on those
solutions



Potential for and modulus of φ

◮ pick motion in 1-2 plane of su(2) (gauge invariance ⇒ V
central potential ⇒ cons. angular momentum); ansatz:

φ = 2 |φ| t1 exp(±4πi

β
t3τ) .

(circular motion in 1-2 plane, |φ| time independent!)
◮ apply E-L to Lφ ⇒

∂2
τφ

a =
∂V (|φ|2)
∂|φ|2 φa (in components) ⇔

∂2
τφ =

∂V (φ2)

∂φ2
φ (in matrix form) .

◮ Θ44 = 0 on ansatz φ ⇒ |φ|2
(

2π
β

)2
− V (|φ|2) = 0 but also:

∂2
τφ+

(

2π
β

)2
φ = 0 ⇒

∂V (|φ|2)
∂|φ|2 = −V (|φ|2)

|φ|2 .



Potential for and modulus of φ, cntd

◮ ⇒ V (|φ|2) = Λ6

|φ|2
where Λ integration constant of mass dim. unity.

◮ ⇒ |φ| =
√

Λ3β
2π (power-like decay of field φ with increasing T )

The field φ describes coarse-grained effect of noninteracting
trivial-holonomy calorons and anticalorons. It does not propagate,
and its modulus |φ| sets the scale of off-shellness down to which
quantum fluctuations, arising from the sector k = 0, must be
considered “integrated out” in full effective theory.

◮ Indeed: cutting off ρ and r integrations at |φ|−1, τ
dependence of A(2πτβ ) is perfect sine

(Error at level smaller than 10−22 if knowledge about
Tc = λcΛ

2π with λc = 13.87 is used, later.)



BPS equation for φ

In addition to E-L equation φ satisfies first-order, BPS equation:

∂τφ = ±2i Λ3 t3 φ
−1 = ±i V 1/2(φ) .

Because φ satisfies both, second-order E-L and first-order BPS
equation, usual shift ambiguity in ground-state energy density, as
allowed by E-L equation, absent in SU(2) Yang-Mills
thermodynamics.



Effective action for deconfining phase

Coupling the coarse-grained k = 0 sector to φ, following
constraints:

◮ perturbative renormalizability
[’t Hooft, Veltman, Lee, and Zinn-Justin 1971-1973]

⇒ form invariance of action for effective k = 0 gauge field aµ
from integrating fundamental k = 0 fluctuations only, no
higher dim. ops. for aµ only

◮ no energy-momentum transfer to φ ⇒ absence of higher dim.
ops. involving aµ and φ

◮ gauge invariance ⇒ ∂µφ → Dµφ ≡ ∂µφ− ie[aµ, φ] (e
effective coupling); no momentum transfer to φ if (unitary
gauge φ = 2|φ| t3) massive 1,2 modes propagate on-shell only

+ +

(a)

+ +

p p p p p p

p p

p1

p2
p p

p1

p
2

p

(b)



Effective action and ground-state estimate
unique effective action density:

Leff[aµ] = tr

(

1

2
GµνGµν + (Dµφ)

2 +
Λ6

φ2

)

,

where Gµν = ∂µaν − ∂νaµ − ie[aµ, aν ] ≡ G a
µν ta

ground-state estimate:
◮ E-L EOM from Leff[aµ]

DµGµν = ie[φ,Dνφ] .

◮ solved by zero-curvature (pure-gauge) config. ags
µ :

ags
µ = ∓δµ4

2π

eβ
t3 (Dνφ ≡ Gµν ≡ 0) ⇒

ρgs = −P gs = 4πΛ3 T .
Unresolvable interactions between k = 0 and |k | = 1 lifted ρgs from zero

(BPS). EOS of a cosmological constant; pressure negative. (Short-lived,

attracting magnetic (anti)monopoles by temporary shifts of (anti)caloron

holonomies from trivial to small through absorption of hard plane-wave

fluctuations.)



Winding to unitary gauge: Z2 degeneracy

◮ consider gauge rotation Ω̃(τ) = Ωgl Z (τ)Ω(τ) where

Ω(τ) ≡ exp[±2πi τβ t3], Z (τ) =
(

2Θ(τ − β
2 )− 1

)

12, and

Ωgl = exp[i π2 t2]

◮ Ω̃(τ) transforms ags
µ to ags

µ ≡ 0 and φ to φ = 2t3|φ|
◮ Ω̃(τ) is admissible because respects periodicity of δaµ:

aµ → Ω̃(ags
µ + δaµ)Ω̃

† +
i

e
Ω̃∂µΩ̃

†

= Ωgl

(

Ω(ags
µ + δaµ)Ω

† +
i

e

(

Ω∂µΩ
† + Z∂µZ

)

)

Ω†
gl

= Ωgl

(

ΩδaµΩ
† +

2i

e
δ(τ − β

2
)Z

)

Ω†
gl = ΩglΩ δaµ (ΩglΩ)

† .

