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Euclidean finite-temperature field theory

> representation of partition function Z (real scalar ¢)
invented by Schwinger, Feynman 1950s, see e.g.
[M. Le Bellac “Thermal Field Theory”]
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where 3 =1/T.

> in gauge theory: admissible changes of gauge respect
periodicity of A,

> in gauge-theory PT: additional gauge fixing required
(Faddeev-Popov or better)



Euclidean finite-temperature field theory

> loop expansion of N-point functions in momentum space,
propagator D
= 1
D - -
(pawn) w,27 + p2 + m2 9

where w, =27 nT (n € Z) nth Matsubara frequency.

» re-expressing (but not changing the contour for 7" integration
in Euclid. action) summation over n and integration over p,
and3p, by Cauchy’s integral theorem =
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Real-time interpretation of loop integrals

Remarks:

» A more elaborate 7"/ integration contour in the action was
considered in [Umezawa, Matsumoto, and Tachiki (1982), Niemi
and Semenoff (1984)]. This doubles real-time DOEs to avoid
pinch singularities in PT.

» In Yang-Mills, where topological field configurations
constructed for 0 < 7" < 3 (ground state!), such a change of
contour for physics of propagating excitations is inconsistent.



Perturbative approach to pressure in Euclidean formulation

> in [Linde 1980] uselessness of PT after order g° pointed out
(scale-separation argument for g < 1: momenta of order T
(hard), gT (soft), and g?T (ultrasoft);
hard and soft OK; ultrasoft: weak screening of magnetic
modes destroys perturbativity starting at g6)

» SU(3) pressure in pure-YM PT
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[Shuryak 1978, Kapusta
1979, Toimula 1983, Arnold

%‘% and Zhai 1994, Zhai and
A Kastening 1994, Braaten and
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Trivial-holonomy calorons
» in singular gauge (winding number |k| = 1 is localized in a
point) there is a superposition principle of instanton centers
in prepotential N ['t Hooft (1976), Jackiw and Rebbi (1976)]:
A:’a(x) = _ﬁZV 81/ |Og M )
AP(x) = —np, 0y logl.

> can be used to satisfy at |k| = 1 periodic b.c. in strip
(0<7<p)x R3 [Harrington and Shepard (1978)]:
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where r = |x|.



Trivial-holonomy calorons, cntd.

> holonomy of AZ*(x) at r — oo trivial:

2 - 1
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» Gaussian quantum weight [Gross, Pisarski, and Yaffe (1981)]:

87r2 42

S = 72 +§ +16A(0) (oc=77),
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6 (c = 0).

Conclusion of semiclassical approx.:
Trivial-holonomy-caloron weight exponentially suppressed at
high T.



Nontrivial holonomy: Static magnetic dipoles

> construction based on [Ward 1977, Atiyah and Ward 1977,
ADHM 1978, Drinfeld and Manin 1978, Manton 1978, Adler 1978,

Rossi 1979, Nahm 1980-1983]

> explicitly carried out in [Lee and Lu 1998, Kraan and Van Baal

1998]: Ag(7,r — 00) = —iut}(0 < u < ).

action density of nontrivial-holonomy caloron with
k =1 plotted on 2D spatial slice

exact cancellation
between Az;-mediated
repulsion and
A;-mediated
attraction;

caloron radius p and
thus monopole-core
separation D = %p2
increase from left to
right (T and
holonomy fixed)



Nontrivial holonomy, cntd.

computation of functional determinant about nontrivial holonomy
carried out in [Gross, Pisarski, and Yaffe (1981), Diakonov et al. 2004]

2
in (relevant) limit % =7 (%) >1

conclusions:

» total suppression for nontrivial static holonomy in limit
V = o0

» attraction of monop. and antimonop. for small holonomy
0<u<jzl-5) 50+ 5)<u<2])

» repulsion of monop. and antimonop. for large holonomy
(50— %) <us<5i+k)

» Instability of classical configuration under quantum noise =

Nontrivial holonomy does not enter a priori estimate of
thermal ground state!



Inert field ¢

Observations and principles constraining construction of ¢:

> Fu = :l:l:_m, = vanishing energy-momentum:

0, = _ztr{aﬂy <¢E-Bi%(2E-B—|—2B-E)>

F(0u40ui + 6,i0,4) (E x E);
:E(SH,'(S,/(J-#,-) (E,'BJ' — E;Bj) + 5u(j7é;)5y; (EJ'B,' — E_,'B,')} =0.

