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In this master thesis we have investigated the propagation of a phase-modulated electo-magnetic wave
field through free space and subject to paraxial approximation (Fresnel theory). A good understanding
of the diffractograms’ (spectrum of the propagated intensity contrast) dependencies on propagation
distance and phase-variation strength is essential to classify common phase-retrieval approaches, to
point out their limitations and to propose improvements.
We identify a critical transition between an over-damped and an oscillatory spectral shape of the
diffractogram depending on propagation distance and phase-variation strength. Also, we spectrally
analyze scaling linearity (how linearly the diffractogram responds to a scaling of the phase-map). In case
of a Gausian phase-map we can identify a single physical frequency modulus where the diffractogram
scales in the most linear way. Furthermore, we identify regions within more general diffractogram where
good scaling-linearity takes place. We investigate commonly applied single-distance phase-retrieval
approaches (TIE and CTF) with respect to the modulation transfer and we demonstrate how this
knowledge of scaling-linearity can be applied to improve linear phase-retrieval algorithms.

In der vorliegenden Masterarbeit untersuchen wir die Propagation eines phasenmodulierten Wellenfeldes
einer elektromagnetischen Welle im freien Raum, im Rahmen der paraxialen Näherung (Fresnel-
Theorie). Ein gutes Verständnis über die Abhängigkeit des Diffraktogram (Spektrum des propergierten
Intensitätskontrast) von der Propagationsdistanz und der Stärke der Phasenvariation ist essenziell um
Phasenrekonstruktionsmethoden zu klassifizieren und deren Beschränkungen aufzuzeigen.
Wir identifizieren einen kritischen Übergang von einer überdämpften zu einer oszillierenden Form des
spektralen Diffraktograms in Abhängigkeit der Propagationsdistanz und der Stärke der Phasenvariation.
Des Weiteren analysieren wir die spektrale Skalierungslinearität (in wie fern das Diffraktogram linear
mit der Stärke der Phasenvariation skaliert). Im Falle einer gaussförmigen Phasenkarte können wir
eine physikalische Frequenz isolieren, in welcher das Diffraktogram maximal linear skaliert. Des
Weiteren identifizieren wir Regionen im Diffraktogram die eine gute Skalierungslinearität zeigen. Wir
untersuchen die bekannten Phasenrekonstruktionsansätze (TIE und CTF) auf ihr Abbildungsvermögen
räumlicher Frequenzen und wenden unsere Erkenntnisse über Skalierungslinearität an, um lineare
Phasenrekonstruktionsalgorithmen zu verbessern.
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1. Introduction

The discovery of X-rays in 1895 by Wilhelm Conrad Röntgen [1] has laid the foundation for a large
amount of imaging methods in medicine, biology, material science and many more. In comparison to
visible light, X-rays permeate matter, especially soft matter (with low atomic number), very well. This,
for example, was demonstrated in 1896, when X-ray imaging was first applied in clinical use [2].
The X-ray’s high energy imply negligibly small scattering of X-ray beams of soft, non-crystalline matter,
and therefore is used for projection radiography. Highly absorbing tissues, for example bones or kidney
stones, can be visualized as 2D projection in the human body. With the development of powerful
computers, projected X-ray images can be used to calculate three-dimensional representations of the
probed objects. This computed tomography has first been implemented by Godfrey Hounsfield in
1969 based on the mathematical work of Allan McLeod Cormack [3]. This time neither Cormack nor
Hounsfield knew that the inverse problem of projection had already been solved by Johann Radon in
1917 [4].
Nowadays, modern synchrotron radiation facilities can produce X-rays of high brilliance and coherence.
Synchrotrons generate high intensity, monochromatic X-ray beams with good spatial- and temporal
coherence. With these beams, it is possible to perform phase-contrast imaging. When the beam passes
though a sample, with the refractive index n = 1− δ + iβ (with the absorption part β), the wave front
is modulated. The induced modulations are given by line integrals of the refractive index along the
beam path when considering a sufficiently thin sample. When the modulated wave front propagates to
the detector the 2D intensity distribution changes by self interference in dependency of the propagation
distance. This propagation is well described by Fresnel theory [5]. Self-interference enables the use
of this effect for phase-retrieval, since it is not possible to measure the phase directly (for X-rays at
energies of 1keV the electromagnetic field oscillates on a frequency of approximately 2.5 · 1017Hz ).
The refractive index depends on the energy of the probing photons. In Figure 1.1, for example, the
refractive index, split in real and imaginary part, of water is plotted as a function of the energy. We
see that the ratio δ/β increases for higher energies. Therefore phase-contrast imaging is a possibility to
reduce dose, which in particular is important for biological and medical imaging.
The phase-retrieval, based on a single-distance measurement, requires a good understanding of how
the intensity contrast changes during the propagation. The present Master Thesis investigates the
intensity-contrast spectrum as induced by the projection through pure-phase objects (phase-maps)
and subsequent free-space propagation. We start with simple phase-maps (single scale objects) and
then increase their complexity. The main focus of the investigations is how the spectra depend on the
strength of the phase variation. This is of special interest because the commonly used phase-retrieval
approaches (TIE and CTF) presume that the strength of phase variation scales linear with the strength
of the diffractogram (Fourier transformed intensity contrast after propagation). Interesting results
are e.g., that the shape of the (angular averaged) diffractogram transmutes critically from an damped
to an oscillatory form when increasing the propagation distance and/or reducing the phase-variation
strength. Also, regions where the diffractrogram scales linearly and where it does not, are identified.
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Figure 1.1.: Refractive index of water parameterized by n = 1− δ + iβ as a function of the photon
energy E = ~ω. (a): δ and β as function of E. (b): Ratio δ/β as function of E. Note that δ/β
increases for higher energies. Data from [6]

This thesis itself is structured as follows:
In Chapter 2 we introduce the theoretical background of Fresnel theory. Beginning with Maxwells
equation in Section 2.1.1, we deduce the Helmholtz propagator and, by applying the paraxial approx-
imation, the Fresnel propagator in Section 2.1.7. Section 2.2.2 is a short excursion on tomographic
reconstruction using the filtered back projection. Guigay’s relation between the wave field after the
projection through the sample and the intensity contrast at the detector plane is stated and proofed in
Section 2.2.3, laying the foundation of the phase-retrieval approaches introduced in Section 2.2.4.
Chapter 3 contains the investigations of the diffractograms. We focus on the effect of phase-variation
scaling on the diffractogram.
In Section 3.1 we start our analysis on single scale objects with broad spectrum (SOBS). After
introducing a formalism to calculate the diffractogram of a Gaussian phase-map in Section 3.1.1 we
investigate the appearance of an additional zero in the low frequency regime in the diffractogram.
Section 3.1.2 discusses how the shape of SOBS diffractograms’ becomes universal in the extreme far field
and that the shape information condenses in scaling information. In Section 3.1.3 the transmutation of
the SOBS diffractogram from an over-damped to an oscillatory shape in dependence of the Fresnel
number and the scaling factor is investigated. A measure of scaling linearity is introduced in Section
3.1.4. With this measure we identify a single physical frequency at which the SOBS diffractogram
scales in a maximally linear way. Also, we identify bands of good scaling linearity in the diffractogram.
We increase the complexity of our phase-map and study two scale objects with broad spectrum (TOBS)
in Section 3.2. Thereby we investigate the transition from over-damped to oscillatory behavior of the
diffractogram and the movement of the first regular zero as a function of phase-variation strength in
Section 3.2.1. Section 3.2.2 contains an investigation on scaling linearity in dependence of the shape of
the phase-map. In Section 3.2.3 the extreme far field is discussed and a generalization of diffractograms
in the extreme far field for arbitrary phase-maps is introduced.
In Section 3.3 we study the diffractograms induced by multi-scale objects with broad spectrum (MOBS).
In analogy to the SOBS and TOBS case we identify bands of linear scaling behavior in Section 3.3.2. We
also study phase retrieval approaches in dependence of the phase-variation strength and the propagation
distance in Section 3.3.3. Therefore, we perform a systematical investigation on how well the phase
retrieval approaches perform in dependence of spatial frequency in the phase-map.
In Chapter 4 we summarize our outcomes, with the focus on the impact on single-distance phase
retrieval.



2. Theoretical background

This chapter is about the basics of x-ray imaging and phase-to-contrast transfer. We start with
Maxwell’s equations and derive phase to contrast transfer (Guigay’s relation). We also briefly address
tomographic reconstruction and phase retrieval.

2.1. From Maxwell to Fresnel

This section contains the fundamentals of electro magnetic waves and an introduction into some useful
approximations for the x-ray regime. Also, the propagation of a monochromatic wave in free space will
be discussed and the free-space propagator will be derived. This propagator underlies the derivation of
phase to intensity transfer. Therefore, it is at the heart of phase-contrast x-ray imaging.

2.1.1. Macroscopic Maxwell’s equations

The most fundamental description of electro magnetic phenomena in classical physics is given by
Maxwell’s equations [7], in the SI unit system, which will be used in this thesis:

∇ · ~E = ρ

ε0
,

∇ · ~B = 0 ,
∇× ~E + ∂t ~B = 0 ,

∇× ~B − µ0ε0∂t ~E = µ0~j .

(2.1)

These partial differential equations connect the electric charge density ρ and electric current density ~j
with the electric field ~E and the magnetic field ~B. The physical constants µ0 and ε0 are called the
vacuum permeability and the vacuum permittivity, respectively[8].
When electromagnetic effects are used to probe materials, like in x-ray imaging, it is obvious that the
effect of matter has to be considered. To cope with this in an efficient way, one introduce material
properties. For the sake of simplification we impose some restrictions on the material. The first
restriction is that only dielectric materials are considered. This means that the material is an electric
insulator which can be polarized. Assuming a homogeneous and linear medium, the polarisation ~P is
proportional to ~E

~P = ε0χe ~E . (2.2)

The dimensionless factor χe denotes the electric susceptibility χe (in the vacuum χe = 1). In general
χe is a 3D-tensor.

With this polarisation the electric flux density can be defined as

~D := ε0 ~E + ~P . (2.3)

3
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In case of a linear and isotropic dielectric material this relation can be simplified as

~D := εrε0 ~E , (2.4)

containing the relative permittivity εr as a scalar and dimensionless quantity.

In analogy to the relation between ~E and ~D, there is a relation between the magnetic field strength ~H
and the magnetic flux density ~B := µrµ0 ~H, including a material dependent, dimensionless tensor µr.
In case of magnetic isotropy µr collapses to a scalar quantity.

With these definitions, Maxwell’s equations in matter can be written as

∇ · ~D = ρfree ,

∇ · ~B = 0 ,
∇× ~E + ∂t ~B = 0 ,
∇× ~H − ∂t ~D = ~jfree ,

(2.5)

including the free electric charges1 ρfree and free electric currents ~jfree.

