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In this master thesis we have investigated the propagation of a phase-modulated electo-magnetic wave
field through free space and subject to paraxial approximation (Fresnel theory). A good understanding
of the diffractograms’ (spectrum of the propagated intensity contrast) dependencies on propagation
distance and phase-variation strength is essential to classify common phase-retrieval approaches, to
point out their limitations and to propose improvements.

We identify a critical transition between an over-damped and an oscillatory spectral shape of the
diffractogram depending on propagation distance and phase-variation strength. Also, we spectrally
analyze scaling linearity (how linearly the diffractogram responds to a scaling of the phase-map). In case
of a Gausian phase-map we can identify a single physical frequency modulus where the diffractogram
scales in the most linear way. Furthermore, we identify regions within more general diffractogram where
good scaling-linearity takes place. We investigate commonly applied single-distance phase-retrieval
approaches (TIE and CTF) with respect to the modulation transfer and we demonstrate how this
knowledge of scaling-linearity can be applied to improve linear phase-retrieval algorithms.

In der vorliegenden Masterarbeit untersuchen wir die Propagation eines phasenmodulierten Wellenfeldes
einer elektromagnetischen Welle im freien Raum, im Rahmen der paraxialen Ndherung (Fresnel-
Theorie). Ein gutes Verstédndnis tiber die Abhéngigkeit des Diffraktogram (Spektrum des propergierten
Intensitatskontrast) von der Propagationsdistanz und der Stéirke der Phasenvariation ist essenziell um
Phasenrekonstruktionsmethoden zu klassifizieren und deren Beschriankungen aufzuzeigen.

Wir identifizieren einen kritischen Ubergang von einer iiberdimpften zu einer oszillierenden Form des
spektralen Diffraktograms in Abhéngigkeit der Propagationsdistanz und der Stérke der Phasenvariation.
Des Weiteren analysieren wir die spektrale Skalierungslinearitit (in wie fern das Diffraktogram linear
mit der Starke der Phasenvariation skaliert). Im Falle einer gaussférmigen Phasenkarte konnen wir
eine physikalische Frequenz isolieren, in welcher das Diffraktogram maximal linear skaliert. Des
Weiteren identifizieren wir Regionen im Diffraktogram die eine gute Skalierungslinearitét zeigen. Wir
untersuchen die bekannten Phasenrekonstruktionsansitze (TIE und CTF) auf ihr Abbildungsvermégen
rdumlicher Frequenzen und wenden unsere Erkenntnisse iiber Skalierungslinearitét an, um lineare
Phasenrekonstruktionsalgorithmen zu verbessern.
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1. Introduction

The discovery of X-rays in 1895 by Wilhelm Conrad Réntgen [I] has laid the foundation for a large
amount of imaging methods in medicine, biology, material science and many more. In comparison to
visible light, X-rays permeate matter, especially soft matter (with low atomic number), very well. This,
for example, was demonstrated in 1896, when X-ray imaging was first applied in clinical use [2].

The X-ray’s high energy imply negligibly small scattering of X-ray beams of soft, non-crystalline matter,
and therefore is used for projection radiography. Highly absorbing tissues, for example bones or kidney
stones, can be visualized as 2D projection in the human body. With the development of powerful
computers, projected X-ray images can be used to calculate three-dimensional representations of the
probed objects. This computed tomography has first been implemented by Godfrey Hounsfield in
1969 based on the mathematical work of Allan McLeod Cormack [3]. This time neither Cormack nor
Hounsfield knew that the inverse problem of projection had already been solved by Johann Radon in
1917 [4].

Nowadays, modern synchrotron radiation facilities can produce X-rays of high brilliance and coherence.
Synchrotrons generate high intensity, monochromatic X-ray beams with good spatial- and temporal
coherence. With these beams, it is possible to perform phase-contrast imaging. When the beam passes
though a sample, with the refractive index n =1 — § + i (with the absorption part ), the wave front
is modulated. The induced modulations are given by line integrals of the refractive index along the
beam path when considering a sufficiently thin sample. When the modulated wave front propagates to
the detector the 2D intensity distribution changes by self interference in dependency of the propagation
distance. This propagation is well described by Fresnel theory [5]. Self-interference enables the use
of this effect for phase-retrieval, since it is not possible to measure the phase directly (for X-rays at
energies of 1keV the electromagnetic field oscillates on a frequency of approximately 2.5 - 1017Hz ).
The refractive index depends on the energy of the probing photons. In Figure for example, the
refractive index, split in real and imaginary part, of water is plotted as a function of the energy. We
see that the ratio 6/5 increases for higher energies. Therefore phase-contrast imaging is a possibility to
reduce dose, which in particular is important for biological and medical imaging.

The phase-retrieval, based on a single-distance measurement, requires a good understanding of how
the intensity contrast changes during the propagation. The present Master Thesis investigates the
intensity-contrast spectrum as induced by the projection through pure-phase objects (phase-maps)
and subsequent free-space propagation. We start with simple phase-maps (single scale objects) and
then increase their complexity. The main focus of the investigations is how the spectra depend on the
strength of the phase variation. This is of special interest because the commonly used phase-retrieval
approaches (TIE and CTF) presume that the strength of phase variation scales linear with the strength
of the diffractogram (Fourier transformed intensity contrast after propagation). Interesting results
are e.g., that the shape of the (angular averaged) diffractogram transmutes critically from an damped
to an oscillatory form when increasing the propagation distance and/or reducing the phase-variation
strength. Also, regions where the diffractrogram scales linearly and where it does not, are identified.
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Figure 1.1.: Refractive index of water parameterized by n =1 — d + i3 as a function of the photon
energy £ = hw. (a): § and S as function of E. (b): Ratio §/8 as function of E. Note that 6/8
increases for higher energies. Data from [6]

This thesis itself is structured as follows:

In Chapter 2| we introduce the theoretical background of Fresnel theory. Beginning with Maxwells
equation in Section we deduce the Helmholtz propagator and, by applying the paraxial approx-
imation, the Fresnel propagator in Section [2.1.7. Section is a short excursion on tomographic
reconstruction using the filtered back projection. Guigay’s relation between the wave field after the
projection through the sample and the intensity contrast at the detector plane is stated and proofed in
Section laying the foundation of the phase-retrieval approaches introduced in Section [2.2.4]
Chapter |3| contains the investigations of the diffractograms. We focus on the effect of phase-variation
scaling on the diffractogram.

In Section we start our analysis on single scale objects with broad spectrum (SOBS). After
introducing a formalism to calculate the diffractogram of a Gaussian phase-map in Section we
investigate the appearance of an additional zero in the low frequency regime in the diffractogram.
Section discusses how the shape of SOBS diffractograms’ becomes universal in the extreme far field
and that the shape information condenses in scaling information. In Section the transmutation of
the SOBS diffractogram from an over-damped to an oscillatory shape in dependence of the Fresnel
number and the scaling factor is investigated. A measure of scaling linearity is introduced in Section
With this measure we identify a single physical frequency at which the SOBS diffractogram
scales in a maximally linear way. Also, we identify bands of good scaling linearity in the diffractogram.
We increase the complexity of our phase-map and study two scale objects with broad spectrum (TOBS)
in Section Thereby we investigate the transition from over-damped to oscillatory behavior of the
diffractogram and the movement of the first regular zero as a function of phase-variation strength in
Section Section contains an investigation on scaling linearity in dependence of the shape of
the phase-map. In Section the extreme far field is discussed and a generalization of diffractograms
in the extreme far field for arbitrary phase-maps is introduced.

In Section we study the diffractograms induced by multi-scale objects with broad spectrum (MOBS).
In analogy to the SOBS and TOBS case we identify bands of linear scaling behavior in Section We
also study phase retrieval approaches in dependence of the phase-variation strength and the propagation
distance in Section [3.3.3] Therefore, we perform a systematical investigation on how well the phase
retrieval approaches perform in dependence of spatial frequency in the phase-map.

In Chapter |4/ we summarize our outcomes, with the focus on the impact on single-distance phase
retrieval.



2. Theoretical background

This chapter is about the basics of x-ray imaging and phase-to-contrast transfer. We start with
Maxwell’s equations and derive phase to contrast transfer (Guigay’s relation). We also briefly address
tomographic reconstruction and phase retrieval.

2.1. From Maxwell to Fresnel

This section contains the fundamentals of electro magnetic waves and an introduction into some useful
approximations for the x-ray regime. Also, the propagation of a monochromatic wave in free space will
be discussed and the free-space propagator will be derived. This propagator underlies the derivation of
phase to intensity transfer. Therefore, it is at the heart of phase-contrast x-ray imaging.

2.1.1. Macroscopic Maxwell’s equations

The most fundamental description of electro magnetic phenomena in classical physics is given by
Maxwell’s equations [7], in the SI unit system, which will be used in this thesis:

—

V.E:

r

60’
V-B=0,

VXE+8t§:0,

V x B — oo E = poj -

(2.1)

These partial differential equations connect the electric charge density p and electric current density j
with the electric field E and the magnetic field B. The physical constants g and eg are called the
vacuum permeability and the vacuum permittivity, respectively[8].
When electromagnetic effects are used to probe materials, like in x-ray imaging, it is obvious that the
effect of matter has to be considered. To cope with this in an efficient way, one introduce material
properties. For the sake of simplification we impose some restrictions on the material. The first
restriction is that only dielectric materials are considered. This means that the material is an electric
insulator which can be polarized. Assuming a homogeneous and linear medium, the polarisation Pis
proportional to E

P = eoxoE . (2.2)

The dimensionless factor y. denotes the electric susceptibility ye (in the vacuum y, = 1). In general
Xe is a 3D-tensor.

With this polarisation the electric flux density can be defined as

D:=eE+P. (2.3)
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In case of a linear and isotropic dielectric material this relation can be simplified as

—

D :=ee0E, (2.4)
containing the relative permittivity e, as a scalar and dimensionless quantity.

In analogy to the relation between E and 5, there is a relation between the magnetic field strength H
and the magnetic flux density B := u,uoH, including a material dependent, dimensionless tensor p,.
In case of magnetic isotropy g, collapses to a scalar quantity.

With these definitions, Maxwell’s equations in matter can be written as

v'ﬁzpfreev
V-B=0,
VXE+8t§:0,

\Y XH—atD:jfreea
including the free electric charge prree and free electric currents ffree.

2.1.2. Wave equation and refractive index

Before setting up the wave equations, some assumptions have to be made: the medium is isotropic and
has no free charges or free currents (pgee = 0; jrree = 0 ). With these assumptions, the wave equations
for £ and H can be derived form Eq. 1) as

<€er oo OF — A) E=0,

(5r#r eopto OF — A) H=0. (2.6)

These two equations can be solved independently, and for isotropic media, the vectorial character can

be neglected. We also identify the vacuum speed of light in Eq. 1) as c= \/Eﬁ%. This gives us the

following, scalar wave equatio (d’Alembert equation)

1
(&urcgaf - A) U(Z,t)=0. (2.7)
For monochromatic waves applies
2
w -
— k2 =0, (2.8)

where v = \/a";? denotes the phase velocity, w the angular frequency and the wave vector Ew. In this

case Eq. (2.7) can be solved by

V(&) = |hule ™R (2.9)

When looking at electromagnetic waves in media, it is useful to introduce the refractive index n as the
ratio between the vacuum speed of light to the phase velocity v in the medium:

n =

(2.10)

C
v

'Free electric charge means moveable over macroscopic distances.
2¥ can stand for E or H, we consider the E field only.
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In general, n is a function of angular frequency w of the monochromatic light wave described by Eq.
. When 0,n(w) # 0 we call the medium dispersive. For example, the fact that glass is a dispersive
medium is easily demonstrated by simple white light being broken by a prism into its constituent
spectral components. This effect is called dispersion. While n is greater than one for visible light for a
large variety of media. In the x-ray regim (5 — 30keV) it is usually smaller than one but remains
close to unity. Therefore, it is convenient to parametrise n as follows for x-rays

n=1-38+if. (2.11)

The imaginary part of n, quantified by 3, is used to describe the absorption of the medium. Its function
will become clear in Section [2.2.1 For energies around 10keV, § is usually of the order of 10~°. For
example d and [ as well as the relation % of water as a function of energy is given in Figure

2.1.3. Helmholtz equation

It is possible to factor out the time dependent part of ¥ from Eq. {) to build a superposition of
monochromatic waves as

W(Ft) = /0 (@) - et (2.12)

We can now look at each frequency separately, and, by substituting Eq. (2.12) in Eq. (2.7), this yields
the Helmholtz equation as
(A+n2K?)p =0, (2.13)

where the vacuum wave number K is defined as K = % = \KL | = 27” with the wave length A.