> spatial isotropy and homogeneity of effective local field not
associated with propagation of energy-momentum by
fundamental gauge fields = inert scalar ¢

» modulo admissible gauge transformations ¢ does not depend
on time

» relevance of ¢ (BPS) by gauge-invariant coupling to
coarse-grained k = 0 sector (perturbative renormalizability) =
¢ adjoint scalar



Inert field ¢

Observations and principles constraining construction of ¢, cntd:

> Fu = ilN-_W = any local “power” of F,, with an insertion of
t? vanishes

» only trivial holonomy in F,, = j:l:'w, allowed

> |¢| is spacetime homogeneous = information on ¢'s EOM is
encoded in phase ¢ = %

» definition of possible phases {qg} due to BPS of Af no
explicit T dependence, flat measure for admissible
integration over moduli (excluding temporal shifts and
global gauge rotations), Wilson lines between spatial points
along straight lines



Inert field ¢

Unique definition of {gg} [Herbst and Hofmann 2004]:

) = r | d&®x [ dpt?F(7,0) {(7,0),(r,x
(3= 3 [ @x [ 40t Fulr0) 1.0 5:x)

X Fuu(7,x) {(7,x),(7,0)} ,

(%)
i/ dz, Au(2)] ,
(1,0)

{(7.%), (1, 0)} = {(r,0), (r.x)}" ,

and sum is over Harrington-Shepard (trivial-holonomy) caloron
and anticaloron of scale p.

where

{(7,0),(7,x)} = Pexp

Higher n-point functions, higher topol. charge k7 No.

(Would introduce mass dimension d =3 — n — m of object, m > 1
number of dimension-length caloron moduli at kK > 1, but d needs to
vanish.)



Inert field ¢

Some observations, conventions:

> quS indeed transforms as an adjoint scalar:
$(1) = R*(7)$"(7),
where R?P is 7 dependent matrix of adjoint rep.

R3b(1)tP = Q(7,0)t°Q(, 0).

» What about shift of spatial center 0 — 2.7

XV\

of -l

@ ®)
(a) graphical representation of definition
(b) only possible generalization to zy # 0

Shift of center amounts to
spatially global gauge
rotation induced by the
group element

Q;t = {(7—7 0)) (Ta Zi)}'



Inert field ¢

Some observations, conventions, cntd:
» one has

(7:x) 1
/ dz,Au(2)], = i/ ds x;Ai(T, sx)
0

(7,0)
1
= dtpxp 87/ ds logN(r,sr,p) =
0

integrand in the exponent of {(7,0), (7,x)} varies along a
fixed direction in su(2) (a hedge hog); Path-ordering can be
ignored.
> temporal shift freedom in Aff: set 7 = 0 and re-instate later
» parity: F(7,%x)+ = Fu(7,—x)— and

{(770)7(7-7)()}4- = ({(Tvx)>(7_>0)}+)T:{(770)7(77 —X)}_
= ({0 (r.op )" =

— contribution to the integrand in definition obtained by
X — —Xx in + contribution



Inert field ¢

Some observations, conventions, cntd:

after tedious computation [Herbst and Hofmann 2004]
+ contribution to integrand in definition reads:
, 32" x? 72p* + p?(2 + cos(277))

— i B
P (272p2 + 1 — cos(277))?

x F[g,N],

where p = %, = é 7= % and functional F is
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and

One shows that g saturates exponentially fast for 7 > 1.



Inert field ¢

discussion:

>

angular integration would yield zero if radial integration was

regular

but: radial integration diverges logarithmically due to term
85_,”; this term arises from the magnetic-magnetic correlation
(recall: no convergence in PT due to weakly screened
magnetic sector!)

zeroxinfinity yields undetermined, multiplicative, and real
constants =

without restriction of generality (global choice of gauge),
angular integration regularized by defect azimuthal angle in
1-2 plane of su(2) for both + and — contributions =
Members of {¢} all move in hyperplane of su(2)!

re-instate 7 =+ 7+ 74 =



Inert field ¢

discussion, cntd:
result:
{0} = {=4(6% cosay + 0% sinay) A(2n (7 +74))
+=_ (0t cosa_ + 6 sina_) A(2n(7 +7_))}, where

A
300 2000f /P 3
wof [ % E51 [\ F\€=2
wllf A 1000
100 p b
oo Y/ i 1000
-300 4 Y 2000 J J 2mt
05 1 T15 ¢ o5 1 15 2 g
a —
5000
4000 £=3 200000 £=10
2000 100000)
o o

-100000)

- 5000) -200000

T dependence of function A(227)

saturation property (cutoff independence) for j integration.



¢ dependence of =
pmax = gﬁ:

/dp—>/owdp, (¢ >0).

