Effective theory of deconfining SU(2) Yang-Mills thermodynamics

parts to app. in Quantum Matter, June 2012

Ralf Hofmann

ITP Universität Heidelberg

Seminar talk at Institut Nonlinéaire de Nice Sophia-Antipolis (France) 16 March 2012

Table of Contents I

Euclidean Yang-Mills theory at T > 0

Fundamentals

Propagating modes

Real-time interpretation of loop integrals

Selfdual gauge fields in SU(2) with of |k|=1

Trivial-holonomy calorons
Nontrivial holonomy: Magn

Nontrivial holonomy: Magnetic dipoles

Coarse graining, BPS saturation \Rightarrow inert field ϕ

Principles constraining the construction Diakonov's semiclassical approximation

Kernel of a differential operator D

$$D=\partial_{ au}^2+\left(rac{2\pi}{eta}
ight)^2$$
 and potential for ϕ

Effective action

Coupling k=1 to k=0 effectively Tree-level ground-state estimate Winding to unitary gauge: \mathbf{Z}_2 degeneracy

Table of Contents II

Mass spectrum; outlook resummed radiative corrections

T dependence of e

Partition function, Legendre transformation, and evolution equation Fixed points, attractor, and critical temperature Prediction of P and ρ , SU(2) and SU(3)

Interpretation of quantum of action \hbar

Counting powers of \hbar Action of just-not-resolved (anti)caloron Real-world implications

Summary and outlook

Low-order radiative corrections Loop expansions Stable but unresolved monopoles The two other phases Some remarks on physics implications

Table of Contents III

Yang-Mills action

(thermal) Yang-Mills[Pauli, Barker, and Gulmanelli (1953); Yang and Mills (1954)]

$$S = rac{\mathrm{tr}}{2} \int_0^eta d au \int d^3x \, F_{\mu
u} F_{\mu
u} \, ,$$

where g is (dimensionless) coupling, $\beta \equiv 1/T$, $F_{\mu\nu} \equiv \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - ig[A_{\mu},A_{\nu}]$, and $A_{\mu} \equiv A_{\mu}^{a}t^{a} \rightarrow \Omega A_{\mu}\Omega^{\dagger} + i\Omega \partial_{\mu}\Omega^{\dagger} \ (\Omega(x) \in G)$ is gauge field such that $F_{\mu\nu} \rightarrow \Omega F_{\mu\nu}\Omega^{\dagger}$ and thus S is gauge invariant.

- ▶ at T > 0: admissible changes of gauge respect **periodicity** of A_{μ}
- in evaluating partition function $Z \equiv \sum_{\{A_{\mu}\}} e^{-S}$ in **fundamental fields:** Additional **gauge fixing** required \Rightarrow 1) Faddeev-Popov in PT
 - 2) restriction to Gribov region (or better) otherwise

Propagating modes

loop expansion of $\emph{N}\text{-point}$ functions in momentum space, propagator $\bar{\emph{D}}$

$$\bar{D}(\mathbf{p},\omega_n)\sim rac{1}{\omega_n^2+\mathbf{p}^2+m^2},$$

where $\omega_n \equiv 2\pi \, nT \, (n \in \mathbf{Z}) \, n$ th Matsubara frequency.

▶ re-expressing (but not changing the contour for τ integration in Euclid. action) summation over n and integration over p, $\sum_{n} \int d^3p$, by Cauchy's integral theorem \Rightarrow

$$-\frac{1}{\omega_n^2+\mathbf{p}^2+m^2}\longrightarrow \frac{i}{p^2-m^2}+\delta(p^2-m^2)\frac{2\pi}{\mathrm{e}^{\beta|p_0|}-1}\,,$$

where $\sum_n \int d^3p \longrightarrow \int d^4p$.

Real-time interpretation of loop integrals

Remarks:

A more elaborate τ integration contour in the action was considered in [Umezawa, Matsumoto, and Tachiki (1982), Niemi and Semenoff (1984)]. This doubles real-time DOEs to avoid pinch singularities in PT.

In Yang-Mills, where selfdual (nonpropagating) field configurations contribute to ground-state physics, such a change of contour for physics of propagating excitations is inconsistent.

Trivial-holonomy calorons

in singular gauge (winding number |k| = 1 is localized in a point) there is a superposition principle of instanton centers in prepotential Π ['t Hooft (1976), Jackiw and Rebbi (1976)]:

$$\begin{split} \bar{A}_{\mu}^{+,a}(x) &=& -\bar{\eta}_{\mu\nu}^a\,\partial_{\nu}\log\Pi\,,\\ \bar{A}_{\mu}^{-,a}(x) &=& -\eta_{\mu\nu}^a\,\partial_{\nu}\log\Pi\,. \end{split}$$

▶ can be used to satisfy at |k| = 1 periodic b.c. in strip $(0 \le \tau \le \beta) \times \mathbb{R}^3$ [Harrington and Shepard (1978)]:

$$\Pi(\tau, \mathbf{x}; \rho, \beta, x_0) = 1 + \sum_{I = -\infty}^{I = \infty} \frac{\rho^2}{(x - x_I)^2}$$

$$= 1 + \frac{\pi \rho^2}{\beta r} \frac{\sinh\left(\frac{2\pi r}{\beta}\right)}{\cosh\left(\frac{2\pi r}{\beta}\right) - \cos\left(\frac{2\pi \tau}{\beta}\right)},$$

where $r \equiv |\mathbf{x}|$.

