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Trace anomaly for 0, = 2tr (—F,\F,' + 1g., F™F))
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» to any loop order in PT, trace anomaly:
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[Collins, A. Duncan, and Joglekar 1977; Fujikawa 1980]

» to any loop order in PT and nonperturbatively (path integral),

chiral anomaly:

1 ~
.5 _
Oudy = 392 F:VF;’V.

[Adler, Adler and Bardeen 1969; Bell and Jackiw 1969; Fujikawa
1979,1980]

> in constrast to trace anomaly chiral anomaly not
renormalized and topologically saturated



Trace anomaly, effectively

» idea: use operator identity (*) to extract 5(g) and thus g(T)
from (effective) knowledge of (6,,,,) 1 and (FZ,F2,), in
deconfining SU(2) and SU(3) Yang-Mills thermodynamics
[Giacosa and RH 2008]

> on one-loop level, one has in effective theory:
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everywhere in deconfining phase.



Trace anomaly, effectively

> use of one-loop approximation justified by hierarchically
suppressed, effective radiative corrections (later)

» going from fundamental to effective fields = fundamental
field strength F,, suffers wave-function renormalization
(fundamental radiative corrections); thus

‘CYM <F:VF3 HV>T = fz(g) (‘cdec-eﬁ)T = fz(g)pgs
where pgs = 4A3T, and real function f(g) to be determined
later.

(effective excitations do not contribute to average over action
density!)



Running coupling: temperature vs. resolution

> in general: 5(g) = pndug .
» since (derivation of effective theory) a natural value for p is

p=ol= /A7 =
B(g) =910y = —2T 01g = —267(8)

— p=3p _ _ fr(g) f2(g),

» moreover: (*) recast as h(\) Zpgs z

where perturbatively 37(g) = —bg> (b= 2%, N =2,3) at
one loop
But:

h(y)
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Function h(\) for SU(2) (gray) and SU(3) (black).



Running coupling: temperature vs. resolution

=

B function for running of g in dependence of T
negative.

=

B function for running of g in dependence of
resolution (11 = |¢|) positive.



Evaluation of gluon condensate

» assumption: in

h()\) = /04;:5[3 _ _5Tg(g) fZ(g)

all nonperturbative and higher-loop effects contributing to h

reside in S7(g)

= f2(g) can be determined from high-T asymptotics

(one-loop expression for B7(g) and ho = 3)

= flg)=1/3 1.
> gluon condensate: ; (F2,F") = 4rA3T % L.

where g is solution to

Br(g) = —% bh(\)g® < Org = —% bh(;)g



Nonperturbative gauge-coupling evolution

» without calculation: evolution equation

2 2 h(A
Br(e) = —2 bh(NE* & dhg = 2 b " Ng?,

= since h(\) < 3 negative slope nonperturbatively screened
= nonpert. Landau pole at lower T than pert. one

(Recall: T; = Ty exp (—ﬁ) )

» boundary conditions to evolution of g:
— e(\) logarithmic pole at A. = 13.87
— g(\) nonperturbative Landau pole at Ao = 13.87
— gp(A\) matches g(\) at high A, say, at A =10 .



Nonperturbative gauge-coupling evolution:
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Effective radiative corrections: 2-loop diagrams

solid (dashed) lines <> massive (massless) modes

1 d4pd4k Apv o7
A'Da = 81/ (27T)8 r[3l]Labc(p7 kv *pvik)r[p3]rst(7paikap+k)

X DAp,ar(p)Dup7bs(k)Dm—,ct(_P7 —k),
1 [ d*pd*k ups
AP, = 8 W [4]abcdD;w,ab(P)Dp&,cd(k)

plus constraints: on-shellness of massive modes, |(p + k)?| < |¢|?
in diagram (b)



2-loop diagrams, constraints

» Potentially noncompact independent loop variables for 2-loop
diag are (po,[p|) and (ko |K]).
Number of potentially noncompact independent loop variables
K=4

» The constraints for 2-loop diagrames are
— on-shellness: p? = k? = 4€?|¢|?
— compositeness constraints:

)

4e? + x2 + 4e? \/x22 +4e2 — xyx0z10| <

N -

where x; = Tl and x» = %
» For 2-loop, we have a total number of constraints

K=14+2=3

» Thus for the 2-loop case: more noncompact loop variables
than constraints: K > K
» = noncompact integration region



selected 2-loop diag. (b)
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Effective radiative corrections: 3-loop diagrams
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Ir. 3-loop diagrams: Solid (dashed) lines are associated with the
propagators of massive (massless) modes
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3-loop diagrams, general constraints