When substitutin n = /1 + x(Z) we obtain
(& + 1+ x(@)K?) ¥ =0. (2.14)

To solve this homogeneous and linear differential equation we first consider the vacuum case (x = 0),
called the free Helmholtz equation

(A + K?)iho =0 (2.15)
and the associated Green’s function

(A + K2)Go(F—2) = 0¥ (7 —2). (2.16)

When ¢y and Gq are known, a formal solution for ¢ can be generated as follow

0(@) = bol@) ~ K2 [ X(@)Gold — )i’ (217)

3The hardness of a x-ray beam is usually quantified by the energy of the light quanta (photons) it contains with F = %,
where ) is the wave length and h the Planck constant.
4Note that X(Z) is used to parameterize n and is not equal to x. in Eq. 1i
i

Proof by substitution of Eq. l) into Eq. l) (A + KH(Z) =0— K? [ 8(2 — ) x(2)p(a")d> s = —K2x(Z))(T).
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2.1.4. Kirchhoff-Helmholtz integral theorem

Because it is useful for an eventual reduction of the Helmholtz to Fresnel theory we consider an integral
theorem which is based on the free Helmholtz equation (2.15). In general, for two scalar functions g(%)
and f(Z) one has

V(gVf)=gAf+(Vg)-(Vf) = V(gV[ - fVg)=gAf—fAg. (2.18)
Using Stokes’ theorenﬁ we obtain
B af dg
fons—ragita= [ (o5~ r52)as. (219)

where 01 denotes the derivative normal to the surface 0S) given by 0n = - V. This equation is Green’s

-

second vector identity and can be applied to the Green’s function, g = Go(Z — z’), and the free-space
solution of the Helmholtz equation, f = ¢o(a'), from Eq. (2.15) and Eq. (2.16). Therefore, Eq.(2.19)

becomes

/ (Godaribo — oD Go) dS' — / (Gosdbo — o AGo) P2 (2.20)
o0 Q

The term on the right hand side can be modified with a little trick: We add zero in terms of
GoKvg — oK Gy = 0 and obtain

/ (Gol&s + K2 — oL + K*)Go ) d*a’ = —/ 53 (& — & )o(d) P! = —ibo(T), FeQ. (2.21)
Q Q
By integrating the right hand side, we receive the "Kirchhoff-Helmholtz integral theorem"[10]:
/ (Gol@ — #)8,10(#) — (a0, GolE — 7)) dS' = —o(#), ¥ 7 ¢ . (2.22)
o0

This theorem states that the wave function g inside of 2 is determined by its values and its derivatives
on the boundary 02 as well as by the Green’s function Gy.

2.1.5. Rayleigh - Sommerfeld diffraction integral

A Green’s function can be constructed in such a way that either the minuend or the subtrahend in
Eq. (2.22) (left-hand side) becomes zero. Consider the half-space z > 0 and a boundary at z = 0.
Furthermore, we enforce Go p(z =0 or 2’ = 0,7, — ') = 0 (first case, Dirichlet boundary Condition)
The Green’s function can be constructed as follows:

G07D(Z, Z/,fj_ — fﬁ_) = Go(z — Z/, T — .f",J_) - Go(z + Zl,fj_ - fﬁ_) . (2.23)
With this the minuend in Eq. (2.22) is zero:

Yoz > 0,7,) = /wo(f’l, 2 = 0)0.Gop(z 7 = 0,8, — &) )d%, . (2.24)

We call this equation the "Rayleigh - Sommerfeld integral of the first kind".

Alternatively, the Green’s function can be constructed such that the subtrahend in Eq.(2.22) is zero
(Neumann boundary condition), 0,Gon(z =0or 2/ =0, — &) =0:

GO,N(Z, Z/,fj_ - J_flJ_) = Go(z — Z/,fj_ — .’Z"/J_) + G(](Z + Z,, T, — .f/J_) . (2.25)
As a consequence, we obtain the "Rayleigh - Sommerfeld integral of the second kind":
bol(z > 0,71) = —/GO,N(Z, 2= 0,71 — F)0uio(FL, 7 = 0V, . (2.26)

Gfﬂ VfdV = faﬂ fde where faQ dS is the integral over the boundary of some orientable manifold €2, with ds = ndS, n
denotes the normal to this boundary, and fQ VdV of the integral over Q. Stokes theorem is proven in [9] p.34, ff.
"We split Z into its z-component and the component perpendicular to z: ¥ = 1 + 2&,.
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2.1.6. Green’s function of Helmholtz theory in Weyl representation

Here, we introduce a useful representation of the Green’s function, which can be written in term of its
3D Fourier transform as

Go(%) = 271' /GK k)etE B3 (2.27)

This is done because Eq. (2.16) reads in Fourier space as

(_E2 + K2) GE () —1=0=Gf (k) = ——. (2.28)

We split k=k + k,€éx, in its components, and substitute Eq. 1) into Eq. 1 ,

zkz z
7 ik E1 Sdk. d*dk 2.2
Go(#) = % s [e /kZW L (2.29)

The inner integral ([ [...]dk.) can be carried out®, and the Weyl representation of the Green’s function

Eq. (2.16) appears as follows

zk’LxL 6 K2— k2
= 2.
Gol#) =~ / T (2.30)
2.1.7. Helmholtz and Fresnel propagator

The Green’s function in Weyl representation (Eq. (2.30)) can be substituted into the Rayleigh-
Sommerfeld integral of the first kind, Eq. (2.24)):

Yo(Z1,2>0) = /%(fl’ 2 =0)0,Gop(z,7 =0, —))d*,

d*x|

z/=0

_ /zpo(a:ﬁ, 2 =00y (Golz — #,&1 — &) — Golz + 2,71 — 7))

2 =0) / .
8772 /¢0 xJ_ Z \/ﬂ (2 31)
d’k, d*a'|

; 1.2 ; 1.2 ; 2 ; 12
0. <ez\/K2—kLze—z\/K2—klz’ eZ\/KQ—kLZEZ\/KQ—kJ_Z’)
2/=0

42/wom,z—0/’ L@V R R 2

This describes how a given wave field ¥o(Z, ,z = 0) changes (by self-interference) after propagating
across a distance z. We can now identify the Helmholtz propagator P* as the inner integral:

PE(2 7, — 7)) = 5 / (L@ /KPR 2 (2.32)
v

Using this, we can describe the propagation by calculating the 2D-convolution as

bo(@ 1,2 > 0) = /wo(f;,z —0). PK(2, 2, — & )21 = to(F1,2 = 0) = PK(2,2,).  (2.33)

The propagator PX also tells us something about the resolution in the far field. For ki > K? the

exponent in 'V X *~k12 becomes real and negative. Thus perpendicular wave components, which are
smaller than the wave length of the incident wave, will be suppressed in the far field. This limits
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k
%TEL
ky

Figure 2.1.: Small-angle approximation in Fourier space k, > |E 1| & 0 < 1, this implies that fast

oscillations of k| are neglected. |E\ ~ K because \E| > K is suppressed in far-field. The optical axis is
the z axis.

resolution in the far field of compareable order of the wave length. For example, for x-rays the wave
length is in the magnitude of 1 Angstrom (A(10keV) ~ 1.24A).

In the following, we make the assumption that incident x-rays are propagating as plane waves along
the z-direction. This means that k, > |k, |, as illustrated in Figure . We can now approximate k,

by truncating the expansion of the square root \/EQ — Eﬁ_ at quadratic order in k|
o S k2
— /2 2 i
k,=\/k —kJ_~|k|< —2]{:2>. (2.34)

This motivates to factor out the unscattered propagation in z-direction:
(@) = P(T)e ™. (2.35)

zﬁ now represents the scattered part of the wave. Eq. 1) can be substituted into Eq. 1) Also
the Laplacian can be separated into a perpendicular and parallel to z-part component A = A | + 92.
Thus, we obtain

(A1 + K3(n? = 1) +2iK0, + 62) () = 0. (2.36)

If the transverse variation of ¢ is much greater than the longitudinal variation, then the second
derivative 921 can be neglected. In this case, the wave is called beam like, and we obtain the Fresnel
equation as

(AL + K2 (n? = 1) +2iK0,) () = 0. (2.37)

This equation can be interpreted as a (2+1)dimensional Schrodinger equation with the z component as
time ¢, —K?2(n? — 1) as the potential V, 1 — % and 2K = ih. Indeed, with these substitutions we
obtain

h
(—Qmm + v) b= i) (2.38)

The time evolution, known from quantum mechanics, can therefore thought of as a z-evolution in
Fresnel theory.

8This is done by using Cauchy’s residue theorem (ﬁ/ f(z)dz = 2miy ", Res(f,ax) ), because there are two poles on the

k, axis. Here we choose to include the pole at k2 = K? — Ei and restrict the Green’s function to waves with positive
phase velocity in z direction.



Chapter 2. Theoretical background 9

After this little excursion, we go back to the Helmholtz propagator and apply the paraxial approximation
(K > k). To do this we perform the following expansion

2

eu/}@—kiz ~ eszefzﬁz 7 (239)

compare with Eq. (2.34). This can be substituted into Eq. (2.32):

1, . L
PX(z,@, — @) = @e”@/el’“MM*%)eﬂﬁZd?kL. (2.40)

Performing the 2D Fourier transform of the Gaussian in Eq. (2.40), we obtain an expression for the
Fresnel propagator PX as

PR(2.dy = 8) = —g e O, (2.41)
TZ

This propagator can be used, the same way as the Helmholtz propagator, by convolution with the wave
function but now in 2D.
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2.2. Guigay’s relation

This section contains the basic principles of phase-contrast imaging as well as the fundamentals of
phase retrieval. Also a short introduction into tomographic reconstruction will be given.

2.2.1. Projection approximation

We neglect scattering under large angles. Usually, this is a good approximation for thin objects without
any long range order (which excludes crystals). When we have a look at the Fresnel equation, this
approximation means that the perpendicular Laplacian can be neglected (A — 0). Eq.([2.37) then
becomes

(2iK0, + K*(n? = 1)) () = 0. (2.42)

Looking at the refractive index n = 1 — § + i3, we impose the restriction that n deviates very little
from unity (62 + 82 < 1). Thus, we can approximate: n? ~ 1 — 2§ + 2i3. Substituting this into Eq.
(2.42) and dividing by 2K we receive

(i, + K (5 —iB)) (T 1, 2) = 0. (2.43)

This ordinary differential equation is solved by simple integration. We set the integration boundaries,
specifying the thickness of the projected object, as [—a, 0]. This yields

L 0) = (s = —g)e kS @B L )
Q;Z)(:L‘La Rz = 0) - ¢(xla = a)e (244)
— ¢(£3L)ei¢(ﬂﬂ)—3(f¢) .
Here the intensity contrast at z = 0 is determined by B(Z,) and the phase-shift by ¢(Z,), as the
projection of the refractive index n parallel to the z-axis. In what follows, ¢(Z 1,z = 0) is referred to as
"phase-map".

2.2.2. Tomographic reconstruction

In the previous section we have described the projection through an sample characterized by (). Here
we consider a more general representation p(z,y, z) which induce intensity contrast, phase contrast
or any projectable quantity. For the reconstruction we need a stack of projection data, which can
be, for example, obtained by rotating the sample between the projections. Here we set x, y and z as
coordinates of the samples reference system. We are projecting though the z-y plane, and we will treat
it as an 2D problem (u(z,y)). Resolving in z could be obtained by either moving the sample or the
projecting parallel beam along z but this is not part of the discussion in this section. An illustration of
a possible setting is given in Figure We can define the projection under a certain angle as transition
from the coordinate system (z,y) to a new system (6, s). Therefore it is convenient to consider a fixed
angel 0 and realize the coordinate transformation (z,y) — (17, s) as

z(r') =1 cosf + ssinf,

2.45
y(r') = r'sinf — scosf. (245)

With this parametrisation the transformation can be formulated as
Py(s) = /u (' cosf + ssin,r'sind — scosf) dr', (2.46)

which, in turn, is expressible as

Py(s) = //u(x,y)é(s — xsinf + ycosf)dzdy . (2.47)
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Figure 2.2.: Illustration of a projection through a sample under a certain angle 6. Such a projection
is a transformation from p(z,y) to P(6, s), which is called Radon transform of p(z,y).

We want to prove the equality of Eq.(2.46) and Eq. (2.47) by looking at the case § = 0 at first

Poo(s) = [ [ na,y)d(s + y)dody = [ (o, ~s)da (2.48)

which is Eq. (2.46) with @ = 0. We can restore the case of arbitrary 6 by rotating the reference frame by
0’ = —0. This yields after transformation (rotation with z = 2’ cos€’ — ysiné’; y = 2’ sin €’ + ' cos ¢’)
and simplification

Py(s) = /,u (2 cos 0 + ssin 6, 2’sinf — scos ) dz’ . (2.49)

We can see that Eq. (2.49) is equivalent to Eq. (2.46)), and therefore the equality of Eq.(2.46) and
Eq.(2.47)) is proven. These both equations are representations of the so called Radon transform [4].