◮ Ω̃(τ) transforms Polyakov loop from −12 to 12 ⇒
ground-state estimate is (electric) Z2 degenerate ⇒
deconfining phase



Mass spectrum; outlook resummed radiative corrections

◮ computation in physical and completely fixed unitary,
Coulomb gauge (φ = 2t3|φ|, ∂ia3i = 0)

◮ mass spectrum: m2 ≡ m2
1 = m2

2 = 4e2 Λ3

2πT ,m3 = 0 .

◮ resummation of polarization tensor of massless mode as

=  + + + ...

⇒ small linear-in-T correction to tree-level ground-state
estimate [Falquez, Hofmann, Baumbach 2010]

tree-level:
ρgs

T 4
= 3117.09λ−3 ,

one-loop resummed:
∆ρgs

T 4
= 3.95λ−3 .

◮ large hierarchy between loop orders (conjecture about
termination at finite irreducible order, see second talk), so
one-loop correction practically exact



T dependence of e: selfconsistent thermal quasiparticles

P and ρ at one loop:

P(λ) = −Λ4

{

2λ4

(2π)6
[

2P̄(0) + 6P̄(2a)
]

+ 2λ

}

,

ρ(λ) = Λ4

{

2λ4

(2π)6
[2ρ̄(0) + 6ρ̄(2a)] + 2λ

}

,

where

P̄(y) ≡
∫ ∞

0
dx x2 log

[

1− exp(−
√

x2 + y2)
]

,

ρ̄(y) ≡
∫ ∞

0
dx x2

√

x2 + y2

exp(
√

x2 + y2)− 1
,

and a ≡ m
2T = 2πeλ−3/2. For later use introduce function D(2a) as

∂y2P̄
∣

∣

∣

y=2a
= − 1

4π2

∫ ∞

0
dx

x2
√

x2 + (2a)2
1

e
√

x2+(2a)2 − 1
≡ − 1

4π2
D(2a) .



Legendre transformation and evolution equation

◮ for m(T ) to respect Legendre trafo (fundamental partition
function) between P and ρ ⇔ ∂mP = 0

◮ ⇒ first-order evolution equation

∂aλ = −24λ4a

(2π)6
D(2a)

1 + 24λ3a2

(2π)6
D(2a)

.

or

1 = − 24λ3

(2π)6

(

λ
da

dλ
+ a

)

aD(2a) .

◮ ⇒ dependence a(λ) monotonic decreasing
⇒ for λ ≫ 1 a must fall below unity

◮ fixed points of evolution equation:

repulsive at a = 0 (λ → ∞)

attractive at a = ∞ (λ = λc)



Solution to evolution equation

◮ a ≪ 1 [Dolan, Jackiw 1974] ⇒ 1 = − λ3

(2π)4

(

λ da
dλ + a

)

a;

solution (a(λi ) = ai ≪ 1):

a(λ) = 4
√
2π2λ−3/2

(

1− λ

λi

[

1− a2i λ
3
i

32π4

])1/2

.

⇒ attractor a(λ) = 4
√
2π2λ−3/2 as long as a ≪ 1

⇒ e =
√
8π as long as a ≪ 1 (amusingly: S = 8π2

e2
= 1)

(geometric interpretation of ~ in terms of caloron winding number)
◮ full solution for e(λ) ⇒ λc = 13.87:
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T dependence of P and ρ
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λ

◮ notice negativity of P shortly above λc

◮ relative correction to one-loop quasiparticle P and ρ by
radiative effects: < 1%, see second talk



Summary

Summary:

◮ brief motivation why nonperturbative approach to YMTD
necessary: mass generation, poor convergence of pert. orders

◮ mini review on calorons: trivial vs. nontrivial holonomy for
|k | = 1 plus semiclassical approx.

◮ construction of thermal ground-state estimate: inert field φ;
BPS and E-L; potential

◮ discussion of constraints on effective action: pert.
renormalizability plus inertness of φ ⇒ unique answer

◮ full ground-state estimate, deconfining nature, tree-level
quasiparticles

◮ evolution of effective coupling

◮ T dependence pressure and energy density



Outlook

◮ running of fundamental coupling: trace anomaly

◮ radiative corrections: polarization tensor of massless mode

◮ radiative corrections: stable but unresolvable monopoles

◮ radiative corrections: two-loop and three-loop cases

◮ radiative corrections: loop expansion of pressure, conjecture
on termination at finite irreducible order

◮ two other phases:

◮ preconfining (thermal ground state: condensate of massless
monopoles and antimonopoles)

◮ confining (ground state of zero energy density: condensate of
single, round-point like center-vortex loops)



Physics

Some physics implications:

(i) mechanism for ew SB (LHC: not much of a Higgs signal so far)

(ii) postulate: SU(2) (10−4 eV) describes photon propagation

⇒ black-body spectral anomaly at T ∼ 5−−20K and low
frequencies

(cold H1 clouds, large-angle anomalies in TT of CMB, UEGE)
⇒ Planck-scale axion plus such an SU(2) yield Dark Energy

Thank you.
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