Trivial-holonomy calorons, cntd.

▶ holonomy of $\bar{A}_{\mu}^{\pm,a}(x)$ at $r \to \infty$ trivial:

$$\Pi \stackrel{r \to \infty}{=} 1 + \frac{\pi \rho^2}{\beta r} \Rightarrow \lim_{r \to \infty} \bar{A}_4^{\pm} \propto \lim_{r \to \infty} \frac{1}{r^2} = 0 \Rightarrow$$

$$\mathcal{P} \exp \left[i \int_0^{\beta} d\tau \, \bar{A}_4^{\pm} \right] = \mathbf{1}_2.$$

Gaussian quantum weight [Gross, Pisarski, and Yaffe (1981)]:

$$S_{ ext{eff}} = rac{8\pi^2}{ar{g}^2} + rac{4}{3}\sigma^2 + 16\,A(\sigma) \quad \left(\sigma \equiv \pirac{
ho}{eta}
ight),$$

$$A(\sigma) \to -\frac{1}{6} \log \sigma \quad (\sigma \to \infty) \quad A(\sigma) \to -\frac{\sigma^2}{36} \quad (\sigma \to 0).$$

Conclusion of semiclassical approx.:

Trivial-holonomy-caloron weight exponentially suppressed at high \mathcal{T} .

Nontrivial holonomy: Magnetic dipoles

- construction based on [Ward 1977, Atiyah and Ward 1977, ADHM 1978, Drinfeld and Manin 1978, Manton 1978, Adler 1978, Rossi 1979, Nahm 1980-1983]
- explicitly carried out in [Lee and Lu 1998, Kraan and Van Baal 1998]: $A_4(\tau, r \to \infty) = -iut^3(0 \le u \le \frac{2\pi}{\beta})$.

action density of nontrivial-holonomy caloron with k=1 plotted on 2D spatial slice

exact cancellation between A_4 -mediated repulsion and A_i -mediated attraction: caloron radius ρ and thus monopole-core separation $D = \frac{\pi}{\beta} \rho^2$ increase from left to right (T and holonomy fixed)

Nontrivial holonomy, cntd.

computation of functional determinant about nontrivial holonomy carried out in [Gross, Pisarski, and Yaffe (1981), Diakonov et al. 2004], in latter paper for (relevant) limit $\frac{D}{\beta}=\pi\left(\frac{\rho}{\beta}\right)^2\gg 1$

conclusions:

- ▶ total suppression for nontrivial static holonomy in limit $V \to \infty$
- ▶ attraction of monop. and antimonop. for small holonomy $(0 \le u \le \frac{\pi}{\beta}(1 \frac{1}{\sqrt{3}}); \frac{\pi}{\beta}(1 + \frac{1}{\sqrt{3}}) \le u \le 2\frac{\pi}{\beta})$
- ▶ **repulsion** of monop. and antimonop. for **large holonomy** $\left(\frac{\pi}{\beta}(1-\frac{1}{\sqrt{3}}) \le u \le \frac{\pi}{\beta}(1+\frac{1}{\sqrt{3}})\right)$
- ► Instability of classical configuration under quantum noise ⇒ Nontrivial holonomy does not enter a priori estimate of thermal ground state!

Observations and principles constraining construction of ϕ :

• $F_{\mu\nu} = \pm \tilde{F}_{\mu\nu} \Rightarrow$ vanishing energy-momentum:

$$\begin{split} \Theta_{\mu\nu} &= -2\,\text{tr}\Big\{\delta_{\mu\nu}\left(\mp\mathbf{E}\cdot\mathbf{B}\pm\frac{1}{4}(2\mathbf{E}\cdot\mathbf{B}+2\mathbf{B}\cdot\mathbf{E})\right) \\ &\mp(\delta_{\mu4}\delta_{\nu i}+\delta_{\mu i}\delta_{\nu4})\,(\mathbf{E}\times\mathbf{E})_{i} \\ &\pm\delta_{\mu i}\delta_{\nu(j\neq i)}\left(E_{i}B_{j}-E_{i}B_{j}\right)\pm\delta_{\mu(j\neq i)}\delta_{\nu i}\left(E_{j}B_{i}-E_{j}B_{i}\right)\Big\} \equiv 0\,. \end{split}$$