For the inversion of this transform we require the following relation (known as projection-slice theorem):

5 v) (€) = FV[Pals)] (&) - (2.50)

—

We use F[f(2)](€) to denote a 1D Fourier transform and respectively §2)[f(Z)](€) to denote a 2D

o sin 6
Fourier transform. Note also the equality £ = % in Eq. (2.50).
—&gcos

To prove Eq . (2.50) we start with the 1D Fourier transform:
FO[Py(s)] (&) = /6_27”559 //M(x, Y)o(s — xsin @ + y cos 0)dzdyds . (2.51)
The delta-distribution can be replaced by 6(z — y) = [ €>™==¥)dq. Therefore, we have
S(l)[PO(S)] (59) _ /e—Qm'sﬁg //'u(x’y)/eQm’a(s—xsin6+ycos€)dadmdyd8_ (2'52)

This can be recast in term of a new delta distribution by performing the integration over s

SR ) = [ [ [ o ppdta - gyemiemsintoreesd dagndy. (2.53)
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pure phase object[™\_ R detector
N\ v(mewd

~ 
I I———

v(7 - %)

e

NN AN

Figure 2.3.: Illustration of a setting for Guigay’s relation.

. . e g sin 6 Ex = .
Upon integrating over a and substituting = = £ | we obtain
—&gcosb &y

FOR) €)= [ [ty [ 018 dady = 5O o) () | (254
which proves Eq..

To carry out the reconstruction, we perform the inverse Fourier transform in polar coordinates. Here
we use the fact that Py(s) = Py .(—s) is symmetric, so only projections with 0 < 6 < 7 are needed.
We obtain

ple) = [ [ RO P (g) emolesntvees sy, (2:55)

—

This is the Filtered Back Projection (FBP) with the ramp-filter |£| = |£y| identified as the Jacobian of
the transition to polar coordinates.

The resolution of p(x,y) is restricted by the number of projections, this is the number of angular steps
one has taken to scan the range [0, ]. We state without proof, that for a resolution of N x N pixels in
the field of view a minimum of § N projections is required.

2.2.3. Statement and proof of Guigays relation

When it comes to phase retrieval we have to face the fact that detectors only detect intensity, a direct
measurement of the phase is not possible because of too rapid oscillations (w ~ 10'®Hz). When the
wave propagates, after passing the sample, it interferes with itself, and thus the intensity contribution
changes in dependence of distance to the detector. Guigay discovered in an important relation
between the wave field ¢y at the exit wave plane (after the projection towards z = 0) and the intensity
at the detector plane (I,)

5 (L) (€) = [ o (70— T2€) i (71 + 2€) etz (2:56)

Eq. (2.56) is extremely important for our further treatment of diffraction physics. We refer to it as
Guigay’s relation. An illustration of a setting for this relation is given in Figure
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To prove this we start with

FPIL é) / ~2miga’ (/ Kz, @) — 1 )tho(z = 0,41) dQZ/L) X

(2.57)
(/ﬁK*(z,fl — @ )U5(z=0,d,) d2wL> dQQ:’J_ ,

with the Fourier transformed intensity at z as §2 [I,] @ = §O [0 (z, @ )i (2, 7))] (5) and the wave
function vo(2, 7, ) = p* * ¥y (a;’ 1,2z = 0) propagated by the Fresnel propagator (see Eq. 1} ).

Both propagators can be combined, and Eq. (2.57) is thus converted into

1 (€) :< 27rz) /// L x (2.58)

ezz (QxJ_(wl G2+ (FL+E L) (FL—F1 )¢O¢Od yid wld2

Performing the integration over d*z’,, we arrive at the delta—distributionﬂ

- — K
/eQﬂ"LIL( §+27rz ("-U_ yJ.))del = 5(2) <_£ + %(@L - gJ—))

2.59
(Y6 (a0 ) 2
~ \2mz Or—di—t)
With this delta-distribution the integrals over &, and ¥ are trivial, and Eq. (2.58) becomes
s Tz 2
1] @ = /eQmﬁ(wH?@% (wL - mg) Vi (@1) d*w (2.60)

Because we are performing this integration over all &; we can shift our integration variable as

G @+ EE= 7, (2.61)
X

In a real experiment there is no infinite field of view. Thus we have to assure that the sample is much
smaller than the field of view.

With this shift we finish the proof and obtain Eq. (2.56)

G /wo (T1) 65 (TLy) e M d?T (2.62)

with the shorthand notation & + =&, + %E

The relation 6 (az) = %6 (2) is used.
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2.2.4. Linear model and phase retrieval

We consider pure-phase objects, so that by the projection through the sample no intensity is lost
(B(Z.)) = 0). The whole information of the projection is given by phase map ¢(Z, ), which we would
like to retrieve.

For pure-phase objects the wave function can be written as

Yoz = 0,&1) = /IpeT) . (2.63)
Thus Eq. (2.62) becomes (with ¢1 = ¢(71 1))

5O (€) = / Toei¥- i+~ 2miEL 27 | (2.64)

This can not be solved analytically because in Fourier-space we encounter infinite many convolutions
between ¢4 and ¢_. Before we continue, we introduce a scale factor S > 0 adjusting the strength of

phase variations
P(FL) _y piSH(FL) (2.65)

Let us first consider small S only, such that the according expansion in S can be truncated at linear
order 4 4
e99-e71991 — 1 4+ S(¢p_ — py) + O(S?). (2.66)

With this linear approximation Eq. (2.62) becomes

§O1L) (€) = oS (5<2> (&) + / i (F1,_) e 2mEFL 2 — / i (F1.4) 6—2”5%2:%) . (2:67)

We define the intensity contrast at z as g, = % and, hereafter, we also define the shorthand notation

59, =59, (£) .

56— 500 (5) | (2.68)

In the remaining integrations the integration variables can be separated into fl L=+ %5 for ¢.

Eq. (2.67) becomes

S T2 2

OO —2mi€T 2 2
59, = S/ ip(Z) e Lo RS )
— 0o

o o iE o (2.69)
Defining the dimensionless quantity o := %f_?, we thus obtain
89, = SF¢ - 2sino, (2.70)
or 3
9z
S5 = . 2.71
59 2sino ( )

In Fourier space, this yields phase map in the exit-plane in term of the intensity contrast at the detector
plane. Eq. is a representation of the so called Contrast Transfer Function (CTF) [12], [13] and
solving this for §¢ (Eq.(2.71))) is known as the CTF approach to phase retrieval. It is a "linear model"
due to the linearisation in Eq. (2.66]). This method requires §g, to be exactly zero when sino = 0
otherwise poles arises in §¢ and therefore artifacts in ¢(# ) [14]. One possible approach to get rid of
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Figure 2.4.: Onion-shell expansion: n, j are the summation variables of the non linearity expansion
(Eq. ) and [, k of the non locality expansion (Eq. ) Every point stands for one summand
in Eq. (2.75). The points in the "shells" are summarized in Ceos,; and Cin 1, the points in the circles in
Ceen,1, see Eq. (2.81)

this problem is to simplify our relation even more and consider only small o and/or small propagation
distances and therefore linearize in ¢. We obtain the Transport of Intensity Equation (TIE) as

59

586 =5

(2.72)

It should be mentioned that TIE approach phase retrieval is effectively a low pass filter for spatial fre-
quencies in our phase-map, and therefore reduces the resolution when using larger propagation distances.

For further discussion of phase contrast, we will make use of the concept of a diffractogram. We define
the diffractogram as the angular averaged §g, as a function of o

1 [2 > K [ cosgp
(o) = .| €= dep . 2.
50.(0) = 5= | S0 (€ 0—2#22(8111@) o (2.73)

2.2.5. Non-locality expansion: Onion shells

To determine under which condition the linear model (CTF) or even the TIE approach is sufficient we
need to estimate the influence of non-linear and non-local effects on diffractograms. Therefore, we will
again expand v in powers of .S, but this time we do not truncate the expansion

oiSh— o—iSbs _ i @@_ L (2.74)

|
=0 n.

Using the binomial theore we have
2 (19" K (—1)n!

oiSh— o—iS¢1 _ Z ‘ Z
n!

n=0 =0 (77, _])'J'

¢ (2.75)

This is a non-linearity expansion including all powers of S. Also, we have non-local terms (d)‘j_gf)b_ | a,b#
0) in these sums, which leads to 2D convolution when performing the Fourier transform of Eq. (2.62)

1%0ther approaches to deduce TIE can be found in and [16].
: : n n n! n—jrj

"Binomial Theorem: (a 4 b)" = Ej:o oyt v

12See Fourier convolution theorem: §[f - g] = F[f] * Flg]-
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separately for ¢4 and ¢_.

We can rearrange Eq. (2.75)), separating the local terms and the non-local terms. To do this we
rearrange summands as illustrated in Figure 2.4, so we have a systematic expansion in powers of the
bilocal product ¢_ ¢ .

The summands can be sorted in three categories:

e The central term with n = j:

1
Coeny = S”me)l(l — d0,) (2.76)
e the sine like term with n odd:
) )kHSQ(k D+1
(2k+1 -0

Caing = 15 (6-6+) (6270 i) (2.77)

k=l

e and the cosine like term with n even:

0o (_1)k+ g2(k-1) - -
Ceos, ] = 52l(¢7¢+)l Z ((2)]<:—l)'l' (dﬁ( ) + d)_,_( )) . (2.78)
k=i+1 "
Thus, Eq. (2.75) equals
€iS¢7€_iS¢+ = Z (Ccen,l + C’sin,l + CCOSJ) . (279)
=0

These parts can be Fourier transformed separately, and we can express Eq. (2.62) as

o0

ggz = Z (S [Ccen l] + g[ sin l] + g cosl Zggzl (280)

=0

with

§ Conns] = 5% (1 = 800§ [(0-04)1]

& (1) G20+ )
§[Cony] = 2575 [(¢¢+)l}*<smgg GEkri-nuw S G R (2.81)
0 (1) §2k) B
[Cuont] = 257§ [(9-0)'] (U;ﬁ e S )

Here * denotes 2D-convolution. Because of the shape of this expansion in n, j-"space", as given in
Figure we call this expansion "onion-shell expansion" and refer to §g, as the [th onion shell.
In case of ¢ being a sufficiently localized function, the Oth onion shell dominates all higher shells we
then obtain
o] k
(—1)ks%*

k=1

)k32k‘+

[¢2k] +251DUZW

Caasli (2.82)

This local case is relevant for a very small support in the phase-map and a large propagation distance
z. Examples for this case are given in Section



3. Scaling behavior of the diffractogram

In Section we derived an approximation to phase retrieval, the so called "linear model". However,
this method was derived under the assumption of small phase variations, which justifies a truncation of
the diffractogram’s expansion in powers of .S at linear order. This chapter investigates effects induced
by scaling the phase-map, and we perform a specialized study under which condition linear scaling can
be assumed.

3.1. Single scale objects with broad spectrum (SOBS)

To systematically study the influence of non-linear and non-local contributions to the diffractogram we
start with very simple phase maps. We will use "single scale objects with a broad spectrum (SOBS)" as
phase maps, which are isotropic (rotationally invariant) and contain only one spacial degree of freedom
(scale). Examples of SOBS are the circular disk (with the radius as scale) or the 2D-Gaussian, which
we will mainly use.