2.1.2. Wave equation and refractive index

Before setting up the wave equations, some assumptions have to be made: the medium is isotropic and
has no free charges or free currents (ρfree = 0; ~jfree = 0 ). With these assumptions, the wave equations
for ~E and ~H can be derived form Eq. (2.5) as

(
εrµr ε0µ0 ∂

2
t −4

)
~E = 0 ,(

εrµr ε0µ0 ∂
2
t −4

)
~H = 0 .

(2.6)

These two equations can be solved independently, and for isotropic media, the vectorial character can
be neglected. We also identify the vacuum speed of light in Eq. (2.6) as c = 1√

ε0µ0
. This gives us the

following, scalar wave equation2 (d’Alembert equation)

(
εrµr

1
c2∂

2
t −4

)
Ψ(~x, t) = 0 . (2.7)

For monochromatic waves applies
ω2

v2 − ~k
2
ω = 0 , (2.8)

where v = c√
εrµr

denotes the phase velocity, ω the angular frequency and the wave vector ~kω. In this
case Eq. (2.7) can be solved by

ψω(~x) = |ψω|e−iωt−
~kω~x . (2.9)

When looking at electromagnetic waves in media, it is useful to introduce the refractive index n as the
ratio between the vacuum speed of light to the phase velocity v in the medium:

n := c

v
. (2.10)

1Free electric charge means moveable over macroscopic distances.
2Ψ can stand for E or H, we consider the E field only.
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In general, n is a function of angular frequency ω of the monochromatic light wave described by Eq.
(2.9). When ∂ωn(ω) 6= 0 we call the medium dispersive. For example, the fact that glass is a dispersive
medium is easily demonstrated by simple white light being broken by a prism into its constituent
spectral components. This effect is called dispersion. While n is greater than one for visible light for a
large variety of media. In the x-ray regime3 (5 − 30keV) it is usually smaller than one but remains
close to unity. Therefore, it is convenient to parametrise n as follows for x-rays

n = 1− δ + iβ . (2.11)

The imaginary part of n, quantified by β, is used to describe the absorption of the medium. Its function
will become clear in Section 2.2.1. For energies around 10keV, δ is usually of the order of 10−5. For
example δ and β as well as the relation δ

β of water as a function of energy is given in Figure 1.1.

2.1.3. Helmholtz equation

It is possible to factor out the time dependent part of Ψ from Eq. (2.7) to build a superposition of
monochromatic waves as

Ψ(~x, t) =
∫ ∞

0
ψω(~x) · e−iωtdω . (2.12)

We can now look at each frequency separately, and, by substituting Eq. (2.12) in Eq. (2.7), this yields
the Helmholtz equation as (

4+ n2K2
)
ψ = 0 , (2.13)

where the vacuum wave number K is defined as K = ω
c = | ~K| = 2π

λ with the wave length λ.

When substituting4 n =
√

1 + χ(~x) we obtain(
4+ (1 + χ(~x))K2

)
ψ = 0 . (2.14)

To solve this homogeneous and linear differential equation we first consider the vacuum case (χ = 0),
called the free Helmholtz equation

(4+K2)ψ0 = 0 (2.15)

and the associated Green’s function

(4+K2)G0(~x− ~x′) = δ(3)(~x− ~x′) . (2.16)

When ψ0 and G0 are known, a formal solution for ψ can be generated as follows5

ψ(~x) = ψ0(~x)−K2
∫
χ(~x′)G0(~x− ~x′)ψ(~x′)d3x′ . (2.17)

3The hardness of a x-ray beam is usually quantified by the energy of the light quanta (photons) it contains with E = hc
λ
,

where λ is the wave length and h the Planck constant.
4Note that χ(~x) is used to parameterize n and is not equal to χe in Eq. (2.2)
5Proof by substitution of Eq.(2.17) into Eq.(2.14): (4+K2)ψ(~x) = 0−K2 ∫ δ(~x− ~x′)χ(~x′)ψ(~x′)d3x′ = −K2χ(~x)ψ(~x).
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2.1.4. Kirchhoff-Helmholtz integral theorem
Because it is useful for an eventual reduction of the Helmholtz to Fresnel theory we consider an integral
theorem which is based on the free Helmholtz equation (2.15). In general, for two scalar functions g(~x)
and f(~x) one has

∇(g∇f) = g4f + (∇g) · (∇f)⇒ ∇(g∇f − f∇g) = g4f − f4g . (2.18)

Using Stokes’ theorem6 we obtain∫
Ω

(g4f − f4g)d3x =
∫
∂Ω

(
g
∂f

∂n̂
− f ∂g

∂n̂

)
dS , (2.19)

where ∂n̂ denotes the derivative normal to the surface ∂Ω given by ∂n̂ = n̂ ·∇. This equation is Green’s
second vector identity and can be applied to the Green’s function, g = G0(~x− ~x′), and the free-space
solution of the Helmholtz equation, f = ψ0(~x′), from Eq. (2.15) and Eq. (2.16). Therefore, Eq.(2.19)
becomes ∫

∂Ω
(G0∂n̂′ψ0 − ψ0∂n̂′G0) dS′ =

∫
Ω

(G04ψ0 − ψ04G0) d3x′ . (2.20)

The term on the right hand side can be modified with a little trick: We add zero in terms of
G0Kψ0 − ψ0KG0 = 0 and obtain∫

Ω

(
G0(4+K2)ψ0 − ψ0(4+K2)G0

)
d3x′ = −

∫
Ω
δ(3)(~x− ~x′)ψ0(~x′)d3x′ = −ψ0(~x), ~x εΩ . (2.21)

By integrating the right hand side, we receive the "Kirchhoff-Helmholtz integral theorem"[10]:∫
∂Ω

(
G0(~x− ~x′)∂n̂′ψ0(~x′)− ψ0(~x′)∂n̂′G0(~x− ~x′)

)
dS′ = −ψ0(~x), ∀ ~x ε Ω . (2.22)

This theorem states that the wave function ψ0 inside of Ω is determined by its values and its derivatives
on the boundary ∂Ω as well as by the Green’s function G0.

2.1.5. Rayleigh - Sommerfeld diffraction integral
A Green’s function can be constructed in such a way that either the minuend or the subtrahend in
Eq. (2.22) (left-hand side) becomes zero. Consider the half-space z > 0 and a boundary at z = 0.
Furthermore, we enforce G0,D(z = 0 or z′ = 0, ~x⊥ − ~x′⊥) = 0 (first case, Dirichlet boundary condition)7.
The Green’s function can be constructed as follows:

G0,D(z, z′, ~x⊥ − ~x′⊥) = G0(z − z′, ~x⊥ − ~x′⊥)−G0(z + z′, ~x⊥ − ~x′⊥) . (2.23)

With this the minuend in Eq. (2.22) is zero:

ψ0(z > 0, ~x⊥) =
∫
ψ0(~x′⊥, z′ = 0)∂z′G0,D(z, z′ = 0, ~x⊥ − ~x′⊥)d2x′⊥ . (2.24)

We call this equation the "Rayleigh - Sommerfeld integral of the first kind".

Alternatively, the Green’s function can be constructed such that the subtrahend in Eq.(2.22) is zero
(Neumann boundary condition), ∂zG0,N(z = 0 or z′ = 0, ~x⊥ − ~x′⊥) = 0:

G0,N(z, z′, ~x⊥ − ~x′⊥) = G0(z − z′, ~x⊥ − ~x′⊥) +G0(z + z′, ~x⊥ − ~x′⊥) . (2.25)

As a consequence, we obtain the "Rayleigh - Sommerfeld integral of the second kind":

ψ0(z > 0, ~x⊥) = −
∫
G0,N(z, z′ = 0, ~x⊥ − ~x′⊥)∂z′ψ0(~x′⊥, z′ = 0)d2x′⊥ . (2.26)

6∫
Ω∇fdV =

∫
∂Ω fd

~A where
∫
∂Ω d

~S is the integral over the boundary of some orientable manifold Ω, with d~S = n̂dS, n̂
denotes the normal to this boundary, and

∫
Ω∇dV of the integral over Ω. Stokes theorem is proven in [9] p.34, ff.

7We split ~x into its z-component and the component perpendicular to z: ~x = ~x⊥ + zêz.
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2.1.6. Green’s function of Helmholtz theory in Weyl representation

Here, we introduce a useful representation of the Green’s function, which can be written in term of its
3D Fourier transform as

G0(~x) = 1
(2π)2

∫
G̃K0 (~k)ei~k~xd3k . (2.27)

This is done because Eq. (2.16) reads in Fourier space as(
−~k2 +K2

)
G̃K0 (~k)− 1 = 0⇒ G̃K0 (~k) = 1

K2 − ~k2
. (2.28)

We split ~k = ~k⊥ + kzêkz in its components, and substitute Eq. (2.28) into Eq. (2.27),

G0(~x) = − 1
(2π)2

∫
ei
~k⊥~x⊥

∫
eikz ·z

~k2
⊥ + k2

z −K2
dkzd

2dk⊥ . (2.29)

The inner integral (
∫
[...]dkz) can be carried out8, and the Weyl representation of the Green’s function

Eq. (2.16) appears as follows

G0(~x) = − i

8π2

∫
ei
~k⊥~x⊥ei

√
K2−~k2

⊥z√
K2 − ~k2

⊥

dk⊥ . (2.30)

2.1.7. Helmholtz and Fresnel propagator

The Green’s function in Weyl representation (Eq. (2.30)) can be substituted into the Rayleigh-
Sommerfeld integral of the first kind, Eq. (2.24):

ψ0(~x⊥, z > 0) =
∫
ψ0(~x′⊥, z′ = 0) ∂z′G0,D(z, z′ = 0, ~x⊥ − ~x′⊥)d2x′⊥

=
∫
ψ0(~x′⊥, z′ = 0) ∂z′

(
G0(z − z′, ~x⊥ − ~x′⊥)−G0(z + z′, ~x⊥ − ~x′⊥)

) ∣∣∣∣
z′=0

d2x′⊥

= − i

8π2

∫
ψ0(~x′⊥, z′ = 0)

∫
ei
~k⊥(~x⊥−~x′⊥)√
K2 − ~k2

⊥

×

∂z′

(
ei
√
K2−~k2

⊥ze−i
√
K2−~k2

⊥z
′ − ei

√
K2−~k2

⊥zei
√
K2−~k2

⊥z
′
) ∣∣∣∣

z′=0
d2k⊥d

2x′⊥

= 1
4π2

∫
ψ0(~x′⊥, z′ = 0)

∫
ei
~k⊥(~x⊥−~x′⊥)ei

√
K2−~k2

⊥zd2k⊥d
2x′⊥ .