- Spatial isotropy and homogeneity of *effective* local field *not* associated with propagation of energy-momentum by fundamental gauge fields ⇒ inert scalar φ
- lacktriangleright modulo admissible gauge transformations ϕ does not depend on time
- relevance of ϕ (BPS) by gauge-invariant coupling to coarse-grained k=0 sector (perturbative renormalizability) $\Rightarrow \phi$ adjoint scalar

Observations and principles constraining construction of ϕ , cntd:

- $F_{\mu\nu} \equiv \pm \tilde{F}_{\mu\nu} \Rightarrow$ any local "power" of $F_{\mu\nu}$ with an insertion of t^a vanishes
- **> only trivial holonomy** in $F_{\mu\nu}\equiv\pm \tilde{F}_{\mu\nu}$ allowed
- ▶ $|\phi|$ is spacetime homogeneous \Rightarrow information on ϕ 's EOM is encoded in phase $\hat{\phi} \equiv \frac{\phi}{|\phi|}$
- definition of possible phases $\{\hat{\phi}\}$: due to BPS of A^{\pm}_{μ} no explicit T dependence, flat measure for admissible integration over moduli (excluding temporal shifts and global gauge rotations), Wilson lines between spatial points along straight lines

Unique definition of $\{\hat{\phi}\}$ [Herbst and Hofmann 2004]:

$$\{\hat{\phi}^a\} \equiv \sum_{\pm} \operatorname{tr} \int d^3x \int d\rho \, t^a \, F_{\mu\nu}(\tau, \mathbf{0}) \, \{(\tau, \mathbf{0}), (\tau, \mathbf{x})\}$$

$$\times F_{\mu\nu}(\tau, \mathbf{x}) \, \{(\tau, \mathbf{x}), (\tau, \mathbf{0})\} \, ,$$

where

$$\{(\tau, \mathbf{0}), (\tau, \mathbf{x})\} \equiv \mathcal{P} \exp \left[i \int_{(\tau, \mathbf{0})}^{(\tau, \mathbf{x})} dz_{\mu} A_{\mu}(z)\right],$$

 $\{(\tau, \mathbf{x}), (\tau, \mathbf{0})\} \equiv \{(\tau, \mathbf{0}), (\tau, \mathbf{x})\}^{\dagger},$

and sum is over **Harrington-Shepard** (trivial-holonomy) caloron and anticaloron of scale ρ .

Higher n-point functions, higher topol. charge k? **No.**

(Would introduce mass dimension d=3-n-m of object, m>1 number of dimension-length caloron moduli at k>1, but d needs to vanish.)

Some observations, conventions:

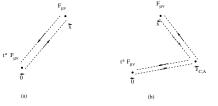
 $lackbox{}\hat{\phi}$ indeed transforms as an adjoint scalar:

$$\hat{\phi}^{a}(\tau) \rightarrow R^{ab}(\tau)\hat{\phi}^{b}(\tau)$$
,

where R^{ab} is τ dependent matrix of adjoint rep.

$$R^{ab}(\tau)t^b = \Omega^{\dagger}(\tau, \mathbf{0})t^a\Omega(\tau, \mathbf{0}).$$

▶ What about shift of spatial center $\mathbf{0} \rightarrow \mathbf{z}_{\pm}$?



(a) graphical representation of $\boldsymbol{definition}$

(b) only possible generalization to $\mathbf{z}_{\pm} \neq \mathbf{0}$

Shift of center amounts to spatially *global* gauge rotation induced by the group element $\Omega_z^{\pm} = \{(\tau, \mathbf{0}), (\tau, \mathbf{z}_{\pm})\}.$

Some observations, conventions, cntd:

▶ one has

$$egin{aligned} \int_{(au,\mathbf{0})}^{(au,\mathbf{x})} \left. dz_{\mu} A_{\mu}(z)
ight|_{\pm} &= \pm \int_{0}^{1} ds \, x_{i} A_{i}(au,s\mathbf{x}) \ &= \pm t_{b} x_{b} \, \partial_{ au} \int_{0}^{1} ds \, \log \Pi(au,sr,
ho) \; \Rightarrow \end{aligned}$$

integrand in the exponent of $\{(\tau, \mathbf{0}), (\tau, \mathbf{x})\}_{\pm}$ varies along a fixed direction in su(2) (a hedge hog); **Path-ordering can be ignored.**

- temporal shift freedom in A_{μ}^{\pm} : set $\tau_{\pm}=0$ and re-instate later
- ightharpoonup parity: $F_{\mu\nu}(\tau,\mathbf{x})_+=F_{\mu\nu}(\tau,-\mathbf{x})_-$ and

$$\begin{aligned} \left\{ (\tau, \mathbf{0}), (\tau, \mathbf{x}) \right\}_{+} &= \left(\left\{ (\tau, \mathbf{x}), (\tau, \mathbf{0}) \right\}_{+} \right)^{\dagger} = \left\{ (\tau, \mathbf{0}), (\tau, -\mathbf{x}) \right\}_{-} \\ &= \left(\left\{ (\tau, -\mathbf{x}), (\tau, \mathbf{0}) \right\}_{-} \right)^{\dagger} \Rightarrow \end{aligned}$$