» =1 = 272¢3 x unknown, fixed real, (¢ > 10)

> integral over p is strongly dominated by contributions just
below upper limit

» semiclassical discussion of nontrivial-holonomy calorons in

2
limit % = (%) > 1 [Diakonov et al. 2004] is justified.



Kernel of a differential operator D and potential for ¢

> set {gg} contains two real parameters for each “polarization”:
=4 and 74; {¢} is annihilated by linear, second-order

2
differential operator D = 92 + (%’T) =

{®} coincides with kernel of D and determines D uniquely
> linearity = also D¢ =0
» but: D depends on 3 explicitly, not allowed
(BPS, caloron action given by topolog. charge)
» therefore seek potential V/(|¢|?) such that (Euclidean) action
principle applied to

Ly =tr((0-0) + V(8?)) .

yields solutions annihilated by D, where L, does not depend
on 3 explicitly; demand that energy density ©44 = 0 on those
solutions



Potential for and modulus of ¢

» pick motion in 1-2 plane of su(2) (gauge invariance = V
central potential = cons. angular momentum); ansatz:

6 =2]6/n exp(i%’m).

(circular motion in 1-2 plane, |¢| time independent!)
» apply E-L to Ly =

2
0297 = %gf)a (in components) <
2
2% oV(s) ¢ (in matrix form).

52

> O44 = 0 on ansatz ¢ = |2 (%)2 — V(|6[2) = 0 but also:
826 + <%>2¢:0 -

oV(oP) _ V(6?)

ool el?




Potential for and modulus of ¢, cntd

2y _ A°
> = V([¢l°) = g
where A integration constant of mass dim. unity.

> = |p| = % (power-like decay of field ¢ with increasing T)
The field ¢ describes coarse-grained effect of noninteracting
trivial-holonomy calorons and anticalorons. It does not propagate,
and its modulus |¢| sets the scale of off-shellness down to which
quantum fluctuations, arising from the sector k = 0, must be
considered “integrated out” in full effective theory.

» Indeed: cutting off p and r integrations at |¢|™!, T
dependence of A(%TT) is perfect sine
(Error at level smaller than 10722 if knowledge about

T.= )‘2@:\ with Ac = 13.87 is used, later.)




BPS equation for ¢

In addition to E-L equation ¢ satisfies first-order, BPS equation:

0rp = £2i N ts 671 = i VI/2(g5).

Because ¢ satisfies both, second-order E-L and first-order BPS
equation, usual shift ambiguity in ground-state energy density, as
allowed by E-L equation, absent in SU(2) Yang-Mills
thermodynamics.



Effective action for deconfining phase

Coupling the coarse-grained k = 0 sector to ¢, following
constraints:
> perturbative renormalizability
['t Hooft, Veltman, Lee, and Zinn-Justin 1971-1973]
= form invariance of action for effective k = 0 gauge field a,
from integrating fundamental k = 0 fluctuations only, no
higher dim. ops. for a, only
> no energy-momentum transfer to ¢ = absence of higher dim.
ops. involving a, and ¢
» gauge invariance = 0,0 — D¢ = 0,0 — ie[ay, @] (e
effective coupling); no momentum transfer to ¢ if (unitary
gauge ¢ = 2|¢| t3) massive 1,2 modes propagate on-shell only

> o > ok s

A R 4

X o * xR =

N WA
+ 5 -
[ J 4 P
P2 Py




Effective action and ground-state estimate
unique effective action density:
1 N®
Eeff[ap,] =tr <§ G,uzz G,uz/ + (Dp¢)2 + ?> )
where G, = 0,a, — Oya,, — ie[a,,a,] = G, ta
ground-state estimate:
» E-L EOM from L.:{a,]

DuG;w = ie[gb, qub] :

> solved by zero-curvature (pure-gauge) config. a%:

2w
EES :F5u4£ ts (Dyp=G,=0) =

P = —P®*=47N3T.
Unresolvable interactions between k = 0 and |k| = 1 lifted p# from zero
(BPS). EOS of a cosmological constant; pressure negative. (Short-lived,
attracting magnetic (anti)monopoles by temporary shifts of (anti)caloron
holonomies from trivial to small through absorption of hard plane-wave
fluctuations.)



Winding to unitary gauge: Z, degeneracy
» consider gauge rotation Q(7) = Q, Z(7) Q(7) where
Q(r) = exp[+2mijts], Z(7) = (2@(7‘ — g) — 1) 1,, and
Q, = exp[i5 ta]
» Q(7) transforms a% to a5 = 0 and ¢ to ¢ = 2t3|¢|

> Q(T) is admissible because respects periodicity of day:
ay — Q(a% + 02, )0 + éflaﬂfﬂ
=Q, (Q(afj +62,)Q + é (Q@HQT + zauz)> af

o
=Q, (QdaHQT + éé(r — g)z> I =Q,Q06a, (2.Q)".