(2.31)

This describes how a given wave field ψ0(~x⊥, z = 0) changes (by self-interference) after propagating
across a distance z. We can now identify the Helmholtz propagator P k as the inner integral:

PK(z, ~x⊥ − ~x′⊥) = 1
4π2

∫
ei
~k⊥(~x⊥−~x′⊥)ei

√
K2−~k2

⊥zd2k⊥ . (2.32)

Using this, we can describe the propagation by calculating the 2D-convolution as

ψ0(~x⊥, z > 0) =
∫
ψ0(~x′⊥, z = 0) · PK(z, ~x⊥ − ~x′⊥)d2x⊥ =: ψ0(~x⊥, z = 0) ∗ PK(z, ~x⊥) . (2.33)

The propagator PK also tells us something about the resolution in the far field. For k2
⊥ > K2 the

exponent in ei
√
K2−~k2

⊥z becomes real and negative. Thus perpendicular wave components, which are
smaller than the wave length of the incident wave, will be suppressed in the far field. This limits
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kz

k?

k

µ

Figure 2.1.: Small-angle approximation in Fourier space kz � |~k⊥| ⇔ θ � 1, this implies that fast
oscillations of ~k⊥ are neglected. |~k| ≈ K because |~k| > K is suppressed in far-field. The optical axis is
the z axis.

resolution in the far field of compareable order of the wave length. For example, for x-rays the wave
length is in the magnitude of 1 Ångström (λ(10keV) ≈ 1.24Å).

In the following, we make the assumption that incident x-rays are propagating as plane waves along
the z-direction. This means that kz � |~k⊥|, as illustrated in Figure 2.1. We can now approximate kz

by truncating the expansion of the square root
√
~k2 − ~k2

⊥ at quadratic order in k⊥

kz =
√
~k2 − ~k2

⊥ ≈ |~k|
(

1− k2
⊥

2k2

)
. (2.34)

This motivates to factor out the unscattered propagation in z-direction:

ψ(~x) = ψ̃(~x)eiKz . (2.35)

ψ̃ now represents the scattered part of the wave. Eq. (2.35) can be substituted into Eq. (2.13). Also
the Laplacian can be separated into a perpendicular and parallel to z-part component 4 = 4⊥ + ∂2

z .
Thus, we obtain (

4⊥ +K2(n2 − 1) + 2iK∂z + ∂2
z

)
ψ̃(~x) = 0 . (2.36)

If the transverse variation of ψ̃ is much greater than the longitudinal variation, then the second
derivative ∂2

z ψ̃ can be neglected. In this case, the wave is called beam like, and we obtain the Fresnel
equation as (

4⊥ +K2(n2 − 1) + 2iK∂z
)
ψ̃(~x) = 0 . (2.37)

This equation can be interpreted as a (2+1)dimensional Schrödinger equation with the z component as
time t, −K2(n2 − 1) as the potential V , 1→ ~2

2m and 2iK = i~. Indeed, with these substitutions we
obtain (

− ~
2m4⊥ + V

)
ψ = i~∂tψ . (2.38)

The time evolution, known from quantum mechanics, can therefore thought of as a z-evolution in
Fresnel theory.

8This is done by using Cauchy’s residue theorem
(∮

γ
f(z)dz = 2πi

∑
k
Res(f, ak)

)
, because there are two poles on the

kz axis. Here we choose to include the pole at k2
z = K2 − ~k2

⊥ and restrict the Green’s function to waves with positive
phase velocity in z direction.
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After this little excursion, we go back to the Helmholtz propagator and apply the paraxial approximation
(K � k⊥). To do this we perform the following expansion

ei
√
K2−k2

⊥z ≈ eiKze−i
k2
⊥

2K z , (2.39)

compare with Eq. (2.34). This can be substituted into Eq. (2.32):

P̄K(z, ~x⊥ − ~x′⊥) = 1
4π2 e

iKz
∫
ei
~k⊥(~x⊥−~x′⊥)e−i

k2
⊥

2K zd2k⊥ . (2.40)

Performing the 2D Fourier transform of the Gaussian in Eq. (2.40), we obtain an expression for the
Fresnel propagator P̄K as

P̄K(z, ~x⊥ − ~x′⊥) = − iK2πz e
iKzei

K
2z (~x⊥−~x′⊥)2

. (2.41)

This propagator can be used, the same way as the Helmholtz propagator, by convolution with the wave
function but now in 2D.
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2.2. Guigay’s relation

This section contains the basic principles of phase-contrast imaging as well as the fundamentals of
phase retrieval. Also a short introduction into tomographic reconstruction will be given.

2.2.1. Projection approximation

We neglect scattering under large angles. Usually, this is a good approximation for thin objects without
any long range order (which excludes crystals). When we have a look at the Fresnel equation, this
approximation means that the perpendicular Laplacian can be neglected (4⊥ → 0). Eq.( 2.37) then
becomes (

2iK∂z +K2(n2 − 1)
)
ψ(~r) = 0 . (2.42)

Looking at the refractive index n = 1− δ + iβ, we impose the restriction that n deviates very little
from unity (δ2 + β2 � 1). Thus, we can approximate: n2 ≈ 1− 2δ + 2iβ. Substituting this into Eq.
(2.42) and dividing by 2K we receive

(i∂z +K(δ − iβ))ψ(~x⊥, z) = 0 . (2.43)

This ordinary differential equation is solved by simple integration. We set the integration boundaries,
specifying the thickness of the projected object, as [−a, 0]. This yields

ψ(~x⊥, z = 0) = ψ(~x⊥, z = −a)e−ik
∫ 0
−a(δ(~x⊥,z′)−iβ(~x⊥,z′))dz′

= ψ(~x⊥)eiφ(~x⊥)−B(~x⊥) .
(2.44)

Here the intensity contrast at z = 0 is determined by B(~x⊥) and the phase-shift by φ(~x⊥), as the
projection of the refractive index n parallel to the z-axis. In what follows, φ(~x⊥, z = 0) is referred to as
"phase-map".

2.2.2. Tomographic reconstruction

In the previous section we have described the projection through an sample characterized by µ(~x). Here
we consider a more general representation µ(x, y, z) which induce intensity contrast, phase contrast
or any projectable quantity. For the reconstruction we need a stack of projection data, which can
be, for example, obtained by rotating the sample between the projections. Here we set x, y and z as
coordinates of the samples reference system. We are projecting though the x-y plane, and we will treat
it as an 2D problem (µ(x, y)). Resolving in z could be obtained by either moving the sample or the
projecting parallel beam along z but this is not part of the discussion in this section. An illustration of
a possible setting is given in Figure 2.2. We can define the projection under a certain angle as transition
from the coordinate system (x, y) to a new system (θ, s). Therefore it is convenient to consider a fixed
angel θ and realize the coordinate transformation (x, y)→ (r′, s) as

x(r′) = r′ cos θ + s sin θ ,
y(r′) = r′ sin θ − s cos θ .

(2.45)

With this parametrisation the transformation can be formulated as

Pθ(s) =
∫
µ
(
r′ cos θ + s sin θ, r′sinθ − s cos θ

)
dr′ , (2.46)

which, in turn, is expressible as

Pθ(s) =
∫ ∫

µ(x, y)δ(s− x sin θ + y cos θ)dxdy . (2.47)
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Figure 2.2.: Illustration of a projection through a sample under a certain angle θ. Such a projection
is a transformation from µ(x, y) to P (θ, s), which is called Radon transform of µ(x, y).

We want to prove the equality of Eq.(2.46) and Eq. (2.47) by looking at the case θ = 0 at first

Pθ=0(s) =
∫ ∫

µ(x, y)δ(s+ y)dxdy =
∫
µ(x,−s)dx , (2.48)

which is Eq. (2.46) with θ = 0. We can restore the case of arbitrary θ by rotating the reference frame by
θ′ = −θ. This yields after transformation (rotation with x = x′ cos θ′ − y sin θ′; y = x′ sin θ′ + y′ cos θ′)
and simplification

Pθ(s) =
∫
µ
(
x′ cos θ + s sin θ, x′sinθ − s cos θ

)
dx′ . (2.49)

We can see that Eq. (2.49) is equivalent to Eq. (2.46), and therefore the equality of Eq.(2.46) and
Eq.(2.47) is proven. These both equations are representations of the so called Radon transform [4].

For the inversion of this transform we require the following relation (known as projection-slice theorem):

F(2)[µ(x, y)]
(
~ξ
)

= F(1)[Pθ(s)] (ξθ) . (2.50)

We use F(1)[f(x)](ξ) to denote a 1D Fourier transform and respectively F(2)[f(~x)](~ξ) to denote a 2D

Fourier transform. Note also the equality ~ξ =
(

ξθ sin θ
−ξθ cos θ

)
in Eq. (2.50).

To prove Eq . (2.50) we start with the 1D Fourier transform:

F(1)[Pθ(s)] (ξθ) =
∫
e−2πisξθ

∫ ∫
µ(x, y)δ(s− x sin θ + y cos θ)dxdyds . (2.51)

The delta-distribution can be replaced by δ(x− y) =
∫
e2πia(x−y)da. Therefore, we have

F(1)[Pθ(s)] (ξθ) =
∫
e−2πisξθ

∫ ∫
µ(x, y)

∫
e2πia(s−x sin θ+y cos θ)dadxdyds . (2.52)

This can be recast in term of a new delta distribution by performing the integration over s

F(1)[Pθ(s)] (ξθ) =
∫ ∫ ∫

µ(x, y)δ(a− ξθ)e2πi(−ax sin θ+ay cos θ)dadxdy . (2.53)
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Figure 2.3.: Illustration of a setting for Guigay’s relation.

Upon integrating over a and substituting
(

ξθ sin θ
−ξθ cos θ

)
=
(
ξx

ξy

)
= ~ξ⊥ we obtain

F(1)[Pθ(s)] (ξθ) =
∫ ∫

µ(x, y)
∫
e−2πi(xξx+yξy)dxdy = F(2)[µ(x, y)]

(
~ξ
)
, (2.54)

which proves Eq.(2.50).

To carry out the reconstruction, we perform the inverse Fourier transform in polar coordinates. Here
we use the fact that Pθ(s) = Pθ+π(−s) is symmetric, so only projections with 0 6 θ 6 π are needed.
We obtain

µ(x, y) =
∫ π

0

∫ ∞
−∞
|~ξ|F(1)[Pθ(s)] (ξθ) e2πiξθ(x sin θ−y cos θ)dsdθ . (2.55)

This is the Filtered Back Projection (FBP) with the ramp-filter |~ξ| ≡ |ξθ| identified as the Jacobian of
the transition to polar coordinates.
The resolution of µ(x, y) is restricted by the number of projections, this is the number of angular steps
one has taken to scan the range [0, π]. We state without proof, that for a resolution of N ×N pixels in
the field of view a minimum of π2N projections is required.