– contribution to the integrand in **definition** obtained by $\mathbf{x} \rightarrow -\mathbf{x}$ in + contribution

Some observations, conventions, cntd:

after tedious computation [Herbst and Hofmann 2004]

+ contribution to integrand in **definition** reads:

$$-i\beta^{-2}\frac{32\pi^4}{3}\frac{x^a}{r}\frac{\pi^2\hat{\rho}^4+\hat{\rho}^2(2+\cos(2\pi\hat{\tau}))}{(2\pi^2\hat{\rho}^2+1-\cos(2\pi\hat{\tau}))^2}\times F[\hat{g},\Pi],$$

where $\hat{\rho} \equiv \frac{\rho}{\beta}$, $\hat{r} \equiv \frac{r}{\beta}$, $\hat{\tau} \equiv \frac{\tau}{\beta}$, and functional F is

$$\begin{split} F[\hat{g},\Pi] &= 2\cos(2\hat{g}) \left(2\frac{[\partial_{\tau}\Pi][\partial_{r}\Pi]}{\Pi^{2}} - \frac{\partial_{\tau}\partial_{r}\Pi}{\Pi} \right) \\ &+ \sin(2\hat{g}) \left(2\frac{[\partial_{r}\Pi]^{2}}{\Pi^{2}} - 2\frac{[\partial_{\tau}\Pi]^{2}}{\Pi^{2}} + \frac{\partial_{\tau}^{2}\Pi}{\Pi} - \frac{\partial_{r}^{2}\Pi}{\Pi} \right) \,, \end{split}$$

and

$$\{(\tau,\mathbf{0}),(\tau,\mathbf{x})\}_{\pm}\equiv\cos\hat{g}\pm2it_{b}\frac{x^{b}}{r}\sin\hat{g}$$
.

One shows that \hat{g} saturates exponentially fast for $\hat{r} > 1$.

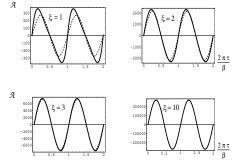
discussion:

- angular integration would yield zero if radial integration was regular
- **but:** radial integration diverges logarithmically due to term $\frac{\partial_r^2\Pi}{\Pi}$; this term arises from the **magnetic-magnetic** correlation (no convergence in PT due to weakly screened magnetic sector!)
- \blacktriangleright zero×infinity yields undetermined, multiplicative, and real constants Ξ_{\pm}
- ▶ without restriction of generality (global choice of gauge), angular integration regularized by defect azimuthal angle in 1-2 plane of su(2) for both + and contributions \Rightarrow Members of $\{\hat{\phi}\}$ all move in hyperplane of su(2)!
- ightharpoonup re-instate $au
 ightharpoonup au + au_{\pm} \Rightarrow$

discussion, cntd:

result:

$$\begin{aligned} \{\hat{\phi}^{a}\} &= \{\Xi_{+}(\delta^{a1}\cos\alpha_{+} + \delta^{a2}\sin\alpha_{+})\mathcal{A}(2\pi(\hat{\tau} + \hat{\tau}_{+})) \\ &+ \Xi_{-}(\delta^{a1}\cos\alpha_{-} + \delta^{a2}\sin\alpha_{-})\mathcal{A}(2\pi(\hat{\tau} + \hat{\tau}_{-}))\}, \quad \text{where} \end{aligned}$$



au dependence of function $\mathcal{A}(\frac{2\pi \tau}{\beta})$; saturation property (cutoff independence) for $\hat{\rho}$ integration.

$$\xi$$
 dependence of Ξ_{\pm}

$$\rho_{\text{max}} \equiv \xi \beta$$
:

$$\int d
ho
ightarrow \int_0^{\zeta eta} d
ho \,, \qquad (\zeta > 0) \,.$$

- $ightharpoonup \Xi_{\pm} = 272 \, \zeta^3 imes \text{unknown, fixed real, } (\zeta > 5)$
- \blacktriangleright integral over ρ is strongly dominated by contributions just below upper limit
- since upper limit set by $|\phi|$ (yet to be determined), only (anti)calorons with $\rho \sim |\phi|$ contribute to effective theory
- ▶ since $\zeta \ge 8.22$ (later) semiclassical discussion of nontrivial-holonomy calorons in limit

$$\frac{D}{\beta} = \pi \left(\frac{\rho}{\beta}\right)^2 \geq 8.22 \times \pi \gg 1$$
 [Diakonov et al. 2004] is justified.