All numerical evaluations in this Chapter suffers an insignificant uncertainty, whose extend is estimated

in the Appendix

3.1.1. Onion shell expansion for Gaussian phase-map

To discuss the case of a 2D-Gaussian we can perform, the full onion-shell expansion as derived in
Section [2.2.5] The phase-map is defined to be

72

G(FL) = Se 7 . (3.1)

Where 0 < S is a scaling factor do determine the strength of phase variation.
The onion-shell expansion for this phase-map is performed by inserting ¢ into Eq. (2.76), Eq. (2.77)
and Eq. 1 , and executing the 2D-Fourier transform:

1 wr _malf xlw
§ [Ceeny] = WTS% 28 e T (1= dy0)
drw &K (=1)kH ohpl U gy orleg (mA2w(2k =20+ 1) o
. — w(2k+1) 2k+1
§ [Coind 2k+1;(2k+1—l)!l!s ¢ ¢ Sm< % 11 5)’
0o kot
U S 2= Rl k

(3.2)

17
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A dimensionless representation can be obtained by appealing to o = WAZEZ (as already introduced in

Section 2.2.4) and introducing the Fresnel number as F,, = 32. Upon performing these substitutions,
Eq. (3.2) becomes

1 7w oL Ee
%’[CCQH,Z:I = WTSQIG (2w+ l ) (1 —_ 5l,0) s
= dmo (DM o) 2k 2041
§[Coinal = Zl SRR o Ty S ( 2% + 1 (’) ’ (3:3)
o dmw () oy o) k]
Cosl Z o ms (& Ccos (kO') .
k=141

Although, this is an exact expansion it contains infinite series in powers of S for each onion-shell, which
need to be truncated in numerical evaluations. To get stable results within each onion-shell one can
consider the case F,, = 0 where the summation can be performed exactly. For finite F,, correction terms
can be included. Exemplary, this is done for the zeroth onion shell (I = 0). The following relations are
used

o0 @2k+1/_1\k s
SR (=1) _ / smtd L SI(S).,
= 2k +1 o t
- (3.4)
2 G2k (—1)F Scost —1
DA [T~ cn(s).
IRl c1s)

k=1

We call ST the sine integral and CT the cosine integra. With these relations the zeroth onion shell
can be approximated as

s (08 (75 )
S +1

§[Ci=0] .
el SI(Ssz_%%H 2k +1)!
- (3.5)
2k k 67027;?0 -1
+ coso —I—ZS = <(2k)' )> .

The integer ¢ determines the precision. This and the expressions for the first nine onion-shells of a
Gaussian phase-map have already been published in [19]. An example diffractogram is given in Fig.
This example motivates the importance to have a closer look at the scaling behavior, because the
assumed scaling linearity in the linear model is definitely not strictly valid. Clear indications are the
different positions of the zero points for different S. A more detailed representation of Gaussian SOBS
scaling behavior is given in Section

In case of locality, valid for negligible bilocality, the zeroth onion-shell is a good approximation. To
specify this case, we demand that % < €72 | and obtain the condition

8F, < % (3.6)

A second condition for good locality is, that in Eq. (3.5)) the absolute value of the exponent for k =0
is much smaller than unity[17]. Both conditions combined state

o 1
Fo< =< 5. .
BF, € - <€ g (3.7)

!Notice that in the literature, the cosine integral is defined slightly differently, see p-54.
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Figure 3.1.: Diffractograms for phase-map ¢(Z,) = Se~=s with F,, = 0.01 and scaling factors
S ={0.5,1,1.5}. Note the shift of the zeros in dependence of S.

05

Figure 3.2.: Low frequency region of normalized diffractogram §g, of a Gaussian phase-map. (a): §g,
for F,, = 0.001 (solid, overcritical) and F,, = 0.03 (dashed, subcritical) at S = 1. Note the additional
zero o, in the overcritical case. (b): S dependence of o, = 0,(S5) at Fw = 0 (solid) and o.(S5) at
Fw = 0.02 (dashed).

Therefore, in far-field limit F,, — 0 the zeroth onion-shell becomes exact for all ¢ > 0. The case 0 =0
violates the condition in Eq. and therefore can not be represented by the zeroth onion shell.
However, we know that §g,(0 = 0) = 0 is valid for all phase-maps, because of energy conservation in
free space propagation.

For the far-field limit F,, — 0, the zeroth onion-shell is exact for ¢ > 0 and reads

zZ ’Fw
im 89z0(0, Flo)

Al ==or = = sin (¢)SI(S) + cos (0)CI(S) (3.8)
— \/SIQ(S) + CI2%(S)sin (o0 — 0s),
where CI(S)
0s = |arctan <SI(S)>‘ i (3.9)
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This o, is an additional zero in comparison to the linear model. An additional zero o, also exists for
small F, (see Fig. (a)) exhibiting critical behavior for increasing S and/or decreasing F,,: Whether
this zero exists depends on whether the point (.5, F,) is left (subcritical) or right (overcritical) to the
line

_ 5
167

in the S — F,, plane [17], see Fig. (a), (b). A more detailed discussion about this additional
zero can be found in and [19].

F, (3.10)
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3.1.2. The extreme far field

The fact that the zeroth onion-shell is exact in the extreme far-field limit (Fy =72 —0)foro>0
motivates the search for universal aspects of the diffractogram in this reglm In particular, we consider
the normalized diffractograms induced by the following three SOBS phase-maps.

Gaussian phase-map

(F1) = Se %, (3.11)
circular disk phase—ma
¢(71) = SO(Vw — L)), (3.12)
exponential phase-map
_ 34
G(F1) = Se” Vo . (3.13)

Let us discuss each of this cases.

Gaussian phase-map
The zeroth onion-shell was derived in Eq. (3.3) (I = 0), so we can directly perform the limit F,, — 0 as

2 2n 2nFy,
. 3gz0 . . ® G2+l (—1)ke 2kt1 g2k (_l)ke—a =
lim =1 i S
R0 dmw R0 (Sm D2 1 @y Tl T @
= = (3.14)
—sin( ) > S2k+1 (_1) +COS 0 Sf 1)k
2ok 1 (2k + 1)! ) 2 o5 @R

Circular disk phase-map
We obtain the zeroth onion-shell by substituting Eq. (3.12) into Eq. (2.82)). The result is

_1\k
2(]<; 41_)1) S2k+lg [@2k+1 (\/E— \fﬂ)} +
-1)*

2k {@21@ (v — \i‘l!)} _

§92,0 =2sin (0)

(3.15)

2cos (0)

Mg TM%%

2 (2h)!

I
—

With the identity ©"(z) = O(z) for n # 0 and the 2D-Fourier transform of the disc, we have

FP [0 (Vw — |ZL))] (€) = 27w (22”{"5') (3.16)

Here the Bessel function of the first kind J; occurs. It is defined by the series

I =3 =0 (;)27”“ . (3.17)

= ml(m+1)!

Now we can execute the far-field limit as

2The content of this section has already been elaborated and published by Yannick Miiller in [19].
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. %’gz,O T . . Jl(Q\/OT)
FEIEO = FEIBO (sin (o) sin (S) + cos (o) (cos (S) — 1)) ——F—="> NCIN (3.18)
= % (sin (o) sin (S) + cos (o) (cos (S) — 1)) .

Exponential phase-map
The zeroth onion-shell, after substituting Eq. (3.13) into Eq. (2.82) and performing the 2D-Fourier

transform, reads

M . o0 (_1)k (Qk + 1)S2k+1
= sin(0) kz::l (2k + 1)) ((2k+1)2+ 47r252w)3/2 '
o (DF L (2k)s o

cos (o) Z

im0 (2R)! ((2]{:)2 +4ﬂ252w)3/2

Doing the far-field limit, we obtain

y 0 —1)k§2k+1(9 1 00 _1)kg2k(9
hmm:lim sin(a) (=1)°S (2k+1) 35+ cos ( Z (=1)"57(2k) 73
Fo—0 4Tw  F—0 (2k + 1)1 ((2k + 1)2 + 470 F,, ) / = (2k)! (4k2 + Amo F,)?/

=ein{ ,;] (2K + 1 Z:: Qk (2k)?

(3.20)

The extreme far-field limit is equivalent to the case of extremely small objects w — 0. But objects with
no extent obviously can not induce phase contrast. Therefore, we need to enforce non-trivial phase
contrast by introducing a normalization N, such that

lim, N1 )|s=1 = 0P (Z1). (3.21)
w—

For our three phase maps we obtain

2nw for Gaussian phase-map,
N, =< mw for circular disc phase-map, (3.22)

2w for exponential phase-map.

In general a normalized diffractogram (for o > 0) in the extreme far-field limit can be defined as

im Si— sin (o 3 7( ) 2k+1 cos 3 (_l)k 2k
F1w—>0N 2sin ( )Z(2k+ )S C(2k +1) +2cos (o )kz::l (%)!S C(2k) (3.23)

=:55(9)sin (¢) + S.cos (o).

The coefficient C(j) can be read of from the last line in Eq. (3.14), Eq. (3.18) and Eq. (3.20) as

j~1  for Gaussian phase-map,
C(j)=1«1 for circular disc phase-map, (3.24)
72 for exponential phase-map.

Thus, we may state that the phase-shape information, which is different for each of these three phase
maps, transmutes into information residing in the scaling functions S(S) and S.(S) of Eq. (3.23) in
terms of the coefficients C'(j). Except for this S-scaling the diffractogram is o-universal in the extreme
far-field.
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Figure 3.3.: Diffractogram of Gaussian phase-map at S = 1 and F,, = 0.01 (oscillatory), F,, = 0.25
(overdamped non-oscillatory).

3.1.3. From oscillatory to damped diffractogams

For small F}, the diffractogram has an oscillatory form while for larger F, it becomes overdamped and
non-oscillatory, see Figure Motivated by this, we take a closer look at the transition between these
two regimes. A measure for the strength of oscillatory behavior needs to be defined. To do this, we
take a look at the 1D-Fourier transform of the diffractogram

30.(k, F,) = / e "%, (0, F,)do . (3.25)
This is plotted for different values of F,, and S =1 in Figure 3.4 (a).

Inspecting the positive branch k£ > 0, the (pseudo) frequency kmax at the maximum of @ng(k, F,)
determines the dominant oscillation frequency (inverse of twice the distance between adjacent zero
crossings in 59.(0, F,)). During the transition to the damped regime, by increasing F,, the curve
$9.(k) becomes wider, and the maximum moves to lower k-values. Therefore, we use

kmax(Fw>
kmax(Fw = 0) ’ (326)

as measure of the strength of oscillatory behavior.

In Figure (b) ,ﬁﬁ%% is plotted in dependence of F,,. We can see that kmax(F,,) behaves like an
order parameter of a second order phase transition with the critical drop at F,, = 0.12 exhibiting a
critical exponent v = 0.37 for S = 1. This behavior also is seen at other values of S, see Table We
can see that this transition depends on S. Larger values of .S imply transitions at smaller F,,.

Motivated by this S-dependency we use kmax as a function of S at a fixed F,,. In Figure (a)

7 k“;"""j) w;?éi(g 2)05) is plotted and we see a shape similarly to the shape in Figure 3.4 (b) with a critical

drop at S = 1. In Figure (b) some positions of the critical drop in the F,-S-plane are plotted to
illustrate their dependency.
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Figure 3.4.: Oscillatory behavior of diffractograms described by Fourier analysis as a function of
F,,. (a): Positive k-branch of 1D Fourier transformed diffractogram, see Eq. (3.25). (b): Normalized

kmax(Fuw, S = 1). Note the critical drop at F,,(S = 1) = 0.12 which is associated with a critical
exponent of v(S = 1) = 0.37.
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Figure 3.5.: Oscillatory behavior of diffractograms described by Fourier analysis as a function of S.
(a): Normalized kpax(S, F,, = 0.12). Note the critical drop at S(F,, = 0.12) = 1. (b): Positions of the
critical drop of kpyax in the F,-S-plane.
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Figure 3.6.: (a): ESRF experiment with E = 17.5keV, AE/E = 0.03, effective pixel size Az = 1.6um
at various propagation distances z. The sample (see (b)) creates weak phase variation (scratched).
Note the overdamped behavior at z = 0.525m and the (damped) oscillatory behavior for z > 0.55m.
For more details about this experiment and the samples used see [17]. (b): 3D printed sample including
holding shaft (left) and magnified scratched (1) and Manhattan (2) region.
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Table 3.1.: Critical F, and exponents for the transition of oscillatory to over-damped non-oscillatory
behavior of SOBS-diffractograms at different scaling factors .S.

scaling factor S critical F,, critical exponent v

0.5 0.13 0.51
1.0 0.12 0.37
1.5 0.11 0.27
In (|ggz,0|/|8’gz,0 max) (a) (b)
0.11 020 :
% r \ 1
z S —— Manhattan |
b 015' ‘\ 7
8 . N —eeee scratched
w7 e
\:>3 0 ~—
vy

—0.11
—0.09 0 0.09 —0.09

0
£X /SC §X /€C

Figure 3.7.: ESRF experiment with £ = 17.5keV, AE/E = 0.03, effective pixel size Az = 1.6um
and propagation distance z = 3.6m. The sample consists of two regions creating weak (scratched) and
strong (Manhattan) phase variation. (a) In (1 + |§64|/|892max|) for the scratched and the Manhattan
sample. (b) diffractogram (angular averaged, see Eq.) 5g.(c). Note the over damped case
(Manhattan, solid) in comparison to the oscillating case (scratched, dashed). For more details see [17].

0.09

The transition between oscillatory and damped behavior can be observed in experiments by changing
the propagation distance. This has been done for an multi-scale object with weak phase variation
(scratched) at the European Synchrotron Radiation Facility (ESRF) ([17], Fig. 3). We can see in

Figure an overdamped case at small propagation distance (z = 0.525m) and an still damped but
clearly oscillatory behavior at larger z.