2.2.3. Statement and proof of Guigays relation

When it comes to phase retrieval we have to face the fact that detectors only detect intensity, a direct
measurement of the phase is not possible because of too rapid oscillations (ω ≈ 1018Hz). When the
wave propagates, after passing the sample, it interferes with itself, and thus the intensity contribution
changes in dependence of distance to the detector. Guigay discovered in [11] an important relation
between the wave field ψ0 at the exit wave plane (after the projection towards z = 0) and the intensity
at the detector plane (Iz)

F(2) [Iz]
(
~ξ
)

=
∫
ψ0

(
~x⊥ −

πz

K
~ξ

)
ψ∗0

(
~x⊥ + πz

K
~ξ

)
e−2πi~ξ~x⊥d2~x⊥ . (2.56)

Eq. (2.56) is extremely important for our further treatment of diffraction physics. We refer to it as
Guigay’s relation. An illustration of a setting for this relation is given in Figure 2.3.
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To prove this we start with

F(2) [Iz]
(
~ξ
)

=
∫
e−2πiξ ~x′⊥

(∫
p̄K(z, ~x′⊥ − ~y⊥)ψ0(z = 0, ~y⊥) d2y⊥

)
×(∫

p̄K∗(z, ~x′⊥ − ~ω⊥)ψ∗0(z = 0, ~ω⊥) d2ω⊥

)
d2x′⊥ ,

(2.57)

with the Fourier transformed intensity at z as F(2) [Iz]
(
~ξ
)

= F(2) [ψ0(z, ~x′⊥)ψ∗0(z, ~x′⊥)]
(
~ξ
)
and the wave

function ψ0(z, ~x′⊥) = p̄k ∗ ψ0(~x′⊥, z = 0) propagated by the Fresnel propagator (see Eq. (3.54)).

Both propagators can be combined, and Eq. (2.57) is thus converted into

F(2) [Iz]
(
~ξ
)

=
(

K

−2πz

)2 ∫ ∫ ∫
e2πi~ξ~x′⊥×

e
iK
2z (2~x′⊥(~ω⊥−~y⊥)2+(~y⊥+~ω⊥)(~y⊥−~ω⊥))ψ0ψ

∗
0d

2y⊥d
2ω⊥d

2x′⊥ .

(2.58)

Performing the integration over d2x′⊥, we arrive at the delta-distribution9

∫
e2πi~x′⊥(−~ξ+ K

2πz (~ω⊥−~y⊥))d2x′⊥ = δ(2)
(
−~ξ + K

2πz (~ω⊥ − ~y⊥)
)

=
(
K

2πz

)2
δ(2)

(
~ω⊥ − ~y⊥ −

2πz
K

~ξ

)
.

(2.59)

With this delta-distribution the integrals over ~ω⊥ and ~y⊥ are trivial, and Eq. (2.58) becomes

F(2) [Iz]
(
~ξ
)

=
∫
e2πi~ξ(~ω⊥+πz

x
~ξ)ψ0

(
~ω⊥ −

2πz
K

~ξ

)
ψ∗0 (~ω⊥) d2ω⊥ . (2.60)

Because we are performing this integration over all ~ω⊥ we can shift our integration variable as

~ω⊥ → ~ω⊥ + πz

x
~ξ =: ~x⊥ . (2.61)

In a real experiment there is no infinite field of view. Thus we have to assure that the sample is much
smaller than the field of view.

With this shift we finish the proof and obtain Eq. (2.56)

F(2) [Iz]
(
~ξ
)

=
∫
ψ0 (~x⊥,−)ψ∗0 (~x⊥,+) e−2πi~ξ~x⊥d2~x⊥ , (2.62)

with the shorthand notation ~x⊥,± = ~x⊥ ± πz
K
~ξ.

9The relation δ(n)(ax) = 1
an δ

(n)(x) is used.
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2.2.4. Linear model and phase retrieval

We consider pure-phase objects, so that by the projection through the sample no intensity is lost
(B(~x⊥)) = 0). The whole information of the projection is given by phase map φ(~x⊥), which we would
like to retrieve.
For pure-phase objects the wave function can be written as

ψ0(z = 0, ~x⊥) =
√
I0e

iφ(~x⊥) . (2.63)

Thus Eq. (2.62) becomes (with φ± = φ(~x⊥,±))

F(2) [Iz]
(
~ξ
)

=
∫
I0e

iφ−e−iφ+e−2πi~ξ~x⊥d2~x⊥ . (2.64)

This can not be solved analytically because in Fourier-space we encounter infinite many convolutions
between φ+ and φ−. Before we continue, we introduce a scale factor S > 0 adjusting the strength of
phase variations

eiφ(~x⊥) → eiSφ(~x⊥) . (2.65)

Let us first consider small S only, such that the according expansion in S can be truncated at linear
order

eiSφ−e−iSφ+ = 1 + S(φ− − φ+) +O(S2) . (2.66)

With this linear approximation Eq. (2.62) becomes

F(2) [Iz]
(
~ξ
)

= I0S

(
δ(2)

(
~ξ
)

+
∫
iφ (~x⊥,−) e−2πi~ξ~x⊥d2x⊥ −

∫
iφ (~x⊥,+) e−2πi~ξ~x⊥d2x⊥

)
. (2.67)

We define the intensity contrast at z as gz = Iz−I0
I0

and, hereafter, we also define the shorthand notation

Fgz := F(2) [gz]
(
~ξ
)
,

Fφ := F(2) [φ]
(
~ξ
)
.

(2.68)

In the remaining integrations the integration variables can be separated into ~x′⊥,± = ~x⊥ ± πz
K
~ξ for φ±.

Eq. (2.67) becomes
Fgz = S

∫ ∞
−∞

iφ(~x′⊥,−)e−2πi~ξ~x′⊥,−e−2πiπz
K
ξ2
d2x′⊥,−

− S
∫ ∞
−∞

iφ(~x′⊥,+)e−2πi~ξ~x′⊥,+e+2πiπz
K
ξ2
d2x′⊥,+ .

(2.69)

Defining the dimensionless quantity σ := 2π2z
K

~ξ2, we thus obtain

Fgz = SFφ · 2 sin σ , (2.70)

or
SFφ = Fgz

2 sin σ . (2.71)

In Fourier space, this yields phase map in the exit-plane in term of the intensity contrast at the detector
plane. Eq. (2.70) is a representation of the so called Contrast Transfer Function (CTF) [12], [13] and
solving this for Fφ (Eq.(2.71)) is known as the CTF approach to phase retrieval. It is a "linear model"
due to the linearisation in Eq. (2.66). This method requires Fgz to be exactly zero when sin σ = 0
otherwise poles arises in Fφ and therefore artifacts in φ(~x⊥) [14]. One possible approach to get rid of
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Figure 2.4.: Onion-shell expansion: n, j are the summation variables of the non linearity expansion
(Eq. (2.75)) and l, k of the non locality expansion (Eq. (2.79)). Every point stands for one summand
in Eq. (2.75). The points in the "shells" are summarized in Ccos,l and Csin,l, the points in the circles in
Ccen,l, see Eq. (2.81)

this problem is to simplify our relation even more and consider only small σ and/or small propagation
distances and therefore linearize in σ. We obtain the Transport of Intensity Equation (TIE)10 as

SFφ = Fgz
2σ . (2.72)

It should be mentioned that TIE approach phase retrieval is effectively a low pass filter for spatial fre-
quencies in our phase-map, and therefore reduces the resolution when using larger propagation distances.

For further discussion of phase contrast, we will make use of the concept of a diffractogram. We define
the diffractogram as the angular averaged Fgz as a function of σ

Fgz(σ) = 1
2π

∫ 2π

0
Fgz

~ξ =

√
σ
K

2π2z

(
cosϕ
sinϕ

) dϕ . (2.73)

2.2.5. Non-locality expansion: Onion shells
To determine under which condition the linear model (CTF) or even the TIE approach is sufficient we
need to estimate the influence of non-linear and non-local effects on diffractograms. Therefore, we will
again expand ψ in powers of S, but this time we do not truncate the expansion

eiSφ−e−iSφ+ =
∞∑
n=0

(iS)n

n! (φ− − φ+)n . (2.74)

Using the binomial theorem11, we have

eiSφ−e−iSφ+ =
∞∑
n=0

(iS)n

n!

n∑
j=0

(−1)jn!
(n− j)!j!φ

n−j
− φj+ . (2.75)

This is a non-linearity expansion including all powers of S. Also, we have non-local terms (φa+φb− | a, b 6=
0) in these sums, which leads to 2D convolutions12 when performing the Fourier transform of Eq. (2.62)
10Other approaches to deduce TIE can be found in [15] and [16].
11Binomial Theorem: (a+ b)n =

∑n

j=0
n!

(n−j)!j!a
n−jbj .

12See Fourier convolution theorem: F[f · g] = F[f ] ∗ F[g].
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separately for φ+ and φ−.

We can rearrange Eq. (2.75), separating the local terms and the non-local terms. To do this we
rearrange summands as illustrated in Figure 2.4, so we have a systematic expansion in powers of the
bilocal product φ−φ+.

The summands can be sorted in three categories:

• The central term with n = j:

Ccen,l = S2l 1
(l!)2 (φ−φ+)l(1− δ0,l) , (2.76)

• the sine like term with n odd:

Csin,l = iS2l(φ−φ+)l
∞∑
k=l

(−1)k+lS2(k−l)+1

(2k + 1− l)!l!
(
φ

2(k−l)+1
− − φ2(k−l)+1

+

)
, (2.77)

• and the cosine like term with n even:

Ccos,l = S2l(φ−φ+)l
∞∑

k=l+1

(−1)k+lS2(k−l)

(2k − l)!l!
(
φ

2(k−l)
− + φ

2(k−l)
+

)
. (2.78)

Thus, Eq. (2.75) equals

eiSφ−e−iSφ+ =
∞∑
l=0

(Ccen,l + Csin,l + Ccos,l) . (2.79)

These parts can be Fourier transformed separately, and we can express Eq. (2.62) as

Fgz =
∞∑
l=0

(F [Ccen,l] + F [Csin,l] + F [Ccos,l]) =:
∞∑
l=0

Fgz,l (2.80)

with

F [Ccen,l] = S2l 1
(l!)2 (1− δ0,l)F

[
(φ−φ+)l

]
,

F [Csin,l] = 2S2lF
[
(φ−φ+)l

]
∗
(

sin σ
∞∑
k=l

(−1k+l)S2(k−l)+1

(2k + 1− l)!l! F
[
φ2(k−l)+1

])
,

F [Ccos,l] = 2S2lF
[
(φ−φ+)l

]
∗

cosσ
∞∑

k=l+1

(−1k+l)S2(k−l)

(2k − l)!l! F
[
φ2(k−l)

] .