Kernel of a differential operator D and potential for ϕ

- set $\{\hat{\phi}\}$ contains two real parameters for each "polarization": Ξ_{\pm} and τ_{\pm} ; $\{\hat{\phi}\}$ is annihilated by **linear**, **second-order** differential operator $D = \partial_{\tau}^2 + \left(\frac{2\pi}{\beta}\right)^2 \Rightarrow$ $\{\hat{\phi}\}$ coincides with **kernel** of D and determines D uniquely
- ▶ linearity \Rightarrow also $D\phi = 0$
- **but:** D depends on β explicitly, not allowed (BPS, caloron action given by topolog. charge)
- ▶ therefore seek potential $V(|\phi|^2)$ such that (Euclidean) action principle applied to

$$\mathcal{L}_{\phi} = \operatorname{tr}\left((\partial_{\tau}\phi)^2 + V(\phi^2)\right)$$
.

yields solutions annihilated by D, where \mathcal{L}_{ϕ} does not depend on β explicitly; demand that energy density $\Theta_{44}=0$ on those solutions

Potential $V(\phi^2)$ and modulus of ϕ

▶ pick motion in 1-2 plane of su(2) (gauge invariance $\Rightarrow V$ central potential \Rightarrow cons. angular momentum); ansatz:

$$\phi=2\left|\phi
ight|t_{1}\,\exp(\pmrac{4\pi i}{eta}t_{3} au)\,.$$

(circular motion in 1-2 plane, $|\phi|$ time independent!)

ightharpoonup apply E-L to $\mathcal{L}_{\phi} \Rightarrow$

$$\partial_{\tau}^{2}\phi^{a} = \frac{\partial V(|\phi|^{2})}{\partial |\phi|^{2}}\phi^{a}$$
 (in components) \Leftrightarrow

$$\partial_{\tau}^{2}\phi = \frac{\partial V(\phi^{2})}{\partial \phi^{2}}\phi$$
 (in matrix form).

ullet $\Theta_{44}=0$ on ansatz $\phi\Rightarrow |\phi|^2\left(\frac{2\pi}{\beta}\right)^2-V(|\phi|^2)=0$ but also:

$$\partial_{ au}^2 \phi + \left(\frac{2\pi}{\beta}\right)^2 \phi = 0 \Rightarrow$$

$$\frac{\partial V(|\phi|^2)}{\partial |\phi|^2} = -\frac{V(|\phi|^2)}{|\phi|^2}.$$

Potential $V(\phi^2)$ and modulus of ϕ , cntd

- $ightharpoonup
 ightharpoonup V(|\phi|^2) = rac{\Lambda^6}{|\phi|^2}$ where Λ integration constant of mass dim. unity.
- $ightharpoonup \Rightarrow |\phi| = \sqrt{rac{\Lambda^3 eta}{2\pi}}$ (power-like decay of field ϕ with increasing T)

The field ϕ describes coarse-grained effect of **noninteracting** trivial-holonomy calorons and anticalorons. It does not propagate, and its modulus $|\phi|$ sets the scale of off-shellness down to which any fundamental fluctuation must be considered "integrated out" in effective theory.

Indeed: cutting off ρ and r integrations at $|\phi|^{-1}$, τ dependence of $\mathcal{A}(\frac{2\pi\tau}{\beta})$ is perfect sine (Error at level smaller than 10^{-22} if knowledge about $T_c = \frac{\lambda_c \Lambda}{2\pi}$ with $\lambda_c = 13.87$ is used, later.)

BPS equation for ϕ

In addition to E-L equation ϕ satisfies **first-order**, BPS equation:

$$\partial_{\tau}\phi = \pm 2i \,\Lambda^3 \,t_3 \,\phi^{-1} = \pm i \,V^{1/2}(\phi).$$

Because ϕ satisfies both, second-order E-L and first-order BPS equation, usual shift ambiguity in ground-state energy density, as allowed by E-L equation, **absent** in SU(2) Yang-Mills thermodynamics.

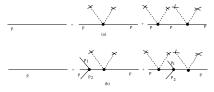
The emergence of local interactions between effective fields in QCD is a major theme at INLN.

[Fried, Gabellini, Grandou, Sheu 2009; Fried, Gattobigio, Grandou, Sheu 2010; Grandou 2011]

Effective action for deconfining phase

Coupling the coarse-grained k=0 sector to ϕ , following constraints:

- ▶ perturbative renormalizability ['t Hooft, Veltman, Lee, and Zinn-Justin 1971-1973] \Rightarrow form invariance of action for effective k=0 gauge field a_{μ} from integrating fundamental k=0 fluctuations only, no higher dim. ops. constr. from a_{μ} only
- ▶ no energy-momentum transfer to ϕ \Rightarrow absence of higher dim. ops. involving a_μ and ϕ
- ▶ gauge invariance $\Rightarrow \partial_{\mu}\phi \rightarrow D_{\mu}\phi \equiv \partial_{\mu}\phi ie[a_{\mu}, \phi]$ (e effective coupling); no momentum transfer to ϕ if (unitary gauge $\phi = 2|\phi| \ t_3$) massive 1,2 modes propagate on-shell only



Effective action and ground-state estimate

unique effective action density:

$$\mathcal{L}_{ ext{eff}}[a_{\mu}] = ext{tr} \left(rac{1}{2} G_{\mu
u} G_{\mu
u} + (D_{\mu}\phi)^2 + rac{\Lambda^6}{\phi^2}
ight),$$
 where $G_{\mu
u} = \partial_{\mu} a_{
u} - \partial_{
u} a_{\mu} - ie[a_{\mu}, a_{
u}] \equiv G^a_{\mu
u} t_a$

ground-state estimate:

▶ E-L EOM from $\mathcal{L}_{\text{eff}}[a_{\mu}]$

$$D_{\mu}G_{\mu\nu}=ie[\phi,D_{
u}\phi]$$
 .