» Potentially noncompact independent loop variables for ir.
3-loop diags are (po, |p|); for i =1,2,3.
Number of potentially noncompact independent loop variables

K=6
» The compositeness constrains for ir. 3-loop diags. are

[(p1 + P2)2‘ < |#> (s channel)
I(p3 — p1)?] < |#|*> (t channel)
I(p2 — p3)?| < |#|> (u channel)

» Additional constraints depend on the number of massless and
massive propagators in each individual ir. 3-loop diag.



Constraints and compactness: ir. 3-loop diag. (a) and (b)

» We have 3 compositeness constraints due to the s-, t-,
u-channels

» In addition to the compositeness constraints, we have the
on-shellness conditions:

2 2 2

pi=m?, p3=m’, p3=m’, p;=(p1tp2—ps)’=m’

» The max. off-shellness of the massless mode in diag. (b) is
automatically satisfied by the t-channel due to momentum
conservation, ps = p1 — p3

» The total number of constraints for diag. (a) and (b) is
K=3+4=17
» Thus for ir. 3-loop diag. (a) and (b) we have

K=6<7=K

= Compact integration region



Constraints and compactness: ir. 3-loop diag. (c)

>

As before, we have 3 compositeness constraints over the s-, t-,
u-channels

In addition to the compositeness constraints, the on-shellness
relations for the massive modes in diag. (c)

2 2

p3=m?, pi=(p1+p—ps3)’=m?

For diag. (c), we also have the following constraints due to
the max. off-shellness

Pl < Iol?,  1p3] <ol
The above constraints yield for diag. (c)
K=3+4=7
Thus for all ir. 3-loop diag. K=3+4 =7 and
K<K

= Compact or empty integration region



results: ir. 3-loop diag. (a) and (b)
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Hierarchy between 2-loop and 3-loop corrections

> Ir. 3-loop integrations generate hierarchically suppressed
contributions to the pressure over the 2-loop contributions:

P2—Ioop < 10_2

1-loop o
P3-Ioop < 10_5 P2-Ioop _ 10_7
Pl—loop Pl—loop

» Ir. 3-loop integrations are either compact (ir. diags. (a)-(b))
or empty (ir. diag. (c)) whereas 2-loop integrations are
noncompact

» The most striking difference between 2-loop and 3-loop
corrections: the contribution from the ir. 3-loop diag. (c) is
vanishing; no 2-loop diagram has this property



Relation between pressure and polarization tensor

The polarization tensor is a sum over connected bubble diags. with
one internal line of momentum p cut, such that the diag. remains
connected, and the two so-obtained external lines amputated
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\
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O 2aVa< VaVa
Consequences:

» The hierarchical suppression of 3-loop compared to 2-loop
justifies the calculation of the polarization tensor on
1-loop level.

» The vanishing of a connected bubble diag. due to a
zero-measure support for its loop-momenta integrations

implies that the associated contribution to a polarization
tensor is also nil.



Effective radiative corrections: Pol. tensor massless mode
modified dispersion laws: transverse and longitudinal parts (real

time)

DI (p0) = ~dPL, | "+ 210(6% - G) nalon/ 7))
t
i
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Poles yield dispersion relations (pp = w + i7, assume v < w):

wi(p;) = P? + ReG(w(py), p;) wi(py) = P} + ReF (wi(pr), p/)
v(ps) = —ImG(w(p,), py)/2w Yi(pr) = —ImF(wi(p)), p;)/ 2w



Pol. tensor massless mode cntd.

Chosing p || es3:

Glpop) =T =52
e\
Fmp) = (1-2) =

> " sum of two diagrams:

Purely real: = yields dispersion

Purely imaginary: = yields v relation

One-loop level sufficient!



Full calculation of G

Gap equation:

k2 kil
ReG(po,p) = 87T€2/ {— (3 - 2> + 2]
[(p+k)2[ <[l m m

x ng (|ko| /T)6 (k* — m?)

= H(T,p,G)

Via d-function, integration over kg yields ko — +v/k? + m2.
With pg = ++/p? + G(po, p) and p || e3 constraint reads

‘G+2 (j:\/pz + GVk*+ m2 — pk3> + m2‘ < |¢f?