(2.81)

Here ∗ denotes 2D-convolution. Because of the shape of this expansion in n, j-"space", as given in
Figure 2.4, we call this expansion "onion-shell expansion" [17] and refer to Fgz,l as the lth onion shell.
In case of φ being a sufficiently localized function, the 0th onion shell dominates all higher shells we
then obtain

Fgz,0 = 2 cosσ
∞∑
k=1

(−1)kS2k

(2k)! F
[
φ2k

]
+ 2 sin σ

∞∑
k=0

(−1)kS2k+1

(2k + 1)! F
[
φ2k+1

]
. (2.82)

This local case is relevant for a very small support in the phase-map and a large propagation distance
z. Examples for this case are given in Section 3.1.2.



3. Scaling behavior of the diffractogram

In Section 2.2.4, we derived an approximation to phase retrieval, the so called "linear model". However,
this method was derived under the assumption of small phase variations, which justifies a truncation of
the diffractogram’s expansion in powers of S at linear order. This chapter investigates effects induced
by scaling the phase-map, and we perform a specialized study under which condition linear scaling can
be assumed.

3.1. Single scale objects with broad spectrum (SOBS)

To systematically study the influence of non-linear and non-local contributions to the diffractogram we
start with very simple phase maps. We will use "single scale objects with a broad spectrum (SOBS)" as
phase maps, which are isotropic (rotationally invariant) and contain only one spacial degree of freedom
(scale). Examples of SOBS are the circular disk (with the radius as scale) or the 2D-Gaussian, which
we will mainly use.
All numerical evaluations in this Chapter suffers an insignificant uncertainty, whose extend is estimated
in the Appendix A.1.

3.1.1. Onion shell expansion for Gaussian phase-map

To discuss the case of a 2D-Gaussian we can perform, the full onion-shell expansion as derived in
Section 2.2.5. The phase-map is defined to be

φ(~x⊥) = Se−
~x2
⊥

2ω . (3.1)

Where 0 ≤ S is a scaling factor do determine the strength of phase variation.
The onion-shell expansion for this phase-map is performed by inserting φ into Eq. (2.76), Eq. (2.77)
and Eq. (2.78), and executing the 2D-Fourier transform:

F [Ccen,l] = 1
(l!)2

ωπ

l
S2le−

πλzl
2ω

~ξ2
e−

π2ω
l
~ξ2 (1− δl,0) ,

F [Csin,l] = 4πω
2k + 1

∞∑
k=l

(−1)k+l

(2k + 1− l)!l!S
2k+1e

−λ
2z2(4kl+2l−2l2)

4ω(2k+1)
~ξ2
e−

2π2ω
2k+1

~ξ2
sin
(
πλzω(2k − 2l + 1)

2k + 1
~ξ2
)
,

F [Ccos,l] = 4πω
2k

∞∑
k=l+1

(−1)k+l

(2k − l)!l!S
2ke−

λ2z2(2kl−l2)
4ωk

~ξ2
e−
−π2ω
k

~ξ2 cos
(
πλz(k − l)

k
~ξ2
)
.

(3.2)

17
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A dimensionless representation can be obtained by appealing to σ = πλz~ξ2 (as already introduced in
Section 2.2.4) and introducing the Fresnel number as Fω = ω

λz . Upon performing these substitutions,
Eq. (3.2) becomes

F [Ccen,l] = 1
(l)2

πω

l
S2le−σ(

l
2ω+πFω

l ) (1− δl,0) ,

F [Csin,l] =
∞∑
k=l

4πω
2k + 1

(−1)l+k

(2k − l + 1)!l!S
2k+1e

−σ
(

2πFω
2k+1 + 2kl−l2+l

2πFω(2k+1)

)
sin
(2k − 2l + 1

2k + 1 σ

)
,

F [Ccos,l] =
∞∑

k=l+1

4πω
2k

(−1)l+k

(2k − l)!l!S
2ke
−σ
(
πFω
k

+ 2kl−l2
4πFωk

)
cos

(
k − l
k

σ

)
.

(3.3)

Although, this is an exact expansion it contains infinite series in powers of S for each onion-shell, which
need to be truncated in numerical evaluations. To get stable results within each onion-shell one can
consider the case Fω = 0 where the summation can be performed exactly. For finite Fω correction terms
can be included. Exemplary, this is done for the zeroth onion shell (l = 0). The following relations are
used ∞∑

k=k

S2k+1(−1)k

2k + 1 =
∫ S

0

sin t
t
dt =: SI(S) ,

∞∑
k=1

S2k(−1)k

2k(2k)! =
∫ S

0

cos t− 1
t

dt =: CI(S) .
(3.4)

We call SI the sine integral and CI the cosine integral1. With these relations the zeroth onion shell
can be approximated as

F [Cl=0]
4πω ≈ sin σ

SI(S) +
c∑

k=0

S2k+1

2k + 1

(−1)k
(
e−σ

2πFω
2k+1 − 1

)
(2k + 1)!


+ cosσ

CI(S) +
c∑

k=1

S2k

2k
(−1)k

(
e−σ

2πFω
2k − 1

)
(2k)!

 .

(3.5)

The integer c determines the precision. This and the expressions for the first nine onion-shells of a
Gaussian phase-map have already been published in [19]. An example diffractogram is given in Fig.
3.1. This example motivates the importance to have a closer look at the scaling behavior, because the
assumed scaling linearity in the linear model is definitely not strictly valid. Clear indications are the
different positions of the zero points for different S. A more detailed representation of Gaussian SOBS
scaling behavior is given in Section 3.1.4.

In case of locality, valid for negligible bilocality, the zeroth onion-shell is a good approximation. To
specify this case, we demand that φ−φ+

S2 � e−2 , and obtain the condition

8Fω �
σ

π
. (3.6)

A second condition for good locality is, that in Eq. (3.5) the absolute value of the exponent for k = 0
is much smaller than unity[17]. Both conditions combined state

8Fω �
σ

π
� 1

2π2Fω
. (3.7)

1Notice that in the literature, the cosine integral is defined slightly differently, see [18] p.54.
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Figure 3.1.: Diffractograms for phase-map φ(~x⊥) = Se−
~x2

⊥
2ω with Fω = 0.01 and scaling factors

S = {0.5, 1, 1.5}. Note the shift of the zeros in dependence of S.

Figure 3.2.: Low frequency region of normalized diffractogram Fgz of a Gaussian phase-map. (a): Fgz
for Fω = 0.001 (solid, overcritical) and Fω = 0.03 (dashed, subcritical) at S = 1. Note the additional
zero σ∗ in the overcritical case. (b): S dependence of σs = σ∗(S) at Fω = 0 (solid) and σ∗(S) at
Fω = 0.02 (dashed).

Therefore, in far-field limit Fω → 0 the zeroth onion-shell becomes exact for all σ > 0. The case σ = 0
violates the condition in Eq. (3.6) and therefore can not be represented by the zeroth onion shell.
However, we know that Fgz(σ = 0) = 0 is valid for all phase-maps, because of energy conservation in
free space propagation.

For the far-field limit Fω → 0, the zeroth onion-shell is exact for σ > 0 and reads

lim
Fω→0

Fgz,0(σ, Fω)
4πω = sin (σ)SI(S) + cos (σ)CI(S)

=
√
SI2(S) + CI2(S) sin (σ − σs) ,

(3.8)

where
σs =

∣∣∣∣arctan
(
CI(S)
SI(S)

)∣∣∣∣ . (3.9)
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This σs is an additional zero in comparison to the linear model. An additional zero σ∗ also exists for
small Fω (see Fig. 3.2 (a)) exhibiting critical behavior for increasing S and/or decreasing Fω: Whether
this zero exists depends on whether the point (S, Fω) is left (subcritical) or right (overcritical) to the
line

Fω = S

16π (3.10)

in the S − Fω plane [17], see Fig. 3.2 (a), 3.2 (b). A more detailed discussion about this additional
zero can be found in [17] and [19].
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3.1.2. The extreme far field

The fact that the zeroth onion-shell is exact in the extreme far-field limit (Fω = ω
λz → 0) for σ > 0

motivates the search for universal aspects of the diffractogram in this regime2. In particular, we consider
the normalized diffractograms induced by the following three SOBS phase-maps.

Gaussian phase-map

φ(~x⊥) = Se−
~x2
⊥

2ω , (3.11)

circular disk phase-map3

φ(~x⊥) = SΘ(
√
ω − |~x⊥|) , (3.12)

exponential phase-map

φ(~x⊥) = Se
−|~x⊥|√

ω . (3.13)

Let us discuss each of this cases.

Gaussian phase-map
The zeroth onion-shell was derived in Eq. (3.3) (l = 0), so we can directly perform the limit Fω → 0 as

lim
Fω→0

Fgz,0
4πω = lim

Fω→0

sin (σ)
∞∑
k=0

S2k+1

2k + 1
(−1)ke−σ

2πFω
2k+1

(2k + 1)! + cos (σ)
∞∑
k=1

S2k

2k
(−1)ke−σ

2πFω
2k

(2k)!


= sin (σ)

∞∑
k=0

S2k+1

2k + 1
(−1)k

(2k + 1)! + cos (σ)
∞∑
k=1

S2k

2k
(−1)k

(2k)! .

(3.14)

Circular disk phase-map
We obtain the zeroth onion-shell by substituting Eq. (3.12) into Eq. (2.82). The result is

Fgz,0 = 2 sin (σ)
∞∑
k=0

(−1)k

(2k + 1)!S
2k+1F

[
Θ2k+1 (√ω − |~x⊥|)]+

2 cos (σ)
∞∑
k=1

(−1)k

(2k)! S
2kF

[
Θ2k (√ω − |~x⊥|)] . (3.15)

With the identity Θn(x) = Θ(x) for n 6= 0 and the 2D-Fourier transform of the disc, we have

F(2) [Θ (√ω − |~x⊥|)] (~ξ) = 2πωJ1(2π
√
ω|~ξ|)

2π|~ξ|
. (3.16)

Here the Bessel function of the first kind J1 occurs. It is defined by the series

J1(x) :=
∞∑
m=0

(−1)m

m!(m+ 1)!

(
x

2

)2m+1
. (3.17)

Now we can execute the far-field limit as

2The content of this section has already been elaborated and published by Yannick Müller in [19].
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lim
Fω→0

Fgz,0
4πω = lim

Fω→0
(sin (σ) sin (S) + cos (σ) (cos (S)− 1)) J1(2

√
σFω)

2
√
σFω

= 1
2 (sin (σ) sin (S) + cos (σ) (cos (S)− 1)) .

(3.18)

Exponential phase-map
The zeroth onion-shell, after substituting Eq. (3.13) into Eq. (2.82) and performing the 2D-Fourier
transform, reads

Fgz,0
4πω = sin (σ)

∞∑
k=1

(−1)k

(2k + 1)!
(2k + 1)S2k+1(

(2k + 1)2 + 4π2~ξ2ω
)3/2 +

cos (σ)
∞∑
k=0

(−1)k

(2k)!
(2k)S2k(

(2k)2 + 4π2~ξ2ω
)3/2 .