▶ solved by zero-curvature (pure-gauge) config. a_{μ}^{gs} :

$$a_{\mu}^{\mathrm{gs}} = \mp \delta_{\mu 4} \frac{2\pi}{e\beta} t_3 \quad (D_{\nu} \phi \equiv G_{\mu \nu} \equiv 0) \Rightarrow$$
 $\rho^{\mathrm{gs}} = -P^{\mathrm{gs}} = 4\pi \Lambda^3 T.$

Unresolvable interactions between k=0 and |k|=1 lift ρ^{gs} from zero (BPS). EOS of a cosmological constant; pressure **negative**. (Short-lived, attracting magnetic (anti)monopoles by temporary shifts of (anti)caloron holonomies from trivial to small through absorption of unresolved plane-wave fluctuations.)

Winding to unitary gauge: **Z**₂ degeneracy

- consider gauge rotation $\tilde{\Omega}(\tau) = \Omega_{\rm gl} Z(\tau) \Omega(\tau)$ where $\Omega(\tau) \equiv \exp[\pm 2\pi i \frac{\tau}{\beta} t_3], \ Z(\tau) = \left(2\Theta(\tau \frac{\beta}{2}) 1\right) \mathbf{1}_2$, and $\Omega_{\rm gl} = \exp[i \frac{\pi}{2} t_2]$
- $ightharpoonup ilde{\Omega}(au)$ transforms $a_{\mu}^{
 m gs}$ to $a_{\mu}^{
 m gs}\equiv 0$ and ϕ to $\phi=2t^3|\phi|$
- $\tilde{\Omega}(\tau)$ is **admissible** because respects periodicity of δa_{μ} :

$$egin{aligned} a_{\mu} &
ightarrow ilde{\Omega}(a_{\mu}^{ extst{gs}} + \delta a_{\mu}) ilde{\Omega}^{\dagger} + rac{i}{e} ilde{\Omega} \partial_{\mu} ilde{\Omega}^{\dagger} \ &= \Omega_{ ext{gl}} \left(\Omega(a_{\mu}^{ extst{gs}} + \delta a_{\mu}) \Omega^{\dagger} + rac{i}{e} \left(\Omega \partial_{\mu} \Omega^{\dagger} + Z \partial_{\mu} Z
ight)
ight) \Omega_{ ext{gl}}^{\dagger} \ &= \Omega_{ ext{gl}} \left(\Omega \delta a_{\mu} \Omega^{\dagger} + rac{2i}{e} \delta(au - rac{eta}{2}) Z
ight) \Omega_{ ext{gl}}^{\dagger} = \Omega_{ ext{gl}} \Omega \, \delta a_{\mu} \left(\Omega_{ ext{gl}} \Omega
ight)^{\dagger}. \end{aligned}$$

 $ightharpoonup \ddot{\Omega}(au)$ transforms Polyakov loop from $-\mathbf{1}_2$ to $\mathbf{1}_2 \Rightarrow$ ground-state estimate is (electric) \mathbf{Z}_2 degenerate \Rightarrow deconfining phase

Mass spectrum; outlook resummed radiative corrections

- ► computation in physical and completely fixed **unitary**, **Coulomb gauge** ($\phi = 2t^3 |\phi|$, $\partial_i a_i^3 = 0$)
- ► mass spectrum: $m^2 \equiv m_1^2 = m_2^2 = 4e^2 \frac{\Lambda^3}{2\pi T}$, $m_3 = 0$.
- resummation of polarization tensor of massless mode as

 \Rightarrow small linear-in-T correction to tree-level ground-state estimate [Falquez, Hofmann, Baumbach 2010]

$$\begin{array}{ll} {\rm tree\text{-level:}} & \frac{\rho^{\rm gs}}{T^4} = 3117.09\,\lambda^{-3} \;, \\ {\rm one\text{-loop resummed:}} & \frac{\Delta \rho^{\rm gs}}{T^4} = 3.95\,\lambda^{-3} \;. \end{array}$$

▶ large hierarchy between loop orders (conjecture about termination at finite irreducible order [Hofmann 2006]), so one-loop correction practically exact