» Q(7) transforms Polyakov loop from —1, to 1, =
ground-state estimate is (electric) Z, degenerate =
deconfining phase



Mass spectrum; outlook resummed radiative corrections

» computation in physical and completely fixed unitary,
Coulomb gauge (¢ = 2t3|¢|, 9;a3 = 0)

3
> mass spectrum: m?> = m? = m3 = 4e22/7\r—7_ ,m3=0.

» resummation of polarization tensor of massless mode as
= small linear-in-T correction to tree-level ground-state
estimate [Falquez, Hofmann, Baumbach 2010]

_ e -3
tree-level: Tz = 3117.09\,
Ap=
one-loop resummed: r-_ 3.95 273

» large hierarchy between loop orders (conjecture about
termination at finite irreducible order, see second talk), so
one-loop correction practically exact



T dependence of e: selfconsistent thermal quasiparticles
P and p at one loop:

P(\) = —/\4{ 2\

(2m)°

[2P(0) + 6P(2a)] + 2)\} :

o) = n {2 (o) + spt2a)] + 20

where

P(y) = /000 dx x? log [1 —exp(—v/x? +y2)] ,

ly) = /wdxxz VX2t
o exp(v/x2+y2) -1’

and a = /2 = 2reA3/2. For later use introduce function D(2a) as

0,2P L / Td i L L D(2a)
= — X E _ .
v y=2a 472 0 \/X2 + (23)2 e\/X2+(2a)2 _1 472




Legendre transformation and evolution equation
» for m(T) to respect Legendre trafo (fundamental partition
function) between P and p < 0P =0

» = first-order evolution equation

24)\%3 D(2a)

(2m)° 14 2852 D(2a)

0.\ = —

or

_24)\3 ( da

L )‘ﬁ + a> aD(2a).

» = dependence a(\) monotonic decreasing
= for A > 1 a must fall below unity

» fixed points of evolution equation:

repulsive at a =0 (A — o0)

attractive at a =00 (A = A.)



Solution to evolution equation

» a < 1 [Dolan, Jackiw 1974] = 1 = —(2’%4 ()\% + a) a;
solution (a(\;) = a; < 1):

A a?\3 1/2
— 2y-3/2 o 9
a(\) = 4212\ (1 x [1 —32#&) .

= attractor a(\) = 4v/272A"3/2 as long as a < 1

= e = /8 as long as a < 1 (amusingly: S = 86—7;2 =1)

(geometric interpretation of 7 in terms of caloron winding number)
» full solution for e(\) = A\, = 13.87:

e
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T dependence of P and p

P4 o
. T
1 1 | 1
mo 6/ |
oH ! 5 |
1 / 1 :
-1h ‘ 4}, |
1 1 | :
-2k | 3h w
1 1 | 1
1 1 | 1
-3 I 2h !
10 15 20 25 30 35 40 10 15 20 25 30 35 40

> notice negativity of P shortly above A,

> relative correction to one-loop quasiparticle P and p by
radiative effects: < 1%, see second talk



Summary

Summary:

>

v

brief motivation why nonperturbative approach to YMTD
necessary: mass generation, poor convergence of pert. orders

mini review on calorons: trivial vs. nontrivial holonomy for
|k| = 1 plus semiclassical approx.

construction of thermal ground-state estimate: inert field ¢;
BPS and E-L; potential

discussion of constraints on effective action: pert.
renormalizability plus inertness of ¢ = unique answer

full ground-state estimate, deconfining nature, tree-level
quasiparticles

evolution of effective coupling

T dependence pressure and energy density



Outlook

>

>

>

>

running of fundamental coupling: trace anomaly

radiative corrections: polarization tensor of massless mode
radiative corrections: stable but unresolvable monopoles
radiative corrections: two-loop and three-loop cases

radiative corrections: loop expansion of pressure, conjecture
on termination at finite irreducible order

two other phases:

» preconfining (thermal ground state: condensate of massless
monopoles and antimonopoles)

» confining (ground state of zero energy density: condensate of
single, round-point like center-vortex loops)



Physics

Some physics implications:

(i) mechanism for ew SB (LHC: not much of a Higgs signal so far)
(ii) postulate: SU(2) (10~*eV) describes photon propagation

= black-body spectral anomaly at T ~ 5 — —20K and low

frequencies
(cold H1 clouds, large-angle anomalies in TT of CMB, UEGE)
= Planck-scale axion plus such an SU(2) yield Dark Energy

Thank you.
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