Also this scaling dependent effect was observed in this experiment ([17], Fig. 3), here with an additional
object creating larger phase variations. The diffractogram of two pure-phase objects, one with a weak
phase variation (scratched) according to a small S and one with strong phase variation (Manhattan)
according to a larger S, have been measured, see Figure The object with smaller phase variation
(scratched) according to small S has a slight oscillatory behavior, while these oscillations can not be
observed in the case of larger phase variation. But we need to be cautious here because we do not have
real scaling, because two completely different phase-maps were used.
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Figure 3.8.: Examples for S-scaling linearity for Gaussian phase-map. (a): §¢,(S) at o = 0.257 for
various F,,. Note the transition between convex and concave S-scaling at F,, = 0.35. (b): Scaling
linearity Dg plotted over o, for F,, = 0.05, S; = 0.001, S = 1.5. Also §g¢,(S = 1) in arbitrary units,
note the maximum of Dg around the zero of §g, .

3.1.4. Scaling linearity

The scaling dependent effects of Section (for example the additional zero) and indicate that
the linear approximation in Section 2.2.4] Eq. (2.70) enjoys limited applicability only. However, this
linear model is important for phase retrieval. Therefore, this motivates to have a closer look where
and how strong non-linear effects appear. In Figure (a) Fg.(S) is plotted for a constant value of
o/m = 0.25 and various values of F,. The curve has a convex shape for small F, and transmutes into
a concave shape for large F,,. At F,, = 0.35 the curve is nearly a straight line, and therefore represents
linear scaling behavior.

To analyse scaling behavior in the general case, we require an according measure. Therefore, the standard
deviation of the functions first derivative has been chosen. Consider a diffractogram §g,(o, F,,, S) with
small derivations in S. In the linear case the first derivative %ng(a, F,,S) is constant. The less linear
the function is the more the first derivative varies. We introduce the standard deviation of the first
derivative between S7 and S2, and we subsequently normalize it to the mean value of the diffractogram

Sa
S1

Vi
DS (31752>0-3 Fw) -

394(0,Fu0,52) =94 (0,Fu,S d 2
2o S)=800LoS) _ A 5,(0, F,,, S)| dS

3.27
fgf ’ggz(U,Fw,S)‘dS ( )

The smaller Dg the more linear §g, behaves in S. In Figure|3.8| (b) Dg and Fg,(o, S = 1) are plotted as
a function of o. We recognize that the maximal non-linearity accrues within a region centered around
the zeros of §Fg,. Recall that these zeros are shifted under changes of S, see Figure

In the next step, we have a look at the scaling linearity in the low frequency regime o < m/2 for
0 < F, < 1. In Figure (a) Dg is plotted against the F,, — o-plane, and a nearly linear region
becomes visible. The minimum o of Dg, is plotted in Figure (b) and can be fitted to the following
model

om(A, B, F,) = AFZ (3.28)

Figure implies a satisfactory coincidence between o(F,) and the best-fit model of Eq. with
A =0.064 and B = —1.04. It should be mentioned that A and B depends on Sy. The extracted values
for A and B for various Sy can be found in Table For a certain scaling window, bounded by S; = 0
and Sy =~ 1.4, we can exploit that o = %52. Setting B = —1, we infer the physical frequency modulus

gml = ‘gml ) (329)
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Figure 3.9.: Dg for low frequencies . The function, as defined in Eq. l , is evaluated for a scaling
window [S7 = 0.001, .52 = 1.5]. (a): Dg plotted as a function of F,, and o. (b): Minima of Dg (crosses)
and best-fit model Eq. (3.28) (solid line) for A = 0.064 and B = —1.04.
where maximal S-scaling linearity occurs, is independent of Fj,. Namely,
A -1
€ml = |/ — =~ (0.143 +0.001)yw . (3.30)
W

For scaling window[S; = 0, So = 1.4] Eq. (3.30) states, that nearly independently of the propagation
"distance" Az, there exists a single physical frequency modulus &1 at which the diffractogram scales in

a maximally linear way with .S.

Table 3.2.: Fit parameter for Eq. 1’ at scaling window [S; = 0, 53] (for estimation of scaling

linearity, see Eq. (|3.27]) ).

Sy A B

1.7 (6.20£0.06) - 1072 —1.091 £ 0.006
1.6 (6.30£0.07)-1072 —1.064 & 0.007
1.5 (6.37+£0.07)- 1072 —1.037 +0.008
1.4 (6.44+0.08)-1072 —1.011 £ 0.007
1.35 (6.48 £0.08) 1072 —0.997 4 0.007
1.3 (6.53+£0.08) 1072 —0.983 4 0.007
1.25 (6.55+0.09)-1072 —0.970 + 0.008
1 (6.81 4 0.10) - 1072 —0.900 =4 0.008
0.5 (6.26+0.08)-1072 —0.869 & 0.007

Let us have a look at the scaling behavior for higher o in the (damped) oscillatory case. Due to the
shifting zeros under scaling there are maxima in Dg(0), as already mentioned. Between this maxima
are areas (o-bands) with a more linear scaling behavior, we will refer to them as Dg-bands (Dp), where
Dg < Dyipy. For our further discussion we choose, as Dy, the arbitrary value Dy = 0.25. In Figure
are examples of Fg,(S) with o and F,, chosen the way that Dg = 0.25 and we see that the curves
are not really straight lines, but the curvature is still small.
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Figure 3.10.: Example of D-bands, where Dg < 0.25. (a) Examples of §g¢,(S), where Dg = 0.25,

ensured by the choice of o and F,. (b) Fg.(co) in arbitrary units with F,, = 0.01 and corresponding
Dg with S1 = 0,52 = 1.5, note the D-bands Dp ,, |n = 1,2,3,4, where Dg < 0.25.
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Figure 3.11.: (a)First four D-bands Dp1,Dp2,Dp 3, Dpa at various F, (connected for better
visibility). Note the convergence for small F,, to the value Dg, = 0.5217 for F,, = 0. (b) Dg(S) and
$9,(0) in arbitrary units at F,, = 0.1, note the damped behavior and the enlarged Dp ; (see (a)) due
to the lack of the additional zero even at large S. The length of Dp ; reaches its maximum around the
F,, value of the oscillatory-to-overdamped transition.

These Dp,, for the first four bands (n = 1,2,3,4) are plotted for various F,, in Figure We see a
decrease of Dp 41 < Dp,, for larger o, so we can state that the regions of linear scaling are decreasing
for higher spatial frequencies, with the exception of Dp ;. These differences of Dp,, are converging
for F,, = 0 to Dp . F,—0 = 0.5217 |Vn. Also, it should be mentioned that in the oscillatory case (at
sufficiently small F,;) Dp 1 does not include o = 0, because of the existence of the additional zero o, as
described in Section

When moving to larger F, and therefore leaving the oscillatory regime the higher bands Dpg , [n > 1
are getting smaller and finally disappear. On the other hand, Dp 1 becomes larger and includes 0 = 0
at sufficiently large Fi,. One could think, that the enlarged Dp; and the fact that it includes o = 0
may justify a phase retrieval according to linearization in the sense of TIE but in this near-field,
over-damped regime non-local effects are dominant which is contradictory to the assumptions made in
TIE (recall Section . The maximal length of Dp; is at around point where the diffractogram
changes its behavior from oscillatory to overdamped. For even larger F,, Dp 1 decreases but so does
also the width in ¢ where we have an non-negligible value of the diffractogram.
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Figure 3.12.: 1D visualization of 2D TOBS phase-maps, with second scale factors = 0.75,0.25, 0.05.
(a) plus-case ¢p. (b) minus-case ¢p;.

3.2. Two-scale objects with broad spectrum (TOBS)

After the investigation of Gaussian SOBS diffractograms we increase the complexity of the phase map
by an additional scale. These two-scale objects with broad spectrum (TOBS) can be constructed by
combining two SOBSs. We use a 2D-Gaussian, and add or subtract a second 2D-Gaussian, with a
smaller width (determined by the factor 2 < 1). That way, we obtain two phase maps (the plus- and
the minus-case)

For the plus-case the phase-map reads

1 2 2
dp(#1) = 5 <e—zi + e—mi> : (3.31)
and the minus-case phase-map results in
Q
Qo-1 #2 #2
on(TL) = 17— <e—zi - e—mt> . (3.32)

el
The pre-factor (0.5 (plus-case) 91?7_91 (minus-case)) is chosen to enforce that the maxima of these

phase-maps are unity. In the minus case this leads to the effect that the width of the phase-map
support increases for larger (2.

Visualisations of Eq. (3.31) and Eq. (3.32) are given in Figure For =1 in the plus-case, the
two scale object becomes a Gaussian (SOBS), the same is true in the limit  — 0 for the minus-case.
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3.2.1. Non-linearity expansion and diffractogram properties

The diffractogram of the phase-maps Eq. and Eq. can be represented by a non-linearity
expansio All numerical evaluations in this Chapter suffers an insignificant uncertainty, whose extend
is estimated in the Appendix

We calculate both cases at once by combining these two equations into

z2 72
dp(T1) = ax <— + —> : (3.33)

o
with ay = 0.5 and a_ = QIQE; .
After the substitution of Eq. (3.33) into Eq. (2.75) and performing the binomial expansions and Fourier

transform we obtain the non-linearity expansion, in Fourier space, as

o(k—kQ+(—j+n—21F,m)Q)(I—1Q+(j+2:F,m)Q)

ZSai) n (—l)jn! n—j _] ]'e 2F, nQ(R(Q-1)11(2—1)—nQ) (:I:l)k""l
4 = 2mwl)
89k = 2mw Z jz_%(n—j)!j! park .Z G-DUNkQ-1)+1(Q—1) —nQ
(3.34)

For the plus-case (§gz,+) diffractogramm at various Q and F,, = 0.01 (a) as well as F,, = 0.1 (b) are
plotted in Figure At F,, = 0.01 the diffractograms show clearly oscillatory behavior, while at
F, = 0.1 the diffractogram transmute into a damped shape.

This transmution from an oscillatory to a damped behavior depends strongly on 2, as we can see in
Figure (c). This is expected since we have admitted an additional small scale in our phase-map
when we set {2 at a small value.

In the minus-case (§g,,—) our diffractogram also shows oscillatory behavior at £, = 0.01, see Figure
3.14  (a). In general, diffractograms, induced by arbitrary phase-maps of finite extent, are in oscillatory
form for sufficiently large propagation distances (here represented by a small value of F,). In Section
3.1.2| we already investigated SOBS in the extreme far-field limit. The same is done for TOBS in
Section This extreme far-field representation is also generalized for multi-scale objects, and this
generalization proves the statement of oscillatory behavior for arbitrary phase-maps in the far-field.
For F,, = 0.1 the diffractogram is in a damped form for small €2 but shows an oscillatory behavior for
larger €2, see Figure (b). When we look at the Fourier transform of the diffractogram, see Figure
the plus-case (a) has one dominant frequency, which is sharper in comparison to the Gaussian
SOBS case (recall Figure [3.4). The minus-case (b), on the other hand, has two maxima in its 1D
Fourier transformed diffractogram. At small F;, these maxima are close together and therefore appear
like one dominant frequency (see Figure (a)). The larger F,, the further the two maxima are
separated. The shift of the second maximum toward higher values of k for larger F;, represents a higher
frequency component in the diffractogram’s oscillation. This effect can be observed in Figure
Note the shift of the first extrema towards lower values of o for higher values of F.

4See Eq. for the generalized non-linearity expansion in real space.
5The definition F,, = 5= is still given but can not be iterpreted as Fresnel number any more, due to the fact that we
have now more than one scale. Fi, is still used to parameterize near or far-field regime.
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Figure 3.13.: Diffractograms of TOBS plus-case (Fg,+) for Q@ = 0.05,0.25,0.75 and the Gaussian
SOBS. (a): F,, =0.01. (b): F, =0.1. (c): Transition from oscillatory to damped behavior represented
by the normalized kmax(F.,, S = 1) (analogue to Figure [3.4). Note the critical drops for the cases
Q0 =0.75 and Q = 0.25.
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Figure 3.14.: Diffractograms of TOBS minus-case (§g, —) for @ = 0.75,0.25,0.05 and the Gaussian
SOBS case. (a): F, =0.01. (b): F, =0.1.
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Figure 3.15.: Fourier transform of TOBS diffractograms. (a):

Positive k-branche of 1D Fourier

transformed diffractogram for 2 = 0.05 and S = 1. Note the deformed shape of the peak for F,, = 0.01
in comparison to the SOBS-case in Figure [3.4|(a). (b): Positive k-branche of 1D Fourier transformed
diffractogram for 2 = 0.75 and S = 1. Note that the two maxima move away from each other when
increasing F,. (c¢): TOBS minus-case diffractograms with Q = 0.75 and F,, = 0.1,0.12,0.14. Note the
shift of the first two extrema towards lower values of o for larger values of F,,, indicating the shift of
the second peak in (b) towards higher values of k.