T dependence of e: selfconsistent thermal quasiparticles

P and ρ at one loop:

$$P(\lambda) = -\Lambda^4 \left\{ \frac{2\lambda^4}{(2\pi)^6} \left[2\bar{P}(0) + 6\bar{P}(2a) \right] + 2\lambda \right\} ,$$

$$\rho(\lambda) = \Lambda^4 \left\{ \frac{2\lambda^4}{(2\pi)^6} \left[2\bar{\rho}(0) + 6\bar{\rho}(2a) \right] + 2\lambda \right\} ,$$

where

$$ar{P}(y) \equiv \int_0^\infty dx \, x^2 \, \log \left[1 - \exp(-\sqrt{x^2 + y^2}) \right] \, ,$$
 $ar{\rho}(y) \equiv \int_0^\infty dx \, x^2 \frac{\sqrt{x^2 + y^2}}{\exp(\sqrt{x^2 + y^2}) - 1} \, ,$

and $a \equiv \frac{m}{2T} = 2\pi e \lambda^{-3/2}$. For later use introduce function D(2a) as

$$\partial_{y^2} \bar{P}\Big|_{y=2a} = -\frac{1}{4\pi^2} \int_0^\infty dx \, \frac{x^2}{\sqrt{x^2 + (2a)^2}} \, \frac{1}{2\sqrt{x^2 + (2a)^2}} = -\frac{1}{4\pi^2} \, D(2a) \, .$$

Legendre transformation and evolution equation

- ▶ for m(T) to respect Legendre trafo (fundamental partition function) between P and $\rho \Leftrightarrow \partial_m P = 0$
- ► ⇒ first-order evolution equation

$$\partial_a \lambda = -\frac{24\lambda^4 a}{(2\pi)^6} \frac{D(2a)}{1 + \frac{24\lambda^3 a^2}{(2\pi)^6} D(2a)}.$$

or

$$1 = -rac{24\lambda^3}{(2\pi)^6}\left(\lambdarac{da}{d\lambda} + a
ight) a\, D(2a)\,.$$

- ▶ \Rightarrow dependence $a(\lambda)$ monotonic decreasing \Rightarrow for $\lambda \gg 1$ a must fall below unity
- fixed points of evolution equation:

repulsive at
$$a = 0$$
 $(\lambda \to \infty)$
attractive at $a = \infty$ $(\lambda = \lambda_c)$

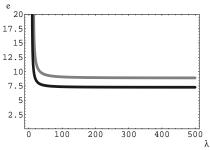
Solution to evolution equation

▶ $a \ll 1$ [Dolan, Jackiw 1974] $\Rightarrow 1 = -\frac{\lambda^3}{(2\pi)^4} \left(\lambda \frac{da}{d\lambda} + a\right) a$; solution $(a(\lambda_i) = a_i \ll 1)$:

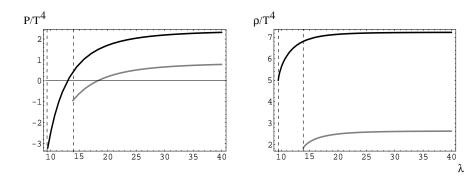
$$a(\lambda) = 4\sqrt{2}\pi^2\lambda^{-3/2}\left(1 - \frac{\lambda}{\lambda_i}\left[1 - \frac{a_i^2\lambda_i^3}{32\pi^4}\right]\right)^{1/2}.$$

 \Rightarrow attractor $a(\lambda)=4\sqrt{2}\pi^2\lambda^{-3/2}$ as long as $a\ll 1$ $\Rightarrow e=\sqrt{8}\pi$ as long as $a\ll 1$ (importantly: $S=\frac{8\pi^2}{e^2}=1$ \Rightarrow interpretation of \hbar in terms of caloron winding number, later)

• full solution for $e(\lambda) \Rightarrow \lambda_c = 13.87$:



T dependence of P and ρ



- notice **negativity** of P shortly above λ_c
- ightharpoonup relative correction to one-loop quasiparticle P and ho by radiative effects: <1%

Counting powers of \hbar

▶ re-instating \hbar but keeping $c=k_B=1$ \Rightarrow (dimensionless) exponential (fluctuating fields only) in effective partition function

$$-rac{\int_0^eta d au d^3x\, \mathcal{L}_{ ext{ iny eff}}'[a_\mu]}{\hbar}\,,$$

is re-cast as

$$-\int_0^\beta d\tau d^3x \operatorname{tr}\left(\frac{1}{2}(\partial_\mu \tilde{\mathsf{a}}_\nu\!-\!\partial_\nu \tilde{\mathsf{a}}_\mu\!-\!i\mathrm{e}\sqrt{\hbar}[\tilde{\mathsf{a}}_\mu,\tilde{\mathsf{a}}_\nu])^2\!-\!\mathrm{e}^2\hbar[\tilde{\mathsf{a}}_\mu,\tilde{\phi}]^2\right),$$

 $\tilde{a}_{\mu} \equiv a_{\mu}/\sqrt{\hbar}$, $\tilde{\phi} \equiv \phi/\sqrt{\hbar}$ assumed to **not depend** on \hbar (see for example [Brodsky and Hoyer 2011; Iliopoulos, Itzykson, and Martin 1975, Holstein and Donoghue 2004])