(3.19)

Doing the far-field limit, we obtain

lim
Fω→0

Fgz,0
4πω = lim

Fω→0

(
sin (σ)

∞∑
k=0

(−1)kS2k+1(2k + 1)
(2k + 1)! ((2k + 1)2 + 4πσFω)3/2 + cos (σ)

∞∑
k=1

(−1)kS2k(2k)
(2k)! (4k2 + 4πσFω)3/2

)

= sin (σ)
∞∑
k=0

(−1)kS2k+1

(2k + 1)!(2k + 1)2 + cos (σ)
∞∑
k=1

(−1)kS2k

(2k)!(2k)2 .

(3.20)

The extreme far-field limit is equivalent to the case of extremely small objects ω → 0. But objects with
no extent obviously can not induce phase contrast. Therefore, we need to enforce non-trivial phase
contrast by introducing a normalization Nω such that

lim
ω→0

N−1
ω φ(~x⊥)|S=1 = δ(2)(~x⊥) . (3.21)

For our three phase maps we obtain

Nω =


2πω for Gaussian phase-map,
πω for circular disc phase-map,
2πω for exponential phase-map.

(3.22)

In general a normalized diffractogram (for σ > 0) in the extreme far-field limit can be defined as

lim
Fω→0

Fgz
Nω

= 2 sin (σ)
∞∑
k=0

(−1)k

(2k + 1)!S
2k+1C(2k + 1) + 2 cos (σ)

∞∑
k=1

(−1)k

(2k)! S
2kC(2k)

=: Ss(S) sin (σ) + Sc cos (σ) .
(3.23)

The coefficient C(j) can be read of from the last line in Eq. (3.14), Eq. (3.18) and Eq. (3.20) as

C(j) =


j−1 for Gaussian phase-map,
1 for circular disc phase-map,
j−2 for exponential phase-map.

(3.24)

Thus, we may state that the phase-shape information, which is different for each of these three phase
maps, transmutes into information residing in the scaling functions Ss(S) and Sc(S) of Eq. (3.23) in
terms of the coefficients C(j). Except for this S-scaling the diffractogram is σ-universal in the extreme
far-field.
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Figure 3.3.: Diffractogram of Gaussian phase-map at S = 1 and Fω = 0.01 (oscillatory), Fω = 0.25
(overdamped non-oscillatory).

3.1.3. From oscillatory to damped diffractogams

For small Fω the diffractogram has an oscillatory form while for larger Fω it becomes overdamped and
non-oscillatory, see Figure 3.3. Motivated by this, we take a closer look at the transition between these
two regimes. A measure for the strength of oscillatory behavior needs to be defined. To do this, we
take a look at the 1D-Fourier transform of the diffractogram

F̃gz(k, Fω) =
∫
e−2πσkFgz(σ, Fω)dσ . (3.25)

This is plotted for different values of Fω and S = 1 in Figure 3.4 (a).

Inspecting the positive branch k > 0, the (pseudo) frequency kmax at the maximum of F̃gz(k, Fω)
determines the dominant oscillation frequency (inverse of twice the distance between adjacent zero
crossings in Fgz(σ, Fω)). During the transition to the damped regime, by increasing Fω, the curve
F̃gz(k) becomes wider, and the maximum moves to lower k-values. Therefore, we use

kmax(Fω)
kmax(Fω = 0) , (3.26)

as measure of the strength of oscillatory behavior.

In Figure 3.4 (b) kmax(Fω)
kmax(Fω=0) is plotted in dependence of Fω. We can see that kmax(Fω) behaves like an

order parameter of a second order phase transition with the critical drop at Fω = 0.12 exhibiting a
critical exponent ν = 0.37 for S = 1. This behavior also is seen at other values of S, see Table 3.1. We
can see that this transition depends on S. Larger values of S imply transitions at smaller Fω.
Motivated by this S-dependency we use kmax as a function of S at a fixed Fω. In Figure 3.5 (a)

kmax,Fω=0.12(S)
kmax,Fω=0.12(S=0.005) is plotted and we see a shape similarly to the shape in Figure 3.4 (b) with a critical
drop at S = 1. In Figure 3.5 (b) some positions of the critical drop in the Fω-S-plane are plotted to
illustrate their dependency.
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Figure 3.4.: Oscillatory behavior of diffractograms described by Fourier analysis as a function of
Fω. (a): Positive k-branch of 1D Fourier transformed diffractogram, see Eq. (3.25). (b): Normalized
kmax(Fω, S = 1). Note the critical drop at Fω(S = 1) = 0.12 which is associated with a critical
exponent of ν(S = 1) = 0.37.

Figure 3.5.: Oscillatory behavior of diffractograms described by Fourier analysis as a function of S.
(a): Normalized kmax(S, Fω = 0.12). Note the critical drop at S(Fω = 0.12) = 1. (b): Positions of the
critical drop of kmax in the Fω-S-plane.

Figure 3.6.: (a): ESRF experiment with E = 17.5keV, ∆E/E = 0.03, effective pixel size ∆x = 1.6µm
at various propagation distances z. The sample (see (b)) creates weak phase variation (scratched).
Note the overdamped behavior at z = 0.525m and the (damped) oscillatory behavior for z ≥ 0.55m.
For more details about this experiment and the samples used see [17]. (b): 3D printed sample including
holding shaft (left) and magnified scratched (1) and Manhattan (2) region.
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Table 3.1.: Critical Fω and exponents for the transition of oscillatory to over-damped non-oscillatory
behavior of SOBS-diffractograms at different scaling factors S.

scaling factor S critical Fω critical exponent ν

0.5 0.13 0.51
1.0 0.12 0.37
1.5 0.11 0.27

Figure 3.7.: ESRF experiment with E = 17.5keV, ∆E/E = 0.03, effective pixel size ∆x = 1.6µm
and propagation distance z = 3.6m. The sample consists of two regions creating weak (scratched) and
strong (Manhattan) phase variation. (a) ln (1 + |Fgz|/|Fgz,max|) for the scratched and the Manhattan
sample. (b) diffractogram (angular averaged, see Eq.(2.73)) Fgz(σ). Note the over damped case
(Manhattan, solid) in comparison to the oscillating case (scratched, dashed). For more details see [17].

The transition between oscillatory and damped behavior can be observed in experiments by changing
the propagation distance. This has been done for an multi-scale object with weak phase variation
(scratched) at the European Synchrotron Radiation Facility (ESRF) ([17], Fig. 3). We can see in
Figure 3.6 an overdamped case at small propagation distance (z = 0.525m) and an still damped but
clearly oscillatory behavior at larger z.

Also this scaling dependent effect was observed in this experiment ([17], Fig. 3), here with an additional
object creating larger phase variations. The diffractogram of two pure-phase objects, one with a weak
phase variation (scratched) according to a small S and one with strong phase variation (Manhattan)
according to a larger S, have been measured, see Figure 3.7. The object with smaller phase variation
(scratched) according to small S has a slight oscillatory behavior, while these oscillations can not be
observed in the case of larger phase variation. But we need to be cautious here because we do not have
real scaling, because two completely different phase-maps were used.
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Figure 3.8.: Examples for S-scaling linearity for Gaussian phase-map. (a): Fgz(S) at σ = 0.25π for
various Fω. Note the transition between convex and concave S-scaling at Fω = 0.35. (b): Scaling
linearity DS plotted over σ, for Fω = 0.05, S1 = 0.001, S2 = 1.5. Also Fgz(S = 1) in arbitrary units,
note the maximum of DS around the zero of Fgz .

3.1.4. Scaling linearity

The scaling dependent effects of Section 3.1.1 (for example the additional zero) and 3.1.3 indicate that
the linear approximation in Section 2.2.4, Eq. (2.70) enjoys limited applicability only. However, this
linear model is important for phase retrieval. Therefore, this motivates to have a closer look where
and how strong non-linear effects appear. In Figure 3.8 (a) Fgz(S) is plotted for a constant value of
σ/π = 0.25 and various values of Fω. The curve has a convex shape for small Fω and transmutes into
a concave shape for large Fω. At Fω = 0.35 the curve is nearly a straight line, and therefore represents
linear scaling behavior.
To analyse scaling behavior in the general case, we require an according measure. Therefore, the standard
deviation of the functions first derivative has been chosen. Consider a diffractogram Fgz(σ, Fω, S) with
small derivations in S. In the linear case the first derivative d

dSFgz(σ, Fω, S) is constant. The less linear
the function is the more the first derivative varies. We introduce the standard deviation of the first
derivative between S1 and S2, and we subsequently normalize it to the mean value of the diffractogram

DS (S1, S2, σ, Fω) =

√∫ S2
S1

∣∣∣Fgz(σ,Fω ,S2)−Fgz(σ,Fω ,S1)
S2−S1

− d
dSFgz(σ, Fω, S)

∣∣∣2 dS∫ S2
S1
|Fgz(σ, Fω, S)| dS

. (3.27)

The smaller DS the more linear Fgz behaves in S. In Figure 3.8 (b) DS and Fgz(σ, S = 1) are plotted as
a function of σ. We recognize that the maximal non-linearity accrues within a region centered around
the zeros of Fgz. Recall that these zeros are shifted under changes of S, see Figure 3.1.

In the next step, we have a look at the scaling linearity in the low frequency regime σ < π/2 for
0 < Fω < 1. In Figure 3.9 (a) DS is plotted against the Fω − σ-plane, and a nearly linear region
becomes visible. The minimum σ of DS , is plotted in Figure 3.9 (b) and can be fitted to the following
model

σml(A,B, Fω) = AFBω . (3.28)

Figure 3.9 implies a satisfactory coincidence between σ(Fω) and the best-fit model of Eq. (3.28) with
A = 0.064 and B = −1.04. It should be mentioned that A and B depends on S2. The extracted values
for A and B for various S2 can be found in Table 3.2. For a certain scaling window, bounded by S1 = 0
and S2 ≈ 1.4, we can exploit that σ = πω

Fω
ξ2. Setting B = −1, we infer the physical frequency modulus

ξml =
∣∣∣~ξml

∣∣∣ , (3.29)
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0

Figure 3.9.: DS for low frequencies σ. The function, as defined in Eq.(3.27), is evaluated for a scaling
window [S1 = 0.001, S2 = 1.5]. (a): DS plotted as a function of Fω and σ. (b): Minima of DS (crosses)
and best-fit model Eq. (3.28) (solid line) for A = 0.064 and B = −1.04.

where maximal S-scaling linearity occurs, is independent of Fω. Namely,

ξml =

√
A

πω
≈ (0.143± 0.001)

√
ω
−1
. (3.30)

For scaling window[S1 = 0, S2 = 1.4] Eq. (3.30) states, that nearly independently of the propagation
"distance" λz, there exists a single physical frequency modulus ξml at which the diffractogram scales in
a maximally linear way with S.