Chapter 3. Scaling behavior of the diffractogram 33

To examine this additional oscillation in the minus-case we investigate the Fourier transform of the
TOBS phase map and compare the plus- with the minus-case. In the plus-case as well as for the
Gaussian SOBS phase-map the Fourier transform of all powers of ¢ is positive definite:

= \\n 2w 2q%w
3(2) [((bGaussian SOBS(«TJ_)) = ‘| (g) = 762 - 2
(2) T "= " Ti/_ w e +nQ2—
s [(qﬁp(:ﬂ)) - (o) (e s ) ](Q _2WQ“+Z lklk—i—nQ Q)
with ay = 0.5.

This is not given for the minus-case (note the (—1)¥ term):

2) R o A \" L n! (—1)ke_kfﬁ27w—%§2

l(ch(a:L))” = (a-) (e e 2”‘”) ] (€) = 2mwnar 3 - kK k+nQ—kQ
= (3.36)

with a_ = % Recall the onion-shell expansion of Eq. (2.80) and Eq. (2.81). There oscillations are

caused in the far-field (small F,,) by the sin o term, the cos ¢ term and the local part (F2)[4])™. When
(FD[@])" is positive definite and compact the dominant oscillation frequency is given by the sin o and
coso terms. Also, the Fourier transformed bilocal part () [¢,¢_])* = (3(2) (] * TP [gb,Dn stays
positive definite, so no additional oscillations with higher frequencies are expected for larger F,.

In the minus-case this Fourier transformed phase-map is not positive definite and therefore is able to in-
duces the observed extra oscillations which becomes more relevant in the non-local regime (at larger F,).

In Gaussian SOBS diffractograms we observed that the first "regular’ zero (we will refer to the zero
around o/m =1 as the "first regular zero".) moves when we change the scaling factor S (recall Figure
. This zero also moves in a TOBS diffractogram but its direction now depends on the shape of the
phase-map. It is even possible to construct TOBS phase-maps, such that the first zero does not move
to larger o for increasing S as we can see in Figure (a). The position of the first regular zero as a
function for S is plotted in Figure (b) for the Gaussian SOBS and the TOBS minus-case with
Q) = 0.8. Not only does the zero move in the opposite direction for our TOBS but the magnitude of
speed is also much smaller.

This indicates that the scaling behavior depends on the phase-map shape, and therefore we will
investigate the scaling linearity of our TOBS phase-maps in Section This motivates investigations
how this TOBS phase-maps influences the scaling linearity of the diffractogram.



34 Master Thesis: Non-local and non-linear aspects of Fresnel diffractograms

N
93
N—"
N
w

020 —— §=0.1 o <,
~~ [N _____ . K 1 ~_ 1.2
E 0.15F % g = 8‘; ] 5
[y o= - = 0. s o] o, .t
T o100 AP . N
\I [\ “- /', z” ] %0 [
& 0.5 N\ % ] R 0]
S NN L =
B2 000 Sy j il
5 N QN =0.8 ]
-0.05 0.8
06 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0
o/m S

Figure 3.16.: Movement of first regular zero near o/m = 1 in TOBS diffractogram (minus-case) when
changing the scaling factor. (a): §g,,—(0) at F,, = 0.1 and Q = 0.8 for various S. (b): Position of the
first regular zero as function of S for the Gaussian SOBS and the TOBS minus-case with 2 = 0.8.
Note the different direction of movement.

3.2.2. Scaling linearity

In analogy to Section we use Dg (defined in Eq. (3.27)) as measure of "scaling linearity" in our
TOBS diffractograms.

In Figure Dg is plotted as a function of F, and o (analogue to Figure for the plus-case and
various values of 2. The region of good scaling linearity (small Dg) increases the more the phase-map
differs form the Gaussian SOBS phase-map. We note, for now, that the additional scale can lead to an
increased region of good scaling-linearity.

The same region, for the minus-case, is plotted in Figure Here we can see an additional region of
non-linear scaling behavior, which is provoked by the shift of the additional zero and the intersections
between diffractograms at different scaling factors, see Figure (a). This leads to significant
deviations from linear scaling behavior as we can see in Figure (b). Here the appearence of the
additional scale lead to a shrinkage of the continuous area of good scaling linearity in the F,-o plane.
Therefore, it is not possible to formulate universal statements on whether more scales always lead to
better or worse scaling linearity.
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Figure 3.17.: Dg (for definition see Eq. ) of TOBS-diffractograms (plus-case) as a function of
F,, and o < 1. The white regions represents Dg > 0.5. (a): The SOBS case (2 = 1), equal to Figure
(a). (b): ©=0.75. (c): 2 =0.25. (d): 2 =0.05. (e): = 0.01. Note the increasing area of mostly
linear scaling behavior the more the phase-map differs from the SOBS case.
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Figure 3.18.: Dg of TOBS-diffractograms (minus-case) as a function of F,, and ¢ < 1. The white
regions represents Dg > 0.5. (a): @ =0.05. (b): € =0.25. (¢): © = 0.75. Note the small region of
strong non-linear behavior induced by the movement of the additional zero (caused by the shape of
the phase-map).
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Figure 3.19.: Movement of additional zero under change of the scaling factor (a) and Dg (b) for
TOBS diffractrogram (minus case = 0.25, F,, = 0.4).

In Figure Dg is plotted as a function of €2 and ¢ for the plus- and minus-case and at F, = 0.1,
F, =0.05 and F, = 0.01. The plus-case at 2 = 1 is equal to the Gaussian SOBS case. We observe
that the width of the Dg-bands in the plus-case does depend on €2, but for F,, = 0.1 the first band@ is
relatively stable under changes in €. For decreasing F,, this stability increases over the next bands,
and at F, = 0.01 we recognize only small changes within the bands. We also see an increase of the
Dg-bands for smaller €, as we already observed in Figure [3.17]

The situation for the minus-case, on the other hand, is more complicated at small F,. The existence of
the additional zero and its movement causes the bands to strongly depend on . Only the first band
(at 0 < o/ <) is continuous in £ for F,, = 0.1 and relatively stable at F,, = 0.05. At F,, = 0.01 the
bands are more or less constant in width and more stable in €.

In the extreme far-field limit £, — 0 all band Dp;, exhibit the same shape and extension but the
width still depends on €. In Figure Dp 1 with Dy, = 0.25 is plotted as a function of €.

5We refer to the regions of good scaling linearity between integer o /7 as bands.
"For the definition of Dp,n see Section
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Figure 3.20.: Dg of TOBS-diffractograms plus- and minus-case as a function of Q and o. Plus-case:
(a) F,, = 0.1 note the increased first "band". (b) F,, = 0.05. (c) F,, = 0.01 note the nearly equal wide
"bands". Minus-case: (d) F,, = 0.1. (e)F,, = 0.05 note the more irregular behavior in comparison to

the plus-case. (f) F,, = 0.01.
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Figure 3.21.: First D-band Dp 1 of TOBS-diffractograms (plus- and minus-case) as a function of
at F,, = 0. The bands are defined by Dg < 0.25.
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3.2.3. The extreme far-field

We discuss the extreme far-field of TOBS phase-maps in analogy to the SOBS-case in Section
As we already know, in the extreme far-field F,, — 0 the zeroth onion-shell is a good approximation
and is exact for F,, = 0. The zeroth onion-shell for our TOBS (plus- and minus-case) reads

0 kS2k 2k 2k (2k)!(£1) 270 Fy,
82,0+ = dmw cos ( T ——e jr2Re=ja’
’ 2 — (2% — )§)(j + 242 — j)
00 kG2t 2k 1 2kt ; _
+ 4mwsin (o Z —1°S Z .(2]{_74_ })!(il)] ¢ ~ A=
= @R+ = (R 1=5)NE + 2+ DR - 5Q)
(3.37)
We consider the limit F, = % — 0 and obtain
i e > ks% 3 & (2k)!(£1)7
A 892,04 = dmwcos ( k; — ((2k — J)1J1)(j + 2k — j92) a9
00 2k+1 i )
+ 4w sin (o Z Ve i 2k + )I(x1) .
Lkl 2 (k1= LG + G+ D2 — %)
The generalization N, o of N, introduced in Eq. (3.21), reads
mw(l+ Q) for ¢pp (plus-case),
N, = 3.39
“ {QWwaﬁl for ¢ps (minus-case). (3.39)

The coefficient C(j) for the normalized diffractogram (for o > 0) in the extreme far-field limit, as

defined in Eq.(3.23)), can be read from Eq. (3.38) as

4-(3) i 4! ; |
) k=0 G—Fk)TK] k+jQ 7 or ¢p (plus-case),

C(j) = . (3.40)

1 Q J . k -
T—0 Q-1 J (_1) j' 1 1
2070 ( ey ) h=0 —tyik Arja—ka  for du (minus-case).
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A third example for a TOBS is an elliptical phase-map

22 y2

P(z,y) =€ 207290, (3.41)

which is also an example for a non-isotropic phase-map.
The normalization N, o is given for the elliptical case by

N, = 21wV, (3.42)
The 2-D Fourier transform of ¢/ reads

31672, )6, ) = TV Lm0, (.43

and in the limit w — 0 reduces to (with the normalization N, o)

. 1 2w (2 2 1
1 J . -1 =l —e J (£L+Q§ ) = —
lim (¢ (2, y))(€e: &) - No o }}ggje 7 V=g (3.44)

And therefore we can read off the scaling coefficient as

C)=5". (3.45)

Comparing Eq. (3.45) with Eq. (3.24), we can see that in the extreme far-field it is not possible to
distinguish between an elliptical and a Gaussian phase-map.
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The extreme far-field of multi scale objects with broad spectrum (MOBS)
MOBS phase-maps of spatial scales {w;} in the extreme far-field limit need to be normalized such that

lim N,

k—0 {

e B} (F 1) [s=1 = 60 (F1). (3.46)

Eq. (3.46) generalizes Eq. 1' We can write the phase-map as

G} (T1) = SN gy (T1), (3.47)
with
lim 8, (#1) = 0P(31). (3.48)

The zeroth onion-shell, as given in Eq. (2.82), demands the evaluation of 3[ j{‘wi}} for j = 1,2, ...

Appealing to the Fourier convolution theorem, we have

i § 67, (F1)] = 7 m Ny Ny § [0 | * % [y - (3.49)

k—0

j—1 convolutions

Let us define the dimensionless quantity

W(j =1, {rwi}) == N{ ), § [5{50%_}} PR [5%%.}} . (3.50)

j—1 convolutions

The coefficients C'(j) can be identified as

C(j) = lim W(j — 1, {sewi}) (3.51)

The dependence of C(j) on the dimensionless ratios w;/w; | (i > j) is strong suppressed. Thus the
extreme far-field limit of the normalized diffractogram, in analogy to Eq. 1 , reads

. 89 = (=R ok = (=1)F o
lim Nt = 2sin (o )27(2%1) S#RHLC(2k +1) + 2cos (o kg o) Sk C(2k) (3.5

= S5(5)sin () + Sccos (o).

This proves that an arbitrary phase-map has oscillatory behavior in the far-field. Also, it is conceivable
that Eq. 1' has practical implications if phase-maps can be scaled physically, because the phase-map’s
entire shape information is given by C(j). Note that there can be different shaped phase-maps who

exhibit same the same C(j) as we can see by comparing (3.45) to Eq. (3.24).

8This calculation has already been done in [19].
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3.3. Multi-scale objects with broad spectrum (MOBS)

Phase-maps induced by projection through real samples usually contain a huge amount of scales.
Therefore, we investigate multi-scale objects of broad spectrum in this section. We were able to
treat the SOBS- and TOBS-case semi-analytically by performing the non-linearity or the onion-shell
expansions, however we have to resort to a numerical treatment here, which requires the use of a
pixelized field of view.

3.3.1. MOBS diffractograms

T Ax

y- Az
(edge-size) Ax. We still consider only pure-phase objects, so that the wave field at the exit plane
(z =0) reads

We permit arbitrary phase-maps ¢(Z, ) but quantize 7, = ( ) with integer x, y and the pixel-size

G(EL, 2 = 0) = VIpe"TL7=0) (3.53)

To obtain the intensity at the detector-plane we need to propagate the wave field to the distance z.
This is done by convolution with the Fresnel propagator (for a derivation see Section [2.1.7). The Fresnel

propagator reads

_ T 42 = 2
PE(z,7)) = ——€ X &3 (T1)
b J— AZ )

(3.54)

subject to wave length A.