- ▶ This re-formulation of (effective) action implies that loop expansion is expansion in ascending powers of \hbar .
- $[\tilde{a}_{\mu}]$ is length⁻¹ \Rightarrow $[e] = [1/\sqrt{\hbar}]$

Action of just-not-resolved (anti)caloron

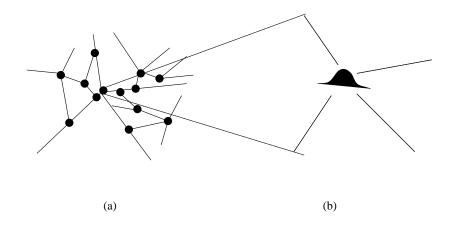
- ► Thus $e = \frac{\sqrt{8}\pi}{\sqrt{\hbar}}$ almost everywhere.
- Since only (anti)calorons of $\rho \sim |\phi|$ contribute to effective theory \Rightarrow effective coupling e admissible in calculation of fundamental (anti)caloron action:

$$S_{C/A} = \frac{8\pi^2}{e^2} = \hbar$$
 (almost everywhere).

implications:

- 1) universality, constancy of \hbar : no dependence on Yang-Mills scale Λ , associated with one unit of topological charge
- 2) pointlike vertices between effective plane waves induced by just-not-resolved, nonpropagating fluctuations
- 3) because effective vertices are dominated by (anti)calorons with $\rho \sim |\phi|$
- \Rightarrow no interaction between (fundamental) plane waves for momentum transfers $\gg |\phi|$
- \Rightarrow **absence** of plane-wave offshellness $\gg |\phi|$
- ⇒ adds justification to renormalization programme of PT

hypothetically resolving an effective vertex:



radiative corrections in eff. th.

caloron mediation of vertex

(zero-mode induced fermionic vertex on (anti)instanton: ['t Hooft 1976])

Real-world implications

▶ postulate that photon propagation described by SU(2) rather than U(1) gauge principles:

[Hofmann 2005; Giacosa and Hofmann 2005] ⇒ black-body anomaly, magnetic charge-density waves [Schwarz, Hofmann, and Giacosa 2006; Ludescher and Hofmann 2008; Falquez, Hofmann, and Baumbach 2010, 2011]

• in units $c = \epsilon_0 = \mu_0 = k_B = 1$ QED fine-structure constant α is

$$\alpha = \frac{Q^2}{4\pi\hbar}$$

 \Rightarrow to be **unitless**: $Q \propto 1/e$.

Is realized if Q taken \propto electric-magnetically dual of e:

$$Q' = \frac{4\pi}{e} \propto \sqrt{\hbar}$$
, $Q' = NQ$ (mixing of SU(2)'s).

Real-world implications, cntd.

- ⇒ magnetic monopoles of SU(2) are electric monopoles in real world [Hofmann 2005]
- ⇒ magnetic-monopole condensate of SU(2) is condensate of electric monopoles in real world (no dual Meissner effect)
 [Giacosa and Hofmann 2005]
- ⇒ electric charge density waves in SU(2) are longitudinally propagating magnetic field modes in real world [Falquez, Hofmann, and Baumbach 2011]
- \Rightarrow magnetic Z_2 charge of an SU(2) center-vortex selfintersection is electric charge in real world [Moosmann and Hofmann 2008]

Summary

- mini review on (thermal) Yang-Mills action
- ▶ mini review on calorons: trivial vs. nontrivial holonomy for |k| = 1 plus semiclassical approx.
- \blacktriangleright construction of thermal ground-state estimate: inert field ϕ ; BPS and E-L; potential
- discussion of constraints on effective action: pert. renormalizability plus inertness of $\phi \Rightarrow$ unique answer
- full ground-state estimate, deconfining nature, tree-level quasiparticles
- evolution of effective coupling
- T dependence pressure and energy density
- ightharpoonup interpretation of \hbar in terms of caloron action
- real-world implications

Outlook

- radiative corrections: polarization tensor of massless mode
- radiative corrections: stable but unresolvable monopoles
- radiative corrections: two-loop and three-loop cases
- radiative corrections: loop expansion of pressure, conjecture on termination at finite irreducible order
- two other phases:
 - preconfining (thermal ground state: condensate of massless monopoles and antimonopoles)
 - confining (ground state of zero energy density: condensate of single, round-point like center-vortex loops)

Physics

Some physics implications:

- (i) mechanism for ew SB
- (ii) postulate: SU(2) (10^{-4} eV) describes photon **propagation**
- \Rightarrow black-body spectral anomaly at $T \sim 5-20\,\mathrm{K}$ and low frequencies; low frequency magnetic charge-density waves (cold H1 clouds, large-angle anomalies in TT of CMB, UEGE, cosmological magnetic fields)
- ⇒ Planck-scale axion plus such an SU(2) yield **Dark Energy**

Thank you.