Table 3.2.: Fit parameter for Eq. (3.28) at scaling window [S1 = 0, S2] (for estimation of scaling
linearity, see Eq. ( 3.27 ) ).

S2 A B

1.7 (6.20± 0.06) · 10−2 −1.091± 0.006
1.6 (6.30± 0.07) · 10−2 −1.064± 0.007
1.5 (6.37± 0.07) · 10−2 −1.037± 0.008
1.4 (6.44± 0.08) · 10−2 −1.011± 0.007
1.35 (6.48± 0.08) · 10−2 −0.997± 0.007
1.3 (6.53± 0.08) · 10−2 −0.983± 0.007
1.25 (6.55± 0.09) · 10−2 −0.970± 0.008
1 (6.81± 0.10) · 10−2 −0.900± 0.008
0.5 (6.26± 0.08) · 10−2 −0.869± 0.007

Let us have a look at the scaling behavior for higher σ in the (damped) oscillatory case. Due to the
shifting zeros under scaling there are maxima in DS(σ), as already mentioned. Between this maxima
are areas (σ-bands) with a more linear scaling behavior, we will refer to them as DS-bands (DB), where
DS < Dthr. For our further discussion we choose, as Dthr, the arbitrary value Dthr = 0.25. In Figure
3.10 are examples of Fgz(S) with σ and Fω chosen the way that DS = 0.25 and we see that the curves
are not really straight lines, but the curvature is still small.
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Figure 3.10.: Example of D-bands, where DS < 0.25. (a) Examples of Fgz(S), where DS = 0.25,
ensured by the choice of σ and Fω. (b) Fgz(σ) in arbitrary units with Fω = 0.01 and corresponding
DS with S1 = 0, S2 = 1.5, note the D-bands DB,n |n = 1, 2, 3, 4, where DS 6 0.25.

Figure 3.11.: (a)First four D-bands DB,1, DB,2, DB,3, DB,4 at various Fω (connected for better
visibility). Note the convergence for small Fω to the value DB,n = 0.521π for Fω = 0. (b) DS(S) and
Fgz(σ) in arbitrary units at Fω = 0.1, note the damped behavior and the enlarged DB,1 (see (a)) due
to the lack of the additional zero even at large S. The length of DB,1 reaches its maximum around the
Fω value of the oscillatory-to-overdamped transition.

These DB,n for the first four bands (n = 1, 2, 3, 4) are plotted for various Fω in Figure 3.11. We see a
decrease of DB,n+1 < DB,n for larger σ, so we can state that the regions of linear scaling are decreasing
for higher spatial frequencies, with the exception of DB,1. These differences of DB,n are converging
for Fω → 0 to DB,n,Fω=0 = 0.521π |∀n. Also, it should be mentioned that in the oscillatory case (at
sufficiently small Fω) DB,1 does not include σ = 0, because of the existence of the additional zero σ∗ as
described in Section 3.1.1.
When moving to larger Fω and therefore leaving the oscillatory regime the higher bands DB,n |n > 1
are getting smaller and finally disappear. On the other hand, DB,1 becomes larger and includes σ = 0
at sufficiently large Fω. One could think, that the enlarged DB,1 and the fact that it includes σ = 0
may justify a phase retrieval according to linearization in the sense of TIE but in this near-field,
over-damped regime non-local effects are dominant which is contradictory to the assumptions made in
TIE (recall Section 2.2.4). The maximal length of DB,1 is at around point where the diffractogram
changes its behavior from oscillatory to overdamped. For even larger Fω DB,1 decreases but so does
also the width in σ where we have an non-negligible value of the diffractogram.
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Figure 3.12.: 1D visualization of 2D TOBS phase-maps, with second scale factors Ω = 0.75, 0.25, 0.05.
(a) plus-case φP. (b) minus-case φM.

3.2. Two-scale objects with broad spectrum (TOBS)

After the investigation of Gaussian SOBS diffractograms we increase the complexity of the phase map
by an additional scale. These two-scale objects with broad spectrum (TOBS) can be constructed by
combining two SOBSs. We use a 2D-Gaussian, and add or subtract a second 2D-Gaussian, with a
smaller width (determined by the factor Ω ≤ 1). That way, we obtain two phase maps (the plus- and
the minus-case)

For the plus-case the phase-map reads

φP(~x⊥) = 1
2

(
e−

~x2
⊥

2ω + e−
~x2
⊥

2Ωω

)
, (3.31)

and the minus-case phase-map results in

φM(~x⊥) = Ω
Ω

Ω−1

1− Ω

(
e−

~x2
⊥

2ω − e−
~x2
⊥

2Ωω

)
. (3.32)

The pre-factor (0.5 (plus-case) Ω
Ω

Ω−1
1−Ω (minus-case)) is chosen to enforce that the maxima of these

phase-maps are unity. In the minus case this leads to the effect that the width of the phase-map
support increases for larger Ω.
Visualisations of Eq. (3.31) and Eq. (3.32) are given in Figure 3.12. For Ω = 1 in the plus-case, the
two scale object becomes a Gaussian (SOBS), the same is true in the limit Ω→ 0 for the minus-case.
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3.2.1. Non-linearity expansion and diffractogram properties

The diffractogram of the phase-maps Eq. (3.31) and Eq. (3.32) can be represented by a non-linearity
expansion4. All numerical evaluations in this Chapter suffers an insignificant uncertainty, whose extend
is estimated in the Appendix A.3.
We calculate both cases at once by combining these two equations into

φP/M(~x⊥) = a±

(
e−

~x2
⊥

2ω ± e−
~x2
⊥

2Ωω

)
, (3.33)

with a+ = 0.5 and a− = Ω
Ω

Ω−1
1−Ω .

After the substitution of Eq. (3.33) into Eq. (2.75) and performing the binomial expansions and Fourier
transform we obtain the non-linearity expansion, in Fourier space, as

Fgz,± = 2πωΩ
∞∑
n=1

(iSa±)n

n!

n∑
j=0

(−1)jn!
(n− j)!j!

n−j∑
k=0

(n− j)!
(n− j)!j!

j∑
l=0

j!e
σ(k−kΩ+(−j+n−2iFωπ)Ω)(l−lΩ+(j+2iFωπ)Ω)

2FωπΩ(k(Ω−1)+l(Ω−1)−nΩ) (±1)k+l

((j − l)!l!)(k(Ω− 1) + l(Ω− 1)− nΩ .

(3.34)

For the plus-case (Fgz,+) diffractogramms5 at various Ω and Fω = 0.01 (a) as well as Fω = 0.1 (b) are
plotted in Figure 3.13. At Fω = 0.01 the diffractograms show clearly oscillatory behavior, while at
Fω = 0.1 the diffractogram transmute into a damped shape.
This transmution from an oscillatory to a damped behavior depends strongly on Ω, as we can see in
Figure 3.13 (c). This is expected since we have admitted an additional small scale in our phase-map
when we set Ω at a small value.

In the minus-case (Fgz,−) our diffractogram also shows oscillatory behavior at Fω = 0.01, see Figure
3.14 (a). In general, diffractograms, induced by arbitrary phase-maps of finite extent, are in oscillatory
form for sufficiently large propagation distances (here represented by a small value of Fω). In Section
3.1.2 we already investigated SOBS in the extreme far-field limit. The same is done for TOBS in
Section 3.2.3. This extreme far-field representation is also generalized for multi-scale objects, and this
generalization proves the statement of oscillatory behavior for arbitrary phase-maps in the far-field.
For Fω = 0.1 the diffractogram is in a damped form for small Ω but shows an oscillatory behavior for
larger Ω, see Figure 3.14 (b). When we look at the Fourier transform of the diffractogram, see Figure
3.15, the plus-case (a) has one dominant frequency, which is sharper in comparison to the Gaussian
SOBS case (recall Figure 3.4). The minus-case (b), on the other hand, has two maxima in its 1D
Fourier transformed diffractogram. At small Fω these maxima are close together and therefore appear
like one dominant frequency (see Figure 3.14 (a)). The larger Fω the further the two maxima are
separated. The shift of the second maximum toward higher values of k for larger Fω represents a higher
frequency component in the diffractogram’s oscillation. This effect can be observed in Figure 3.15.
Note the shift of the first extrema towards lower values of σ for higher values of Fω.

4See Eq.(2.75) for the generalized non-linearity expansion in real space.
5The definition Fω = ω

λz
is still given but can not be iterpreted as Fresnel number any more, due to the fact that we

have now more than one scale. Fω is still used to parameterize near or far-field regime.
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Figure 3.13.: Diffractograms of TOBS plus-case (Fgz,+) for Ω = 0.05, 0.25, 0.75 and the Gaussian
SOBS. (a): Fω = 0.01. (b): Fω = 0.1. (c): Transition from oscillatory to damped behavior represented
by the normalized kmax(Fω, S = 1) (analogue to Figure 3.4). Note the critical drops for the cases
Ω = 0.75 and Ω = 0.25.

Figure 3.14.: Diffractograms of TOBS minus-case (Fgz,−) for Ω = 0.75, 0.25, 0.05 and the Gaussian
SOBS case. (a): Fω = 0.01. (b): Fω = 0.1.
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Figure 3.15.: Fourier transform of TOBS diffractograms. (a): Positive k-branche of 1D Fourier
transformed diffractogram for Ω = 0.05 and S = 1. Note the deformed shape of the peak for Fω = 0.01
in comparison to the SOBS-case in Figure 3.4 (a). (b): Positive k-branche of 1D Fourier transformed
diffractogram for Ω = 0.75 and S = 1. Note that the two maxima move away from each other when
increasing Fω. (c): TOBS minus-case diffractograms with Ω = 0.75 and Fω = 0.1, 0.12, 0.14. Note the
shift of the first two extrema towards lower values of σ for larger values of Fω, indicating the shift of
the second peak in (b) towards higher values of k.
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To examine this additional oscillation in the minus-case we investigate the Fourier transform of the
TOBS phase map and compare the plus- with the minus-case. In the plus-case as well as for the
Gaussian SOBS phase-map the Fourier transform of all powers of φ is positive definite:

F(2)
[
(φGaussian SOBS(~x⊥))n = e−

~x2
⊥

2w n

] (
~ξ
)

= 2πω
n
e

2π2ω
n

~ξ2
,

F(2)
[
(φP(~x⊥))n = (a+)n

(
e−

~x2
⊥

2ω + e−
~x2
⊥

2Ωω

)n] (
~ξ
)

= 2πωΩan+
n∑
k=0

n!
(n− k)!k!

e−
2π2ωΩ

k+nΩ−kΩ
~ξ2

k + nΩ− kΩ ,

(3.35)

with a+ = 0.5.

This is not given for the minus-case (note the (−1)k term):

F(2)
[
(φM(~x⊥))n = (a−)n

(
e−

~x2
⊥

2ω − e−
~x2
⊥

2Ωω

)n] (
~ξ
)

= 2πωΩan−
n∑
k=0

n!
(n− k)!k!