Because the Fresnel propagator is defined for arbitrarily large |7, |, it is not convenient to perform
the convolution numerically. Instead we exploit the Fourier convolution theoremﬂ The Fourier
representation of the Fresnel propagator reads

PK = @ [PK(fL, z)} (E, z) = i e (3.55)

Because we are only interested in the intensity at z

I, =¢"Y, (3.56)

we can neglect the constant factor % in Eq. l) Therefore, we obtain the intensity at the detector

plane (z) as
2

1(#1) = |85 [35) [e9@0s0] (&) - em=] (z1)] (3.57)

where SD ) SD ) denote the 2D discrete Fourier transform (DFT) and the 2D inverse discrete Fourier
transform (iDFT), respectively.
We perform the 2D DFT of the intensity contrast g, (defined by g, = OIZ)

§9z (fj SD gz (fj (358)
Note that the DFT is defined for infinite periodical signals, which is not the case for g,. To nevertheless
obtain decent results, it is convenient to frame g, (which is stored as a matrix) with a sufficiently large

number of elements with the value zero (zero-padding).
To obtain the diffractogram, as defined in Section we perform the angular average, and make the

substitution o = % 2
o K Ccos
Z 2 — d ’ '

Fourier convolution theorem: F[f - g] = F[f] * Flg]-
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Figure 3.22.: MOBS diffractogram [Fg,(£)| and |§g,(o)], simulated with E = 1keV (A = 1.2nm),
z=1m, S =1, and a pixel size Az = 1.6pm with 1024 x 1024 pixel. (a): Lena phase-map and 2D

— —

diffractogram |Fg,(€)| illustrated by log(1 + |Fg,(£)|). The position of the first minimum is at |[£] = &;.
(b): Angular averaged diffractogram |§g,(o)| with the substitution o/ = Az€2. The diffractogram

has been smoothed by 2D convolution of 392(5) with a 2D Gaussian filter (variance of 1 pixel which

equates a variance of o¢ = ﬁ ) before performing the angular average.

An example of §g, (E) and the diffractogram §g, (o) for a multi-scale phase-map is given in Figure 3.22

The Fourier transformed intensity contrast §g, (5) contains complex values, therefore we use the abso-
lute value of the diffractogram for their further treatment. This is not the case for the Gaussian-SOBS
and TOBS phase maps, defined in Section and because these phase-maps are 2D spherical
symmetric. Therefore these SOBS and TOBS phase-maps are even (¢(Z) = ¢(—7)), and thus their
Fourier transform are real [20].

To investigate the scaling behavior of the MOBS diffractogram we normalize and shift the phase-map
so that the maximum ¢ = 1 and the minimum ¢, = 0, respectively. A typical MOBS phase-map
is the "Lena test pattern" as illustrated in Figure (a).

In Figure the diffractogram (normalized to its maximum value) is plotted as a function of o/ for
various S and the propagation distance z = 0.05m (a) respectively z = 20m (b). We can see that the
diffractogram’s shape transmutes in both cases from an oscillatory form at small values of S to a more
damped shape at higher values of S.

Analog to the first regular zero, as mentioned in Section we define o1 as the position of the
minimum of |§g,| near o = 7.

In Figure (c) and (d) oy is plotted as a function of S. For z = 0.05m (c) we see a small movement
of o1 until S exceeds a value of around S = 4. For larger values of S we can observe a rapid upward
movement of o1. This is caused by the transition to an over-damped shape, where the minima caused
by the sine modulation as foreseen by the the zeroth onion-shell (far field situation, recall Eq.
disappear. The extent of o1’s movement before the transition to an over-damped shape is very small in
comparison to the movement of the first regular zero in the Gaussian SOBS case (recall Figure (b))
which likely is caused by the huge amount of scales in the phase-map. As we have discussed in Section
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Figure 3.23.: MOBS diffractograms |§¢,(0)/8 9z, max| and position of first minimum as a function of
S. Simulated with a pixel size of Az = 1.6pm with 1024 x 1024 pixel and E = 1keV. (a): Near field
z = 0.05m, Note the more damped shape for larger values of S. (b): z = 30m, note the shift of the
first minimum depending on S. (c): Position of the first minimum o; as a function of S at z = 0.05m.
(d): Position of the first minimum o; as a function of S at z = 30m.

3.2.1] it is possible to construct phase-maps where o1 moves to lower values for increasing S so it is
likely that complex phase-maps with a large amount of independent scales can suppress this movement.
At z = 30m the movement of o is smoother in S, see Figure (d). Larger values of z correspond to
smaller values of F,, in the Gaussian-SOBS case, where we know that a small value of F,, requires a
larger value of S for the diffractogram to be over-damped. This can explain why we do not see the
strong increase of o1 at S =~ 4 here. Note that the extent of ¢1’s movement is, in this case, also much
smaller than in the Gaussian-SOBS case.
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3.3.2. Scaling linearity

To analyze the scaling linearity we need to adjust our measurement Dg, defined in Eq., such that
it is useable for discrete and numerically calculated diffractograms.

To calculate Dg, a sufficient numbe N of diffractograms with S,, ranging between S; and Ss are
needed. We define the derivative as

_ ggz(sn—&—l) - ng(Sn)
Sn—l—l - Sn ’

05895 (Spr) (3.60)

with S,y = % and Sp11—S, = % The larger the value of N the better Eq. 1} approximates
a derivative. Based on a stack of N diffractograms we therefore obtain a stack of N — 1 derivatives

0589, (Spro).
The standard deviation of the fist derivative reads

1 N-1 1 N—1 2
$tDe(0) = | +— WZZI i kz:jl 95504 (Sk, 7) — O55Gs(Spr, )| - (3.61)

We normalize StDe(c) to the mean value of the diffractogram and obtain

B StDe(o)
% Zgzl ggz(snv U) '

In the limit N — co Eq. (3.62) becomes Eq.(3.27).

Ds(o) (3.62)

We use the "Lena phase-map", see Figure (a) and the scaling window S = [0, 1.5]. The phase-map
is normalized and shifted such that its minimum value is ¢, = 0 and its maximum ¢ = 1 at S = 1.
The diffractogram |§g,(o)| and Dg for z = 0.2m are plotted in Figure (a).

Like the SOBS (Section and TOBS (Section cases, we can see that Dg gets maximal at
integer values of o/, which is where the minima of the diffractogram are. This maximal non-linear
scaling is most likely caused by the movement of the minima in |§g,(c)| when changing the value of S.

In analogy to Section we can identify D-bands where Dy < Dy,. We refer to the bands length as
Dp, withn=1,2,....

In Figure [3.24] the length of the first four bands, with Dy, = 0.25, is plotted as a function of the
propagation distance z. Because we can only calculate Dg for discrete values of o, due to the finite
number of pixels, there is an increased uncertainty of Dp , in comparison to the SOBS and TOBS
case. This uncertainty has been estimated and is indicated in the plot.

In the range 0.2m < z < 10m we can not recognize a uniform dependence of Dp on z in the way we
saw in the SOBS case (recall Figure for Dp in dependence of F,,. We also see that the D-bands
are wider in the MOBS than in the SOBS case which is in good agreement with the observation that
the first minimum moves much slower in the MOBS case than the first regular zero in the SOBS case.
This latter observation was discussed in Section

0Here we use N = 100. In the appendix an estimate for the convergence of Dg in N is given.
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Figure 3.24.: MOBS (Lena phase-map, 1024 x 1024 pixel) diffractogram and Dg calculated with
E = 1keV and pixel size Az = 1.6um. (a): |§g,(o)| in arbitrary units and Dg(o) at z = 0.2m.
(b): First four D-bands Dg1,Dp 2, Dp3,Dp4 for various z (the points are connected for better
visualization).

3.3.3. Modulation contrast transfer of phase retrieval

In Section we introduced two approaches for phase retrieval. The CTF approach, see Eq. (2.71)

—

and the TIE approach, see Eq.(2.72). Both approaches require §g, (5 = 0) = 0 which can not be assured

when we make use of the DFT and finite pixel size. Therefore, we chose a pragmatic regularization [22]
and modify Eq.(2.72) (TIE) as follows
59,

3¢:20’—|—Oé’

(3.63)

with the regularization parameter o < 1. For the following treatment we chose ov = 10725,
In the CTF approach poles arise for non-vanishing §g¢,(§) at the frequencies Erxz=0 /m =n (n integer).

Therefore, we modify Eq. (2.71) as

sgn(sino)

§¢ =89, (3.64)

2|sino| +a’

where sgn denotes the sign function with sgn(x) = % for  # 0 and sgn(0) = 0.

||

In Figure the phase-map (a) with S = 0.1 is propagated (recall Eq. ) across the distance
z = 1lm using a monochromatic beam with £ = 10keV (A = 0.124nm). The intensity I, at the
detector-plane is given in Figure (b). The retrieved phase-maps are shown in (c) where retrieved
by the TIE approach and (d) by the CTF approach. Differences in the TIE and CTF approach are
barley visible here.

We also recognize that the contrast of the retrieved phase-maps is clearly poorer compared to the
original phase-map. This effect is even stronger in homogeneous regions, implying that the retrieval of
low spatial frequencies suffer from a loss of contrast.

We increase the propagation distance to z = 10m and repeat the phase retrieval, leaving energy,
pixel-size and original phase-map unchanged. The results are given in Figure TIE approach in (c)
and CTF in (d). Here we can see that the TTE phase-map clearly is restored with a poorer quality
than the CTF phase-map. Due to the larger propagation distance the linearization in z causes TIE to
become an efficient low-pass filter.

Beside this we recognize that the contrast for lower spatial frequencies is improved in comparison to
the case of z = 1m in Figure
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Figure 3.25.: Forward propagation with £ = 10keV, z = 1m, phase-map (a) size 4096 x 4096 pixel
(Lena 2048 x 2048 pixel plus zero-padding), S = 0.1, pixel size Az = 1.6um. (b): Intensity I, at the
detector plane. (c): Retrieved phase with TIE approach. (d): Retrieved phase with CTF approach.
Note the loss off contrast in comparison to the original phase-map (a).
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Figure 3.26.: Forward propagation with ' = 10keV, z = 10m, phase-map (a) size 4096 x 4096 pixel
(Lena 2048 x 2048 pixel plus zero-padding), S = 0.1, pixel size Az = 1.6um. (b): Intensity I, at the
detector plane. (c): Retrieved phase with TIE approach. (d): Retrieved phase with CTF approach.
Note the poorer sharpness of the TIE retrieved phase-map in comparison to the CTF approach.
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The observed contrast differences of the TIE and CTF approaches in dependence of spatial resolution and
propagation distance motivates a more systematical investigation. We look at the forward propagation
and phase retrieval as a system with the original phase-map as input and the retrieved phase-map
as output. Here we need a quantity which represents the transfer of contrast (input to output) in
dependence of the spatial frequency. Therefore, we define the phase-map as

Som(,y) = g (sin (QJWVf 33) + 1) , (3.65)

where S denotes the scaling factor, N the number of pixels in z-direction, and f the number of maxima
in the phase-map (in x direction), defining the spatial frequency ¢ as

f

C::N-Aa:’

(3.66)

where Ax denotes the pixel size. Such a sine-shape test-pattern is a common method to specify imaging
systems [23].

We define the contrast of the phase map as

Cpm := max(ppm) — min(¢pm) = 5. (3.67)

Similarly, we define the contrast of the retrieved phase-map ¢t as

Cret(C) = max(¢ret)(€) - min(¢ret)(<) ) (368)

which depends on (.

To classify the retrieval system we define the modulation transfer function (MTF)[24] as

Cret(g) ]

MTF(¢) := =
pm

(3.69)

Under the assumption that the phase-map is not deformed by the propagation-retrieval-system, a MTF
value of 1 implies a perfect contrast transfer and a smaller value of MTF a loss of contrast.

In Figure MTFs are plotted for S = 0.1 and F = 10keV at the propagation distance z = 1lm
(a) and z = 10m (b) for the TIE and CTF approach. At z = 1m we see that MTF rises slowly for
increasing ¢ and therefore has a low value for small values of (. This illustrates why the larger scales
in Figure (c) and (d) are suppressed. Also, the low-pass filter effect of TIE on larger propagation
distances is well illustrated.

In Section we deduced CTF phase retrieval by expanding e*¥9-e=#9%+ = 14 S(¢_ — ¢, )+ 0O(S?).
and truncating at linear order. Therefore, CTF is restricted to small values of S. Thus the question
arises how the MTF changes for larger values of S.