Selfconsistent result for G, real part

IG/T?|




Selfconsistent result for G, real part

» X2>02: G<O0
(anti-screening)

» Dip: G=0
» X<02: G>0
(screening)

16/T?
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Comparison with approximate result:

» Zeros of G agree (must be)

» For X 2 0.2, approximate agrees with selfconsistent result
(expected)

» Results different when G > X? (not suprising)



Selfconsistent result for G, imaginary part
Imaginary part: ImG MY
At left vertex: particle with mass v/G decaying into two on-shell
particles with mass m only possible if
G m? 5 e
(1)

T2 2 4 = 64755

» G < 0: condition (1) never satisfied
» G >0:

G(X=0,T) 1 e? 413
TE o 5 < B4 5 ~ 5 x 102
condition (1) never satisfied

Diagram A =0, hence no imaginary part of G, hence v =0 and
assumption v < w satisfied trivially.



Black-body spectra for T ~ T,

modification of U(1) by screening function G:
[Schwarz, Hofmann, Giacosa 2006; Ludescher and Hofmann 2008]
vr3

BB & @ B & &

postulating SU(2) as theory for photon propagation:
> T.=2725K, UEGE confirmed by Arcade2 [nofmann 2000]
» measurable gap in spectral radiance [Falquez, Hofmann, Baumbach 2010]

T-54K

Lo (W2 1)




Full calculation of F

Assume F € R (turns out to be selfconsistent)

\\\\\\\

Apply Feynman rules to p?> = ReX% = AVAC.VAVA
yields gap equation:

k2 kKO
p2 = Z%O(P) = 87['62/ |:<3 — 2> +—
|(p+k)2I<|8[2 m m

X ng (|k0| /T)(S (k2 — m2) d4k

Strategy to find F similar to that of finding G

[Falquez, Hofmann, Baumbach 2010].
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Selfconsistent result for F

vi= e = JHEED 4 8 X = b/ T
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Selfconsistent result for F

vi= e = JHEED 4 8 X = b/ T

» 3 branches

> Y, defined only for
T S e X <0.34

» superluminal group
velocity




Selfconsistent result for F, interpretation

charge-density waves < interpretation in terms of magnetic
monopoles

[Falquez, Hofmann, Baumbach 2011]

» longitudinal modes due to charge density waves
> light like propagation:
» stable (yet unresolved) monopoles released by large holonomy
caloron dissociation [Diakonov et al. 2004]
» density disturbance can only be propagated by radiation field,
which propagates at the speed of light

:

=

M

» superluminal propagation:
» unstable monopoles contained in small holonomy caloron
» extended calorons provide instantaneous correlation between
monopoles, leading to superluminal propagation

caloron
©)
M

= J



A particular 2-loop correction to pressure

APMM/Py L o0p
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» “Bubble diagrams” yield pressure

» For T > T, only relevant diagram: %

» AP x —4x 107474

» Temperature of TLM
gas reduced!
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Monopole properties

Explanation

Energy used to break up calorons, creating monopole
anti-monopole pairs

[Schwarz et al. 2006; Ludescher et al. 2008]
Deta||ed ana|ySIS ShOWS [Ludescher et al. 2008]:

» average monopole-antimonopole distance d < |¢|™?
=- monopoles unresolved in effective theory

» screening length I due to small-holonomy calorons: /s = 3.3d

= magnetic flux of monopole and antimonopole cancel (no
area law for spatial Wilson loop)



Summary

Summary:

>

computation of nonperturbative running of fundamental
coupling g:

definition via trace anomaly, 8 function positive w.r.t.
running resolution, 3 function negative w.r.t. running
temperature, mild screening of Landau pole

radiative corrections: pressure at 2-loops and 3-loops; large
hierarchy

radiative corrections: polarization tensor of massless mode
radiative corrections: black-body anomaly

radiative corrections: monopole-antimonopole density, mean
distance, screening length



To appear early November 2011.

Contains applications of SU(2)cus
(A~ 107*eV) to:

> black-body anomaly

pa e WY » contradiction to SM Higgs sector derived
Tie THEIMOdynAMICS o from primordial He abundance bounds on
Quantum Yang-Mills Theory freezeout temperature for nucleosynthesis in

Thenry and Appliatinns

case SU(2)cug confirmed
» Unexplained ExtraGalactic Emission
» primordial, magnetic seed fields

» stability of cold, dilute H1 clouds in Milky
Way

Thank you.
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