In Figure the MTF is plotted for S = 0.5 and S = 1, and in the CTF case we see peaks which
increase for larger values of S. At these peaks the MTF can significantly exceed unity. This means
that there are frequencies which are amplified by the CTF retrieval process.

TIE seems to be robust against phase scaling. This is not surprising due to the fact that TIE suppresses
high spatial frequency and for low spatial frequency the diffractogram scales quite linearly (recall the

first D-band for MOBS (Figure 3.24)).
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Figure 3.27.: Modulation transfer function (MTF) for S = 0.1, E = 10keV and the pixel size
Az = 1.6pm for the TIE (solid) and CTF (dashed) approach. (a): Propagation distance z = 1m. Note
the small MTF at small values of . (b): Propagation distance z = 10m. Note the low MTF in the
TIE approach for high values of (.
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Figure 3.28.: Modulation transfer function (MTF) for z = 1m, E = 10keV and the pixel size
Az = 1.6pm for the TIE (solid) and CTF (dashed) approach. (a): S = 0.5. (b): S = 1. Note the
peaks with MTF > 1 in the CTF case.

To investigate the peaks in the MTF for CTF retrieval at S = 1, we examine the first peak where
the MTF exceeds unity exemplary (here at ¢ = 0.045}%110). In Figure (a) |§92(§)| is plotted, and
we can see at || = &, where & corresponds to o/m = 1, non-vanishing values of |Fg,(£)]. Due
to the CTF method these frequencies get amplified and lead to higher harmonics of the assumed

base base oscillation in the retrieved phase-map (See Figure (b)). This indicates that CTF le-
ads to artifacts in the retrieved phase-map when the original phase-map contains strong phase variations.
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Figure 3.29.: CTF retrieval of sine phase-map at S =1, £ = 10keV, z = lm and ( = 0.045/%11. (a):
Representation of |§Fg,£1| where &; corresponds to o/m = 1. Note the high values of |Fg, near |{,| = & .
(b): Cut through the original phase-map (solid) and CTF retrieved phase-map (dashed) parallel to
the x-Axis. Note that the retrieved phase contains an additional oscillation and therefore is not even
qualitatively correct.

These artifacts in CTF retrieval indicate the need of taking care of non-linear effects for the retrieval of
large phase variations. As we know from previous investigations on scaling-linearity (recall Section
Section and Section we know that the most non-linear regions in the diffractogram
are located around o/m =n withn=1,2,....

A pragmatic approach to deal with this issue is to modify the intensity contrast by applying a
filter in Fourier space, such that

392,qp(§) = - (3.70)

o ng(g) for o < 7,
O (|sin(0)| —¢€) - §g.(§) for o > 7,

where © denotes the Heaviside step function and 0 < € < 1 is the threshold parameter for this binary
filter.

We substitute Eq. l} into Eq. 1} and obtain the quasiparticl approach (QP)[25][22]

sgn(sin o)

§¢ = §9.,qp (3.71)

2lsino| +a’

The MTF for the QP approach with € = 0.1 is plotted in Figure We see that the peaks are suppres-
sed in comparison to CTF in Figure (b). Therefore, the artifacts in the QP-reconstructed phase-map
are suppressed, compare the retrieved phase-map at ( = 0'045/%11 in Figure W (b) with Figure (b).

The threshold parameter € determines how well the peaks in the MTF, and therefore artifacts in the
reconstructed phase-map, are suppress at the expense of sharpness. In Figure the MTF of QP is
plotted for e = 0 (CTF), ¢ = 0.2 and € = 0.4. We see stronger suppression of the peaks and loss of
wider frequency bands at higher values of €.

An exemplary visualization of a phase-map (Lena), retrieved by QP, is given in Figure Note the sup-
pression of artifacts for larger values of € and also the significant loss of resolution and details at € = 0.99.

1 This name has been chosen in analogy to the quasiparticle concept in the quantum theory of condensed-matter
physics and quantum field theory. There a free dispersion law is altered by strong interactions yielding a free quasi
particle.
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Figure 3.30.: (a): MTF for quasiparticle approach (QP) (¢ = 0.1) at z = 1lm, F = 10keV, Az = 1.6um,
S = 1. Note that the spikes are suppressed in comparison to CTF in Figure (b). (b): Cut through
phase-map and QP reconstructed phase map parallel to z-axis for ( = 0'045;711' Note the qualitative
improvement in comparison to Figure W (b).
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Figure 3.31.: MTF for CTF and quasiparticle approach (QP) (¢ = 0.2, e = 0.4) at z = Im, E = 10keV,
Az =1.6um, S = 1.

Recall the D-bands in the MOBS case (see Figure[3.24), here we see that Dp,, /7 > 0.75 for n > 1
so that the extent of the non-linear region is approximately opnon1in &~ 0.25. Cutting out this region
Onon-lin = 0.25, which is associated with the threshold parameter e = 0.38, gives good suppression of
MTTF peaks and therefore suggests a reasonable QP phase-retrieval.
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Figure 3.32.: Retrieved Lena phase-map (zoomed in) with quasiparticle approach. Propagation
parameter: propagation distance z = 10m, energy E = 10keV, pixel size Az = 1.6um, S = 1. (a):
e = 0 which is equivalent to CTF. (b): e =0.2. (¢): € =0.4. (d): £ =0.99.




4. Conclusion

In this thesis we have investigated systematically the dependencies of a diffractogram (intensity-contrast
spectrum) on propagated, initially phase-modulated wave fields, the associated propagation distance z
and the strength of the phase variation. The main motivation for this was that in commonly applied
single-distance phase-retrieval approaches (TIE and CTF) small phase variations and/or small values
of z are assumed. For real objects this is not always guaranteed. In case of TIE a short propagation
distance z is required, which in real experiments leads to a poor signal to noise ratio [27].

Shape of the diffractogram

In the local case, which occures in the far-field regime and for small phase variations, the diffractogram
exhibits oscillatory behavior which arises due to sinusoidal contrast transfer. We have shown for
Gaussian phase-maps, that in the near-field regime (large Fresnel number) and/or large phase variation
the diffractogram transmutes critically into an over-damped shape. This behavior could also be
identified for two-scale and multi-scale objects (e.g. as seen in the experimental data of [17]).

We also have investigated the movement of the first regular CTF zero o1 in the diffractogram under
scaling of the phase variation strength. While for Gaussian phase-maps o1 moves to higher values under
increases of the phase variation, we could construct two-scale phase maps, where o1 moves into the
opposite direction. For multi-scale objects, we saw, that this effect is suppressed until the diffractogram
(critically) assumes an over-damped shape.

Scaling linearity

We investigated the scaling linearity of diffractograms. For Gaussian phase-maps a single physical
frequency modulus was identified where the diffractogram scales in a maximally linear way.

We also identified frequency bands Dp where the diffractogram exhibits good scaling linearity. We
demonstrated for single-scale and two-scale phase-maps that the width of these bands depends on the
shape of the phase-map and the Fresnel number. We also saw, independently of the phase-map, that
the maximally non-linear scaling behavior occurs around the zeros/minima of the diffractogram (at
integer values of o/m). This is caused by the slightly movement of the zeros/minima compared to the
CTF case.
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Consequences for the phase-retrieval approaches

We compared TIE and CTF in dependence of the propagation distance and the phase-scaling. We
showed that both approaches suffer from poor contrast in the retrieved phase-map for low spatial
frequencies at small propagation distances. This can be explained by the fact that both approaches
assume locality. But in fact, non-local effects are non-negligible in the near field and even can dominate
the spectrum there (recall the transmutation into an over-damped shape of the diffractogram).

At larger propagation distances, the low frequency contrast improves, but TIE suffers from poor
resolution. This is because for TIE, due to the expansion in powers of a small propagation distance,
the high spatial frequencies are suppressed in the retrieved phase-map.

For stronger phase variation CTF causes artifacts due to an amplification of frequencies which are
associated with non-linear scaling. This problem can be mitigated by the quasiparticle (QP) approach.
We demonstrated that the bands of linear scaling Dp introduce a good binary threshold filter for QP
phase-retrieval.



Appendix

A. Error estimations

This chapter contains the estimation of numerical uncertainties in Chapter

A.1. Onion-shell expansion for Gaussian phase-map - error estimation

The onion-shell expansion contains an infinite summation in [ see Eq. (2.80) and an infinite summations
in k see Eq. (2.81). For numerical evaluation both of them need to be truncated at finite order.
Therefore, we introduce the truncation L and ¢ and thus obtain

L
1
= 3 5 (1 = )§ [(6-64)']

1k+l)52(k 1)+ a
—l—QSQl& (¢ ¢+ :| * (SIDO'Z 2k+ 1 )lll g |:¢2(k l)+1:|> (A].)

) e (_1ktyg2(k-D)
+ ZSQZS _(¢,¢+)l} * (cosak:zl;rl —( 2k 2 Dl 5 [¢2(k_l)}) .

ggz,L-Q»l*%gz,L

SQZ,L
In Figure|A.1 W, for Gaussian phase-maps, is plotted as a function of ¢ for various F,,. We
see, that the gained numerical accuracy which we obtain by adding the ninth onion-shell never exceeds

1077, 10712 for o /7 > 0.1, respectively.

To estimate how fast Eq. (A.1) converges, with respect to L, we calculate

The second expansion we need to truncate is k at the order ¢. Two examples of the gained accuracy
when increasing ¢ by one are given in Figure

In the Sections[3.1.1] and [3.1.3] for numerical evaluations of diffractograms with F, # 0 the first ten
(zeroth to ninth) onion-shells (L = 9) and ¢ = 39 was used. For the evaluations with F,, = 0, the zeroth
onion-shell (L = 0) and ¢ = 39 was used. Because of the good convergence we neglected an explicit
error treatment for further going evaluations, as for example the description of the transition form
damped to oscillatory behavior in Section [3.1.3]

A.2. Non linearity expansion for Gaussian phase-map - error estimation

For the determination of scaling linearity in Section a non-linearity expansion (see Eq. ) has
been performed and substituted into Eq., using the phase-map Eq. An onion-shell expansion
would have been possible, too, but the numerigac evaluation for the non-linearity expansion is faster
and the accuracy sufficient as we demonstrate in this section.

This non linearity expansion has one infinite sum, which needs to be truncated finite order ¢

eisd)_e*isdbr _ zc: (’LS')TL zn: (_1)]7:"¢n—3¢i (AQ)

n=0 n: =0 (n - ])]
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increasing ¢ by one. (a): ‘ T Ep—
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In Figure |A.3| the difference of )%‘ for ¢ = 10 (a) and ¢ = 15(b) is plotted as a function

of o. This also is done for Dg (for definition see Eq.(3.27)) in Figure In Section we used
¢ = 15. We can see in Figure and Figure that a high precision precision is archived due to this

truncation and therefore we can neglect further error treatment here.
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Figure A.5.: Accuracy estimation of Fg, (TOBS) by investigating the difference in Fg, when increasing
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A.3. Non-linearity expansion for TOBS - error estimation

For the numerical evaluation of TOBS the non-linearity expansion Eq. (3.34) has been used with a
truncation at the order ¢ = 15. To estimate the accuracy of this truncation we investigated the gain in
accuracy when increasing ¢ = 14 to ¢ = 15 (analogue to Section [A.2).

In Figure |A.5|the difference of )W is plotted for the plus- and minus-case and the second

scale factor Q = [0.05,0.25,0.75]. We see that the gained accuracy never exceeds 107°. In Section
C' =15 is used and therefore, it justifiable to neglect further error treatment due to this truncation.

Analog ‘w is plotted in Figure |A.6. The gained accuracy never exceeds 11073, so we can

Dy c=14
assume sufficient accuracy for ¢ = 15, which we used in Section

A.4. Dg-function (MOBS) - error estimation

In Section Dy is introduced for discrete and numerical calculated diffractograms. The accuracy
of Dg is determined by the number N, and therefore determining the scaling steps 0.5 = %, of
diffractograms used to calculate the derivatives. For the evaluations of MOBS Dg in this thesis N = 100
has been used.

To estimate the N-dependence Ds. :20%?;25(’;\’ =100(0) (o) is plotted in Figure |A.7, We see, that the
improved accuracy by doubling N to N = 200 never exceeds 0.03. This implies good convergence of
Dg in N and justifies the use of N = 100 in our evaluations.
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Figure A.7.: Accuracy estimation of Dg (MOBS). The diffractograms of Lena phase-map (1024 x 1024
pixel) with F = 1keV, z = Im and Az = 1.6m in the scaling-window S = [0, 1.5] was used to calculate
Dg. Here the normalized difference of Dg under the change from N = 100 to N = 200 is plotted
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does not exceed 0.03. Therefore implies sufficient convergence.
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