(−1)ke−
2π2ωΩ

k+nΩ−kΩ
~ξ2

k + nΩ− kΩ ,

(3.36)

with a− = Ω
Ω

Ω−1
1−Ω . Recall the onion-shell expansion of Eq. (2.80) and Eq. (2.81). There oscillations are

caused in the far-field (small Fω) by the sin σ term, the cosσ term and the local part (F(2)[φ])n. When
(F(2)[φ])n is positive definite and compact the dominant oscillation frequency is given by the sin σ and
cosσ terms. Also, the Fourier transformed bilocal part (F(2)[φ+φ−])n =

(
F(2)[φ+] ∗ F(2)[φ−]

)n
stays

positive definite, so no additional oscillations with higher frequencies are expected for larger Fω.
In the minus-case this Fourier transformed phase-map is not positive definite and therefore is able to in-
duces the observed extra oscillations which becomes more relevant in the non-local regime (at larger Fω).

In Gaussian SOBS diffractograms we observed that the first "regular" zero (we will refer to the zero
around σ/π = 1 as the "first regular zero".) moves when we change the scaling factor S (recall Figure
3.1). This zero also moves in a TOBS diffractogram but its direction now depends on the shape of the
phase-map. It is even possible to construct TOBS phase-maps, such that the first zero does not move
to larger σ for increasing S as we can see in Figure 3.16 (a). The position of the first regular zero as a
function for S is plotted in Figure 3.16 (b) for the Gaussian SOBS and the TOBS minus-case with
Ω = 0.8. Not only does the zero move in the opposite direction for our TOBS but the magnitude of
speed is also much smaller.
This indicates that the scaling behavior depends on the phase-map shape, and therefore we will
investigate the scaling linearity of our TOBS phase-maps in Section 3.2.2. This motivates investigations
how this TOBS phase-maps influences the scaling linearity of the diffractogram.
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Figure 3.16.: Movement of first regular zero near σ/π = 1 in TOBS diffractogram (minus-case) when
changing the scaling factor. (a): Fgz,−(σ) at Fω = 0.1 and Ω = 0.8 for various S. (b): Position of the
first regular zero as function of S for the Gaussian SOBS and the TOBS minus-case with Ω = 0.8.
Note the different direction of movement.

3.2.2. Scaling linearity

In analogy to Section 3.1.4, we use DS (defined in Eq. (3.27)) as measure of "scaling linearity" in our
TOBS diffractograms.

In Figure 3.17 DS is plotted as a function of Fω and σ (analogue to Figure 3.9) for the plus-case and
various values of Ω. The region of good scaling linearity (small DS) increases the more the phase-map
differs form the Gaussian SOBS phase-map. We note, for now, that the additional scale can lead to an
increased region of good scaling-linearity.
The same region, for the minus-case, is plotted in Figure 3.18. Here we can see an additional region of
non-linear scaling behavior, which is provoked by the shift of the additional zero and the intersections
between diffractograms at different scaling factors, see Figure 3.19 (a). This leads to significant
deviations from linear scaling behavior as we can see in Figure 3.19 (b). Here the appearence of the
additional scale lead to a shrinkage of the continuous area of good scaling linearity in the Fω-σ plane.
Therefore, it is not possible to formulate universal statements on whether more scales always lead to
better or worse scaling linearity.
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Figure 3.17.: DS (for definition see Eq. (3.27)) of TOBS-diffractograms (plus-case) as a function of
Fω and σ ≤ 1. The white regions represents DS > 0.5. (a): The SOBS case (Ω = 1), equal to Figure
3.9 (a). (b): Ω = 0.75. (c): Ω = 0.25. (d): Ω = 0.05. (e): Ω = 0.01. Note the increasing area of mostly
linear scaling behavior the more the phase-map differs from the SOBS case.

Figure 3.18.: DS of TOBS-diffractograms (minus-case) as a function of Fω and σ ≤ 1. The white
regions represents DS > 0.5. (a): Ω = 0.05. (b): Ω = 0.25. (c): Ω = 0.75. Note the small region of
strong non-linear behavior induced by the movement of the additional zero (caused by the shape of
the phase-map).
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Figure 3.19.: Movement of additional zero under change of the scaling factor (a) and DS (b) for
TOBS diffractrogram (minus case Ω = 0.25, Fω = 0.4).

In Figure 3.20 DS is plotted as a function of Ω and σ for the plus- and minus-case and at Fω = 0.1,
Fω = 0.05 and Fω = 0.01. The plus-case at Ω = 1 is equal to the Gaussian SOBS case. We observe
that the width of the DS-bands in the plus-case does depend on Ω, but for Fω = 0.1 the first band6 is
relatively stable under changes in Ω. For decreasing Fω this stability increases over the next bands,
and at Fω = 0.01 we recognize only small changes within the bands. We also see an increase of the
DS-bands for smaller Ω, as we already observed in Figure 3.17.
The situation for the minus-case, on the other hand, is more complicated at small Fω. The existence of
the additional zero and its movement causes the bands to strongly depend on Ω. Only the first band
(at 0 ≤ σ/π ≤) is continuous in Ω for Fω = 0.1 and relatively stable at Fω = 0.05. At Fω = 0.01 the
bands are more or less constant in width and more stable in Ω.
In the extreme far-field limit Fω → 0 all bands7 DB,n exhibit the same shape and extension but the
width still depends on Ω. In Figure 3.21 DB,1 with Dthr = 0.25 is plotted as a function of Ω.

6We refer to the regions of good scaling linearity between integer σ/π as bands.
7For the definition of DB,n see Section 3.1.4.
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Figure 3.20.: DS of TOBS-diffractograms plus- and minus-case as a function of Ω and σ. Plus-case:
(a) Fω = 0.1 note the increased first "band". (b) Fω = 0.05. (c) Fω = 0.01 note the nearly equal wide
"bands". Minus-case: (d) Fω = 0.1. (e)Fω = 0.05 note the more irregular behavior in comparison to
the plus-case. (f) Fω = 0.01.

Figure 3.21.: First D-band DB,1 of TOBS-diffractograms (plus- and minus-case) as a function of Ω
at Fω = 0. The bands are defined by DS ≤ 0.25.
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3.2.3. The extreme far-field

We discuss the extreme far-field of TOBS phase-maps in analogy to the SOBS-case in Section 3.1.2.
As we already know, in the extreme far-field Fω → 0 the zeroth onion-shell is a good approximation
and is exact for Fω = 0. The zeroth onion-shell for our TOBS (plus- and minus-case) reads

Fgz,0,± = 4πωΩ cos (σ)
∞∑
k=1

(−1)kS2ka2k
±

(2k)!

2k∑
j=0

(2k)!(±1)j

((2k − j)!j!)(j + 2kΩ− jΩ)e
− 2πΩFω
j+2kΩ−jΩσ

+ 4πωΩ sin (σ)
∞∑
k=0

(−1)kS2k+1a2k+1
±

(2k + 1)!

2k+1∑
j=0

(2k + 1)!(±1)j

((2k + 1− j)!j!)(j + (2k + 1)Ω− jΩ)e
− 2πΩFω
j+(2k+1)Ω−jΩσ .

(3.37)

We consider the limit Fω = ω
λz → 0 and obtain

lim
Fω→0

Fgz,0,± = 4πωΩ cos (σ)
∞∑
k=1

(−1)kS2ka2k
±

(2k)!

2k∑
j=0

(2k)!(±1)j

((2k − j)!j!)(j + 2kΩ− jΩ)

+ 4πωΩ sin (σ)
∞∑
k=0

(−1)kS2k+1a2k+1
±

(2k + 1)!

2k+1∑
j=0

(2k + 1)!(±1)j

((2k + 1− j)!j!)(j + (2k + 1)Ω− jΩ) .
(3.38)

The generalization Nω,Ω of Nω, introduced in Eq. (3.21), reads

Nω,Ω =

πω(1 + Ω) for φP (plus-case),
2πωΩ

Ω
Ω−1 for φM (minus-case).

(3.39)

The coefficient C(j) for the normalized diffractogram (for σ > 0) in the extreme far-field limit, as
defined in Eq.(3.23), can be read from Eq. (3.38) as

C(j) =


4·( 1

2 )j
j(1+Ω)

∑j
k=0

j!
(j−k)!k!

1
k+jΩ−kΩ for φP (plus-case),

2Ω
1

1−Ω

(
Ω

Ω
Ω−1

1−Ω

)j∑j
k=0

(−1)kj!
(j−k)!k!

1
k+jΩ−kΩ for φM (minus-case).

(3.40)
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A third example for a TOBS is an elliptical phase-map

φ(x, y) = e−
x2
2ω−

y2
2Ωω , (3.41)

which is also an example for a non-isotropic phase-map.
The normalization Nω,Ω is given for the elliptical case by

Nω,Ω = 2πω
√

Ω . (3.42)

The 2-D Fourier transform of φj reads

F[φj(x, y)](ξx, ξy) = 2πω
√

Ω
j

e
−π

2ω
j (ξ2

x+Ωξ2
y) , (3.43)

and in the limit ω → 0 reduces to (with the normalization Nω,Ω)

lim
ω→0

F[φj(x, y)](ξx, ξy) ·N−1
ω,Ω = lim

ω→0

1
j
e
−π

2ω
j (ξ2

x+Ωξ2
y) = 1

j
. (3.44)

And therefore we can read off the scaling coefficient as

C(j) = j−1 . (3.45)

Comparing Eq. (3.45) with Eq. (3.24), we can see that in the extreme far-field it is not possible to
distinguish between an elliptical and a Gaussian phase-map.
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The extreme far-field of multi scale objects with broad spectrum (MOBS)8

MOBS phase-maps of spatial scales {ωi} in the extreme far-field limit need to be normalized such that

lim
κ→0

N−1
{κωi}φ{κωi}(~x⊥)|S=1 = δ(2)(~x⊥) . (3.46)

Eq. (3.46) generalizes Eq. (3.21). We can write the phase-map as

φ{ωi}(~x⊥) = SN{ωi}δ{ωi}(~x⊥) , (3.47)

with
lim
κ→0

δ{κωi}(~x⊥) = δ(2)(~x⊥) . (3.48)

The zeroth onion-shell, as given in Eq. (2.82), demands the evaluation of F
[
φj{ωi}

]
for j = 1, 2, ....

Appealing to the Fourier convolution theorem, we have

lim
κ→0

F
[
φj{ωi}(~x⊥)

]
= Sj lim

κ→0
N{κωi}N

j−1
{κωi} F

[
δ{κωi}

]
∗ ... ∗ F

[
δ{κωi}

]
︸ ︷︷ ︸

j−1 convolutions

. (3.49)

Let us define the dimensionless quantity

W (j − 1, {κωi}) := N j−1
{κωi} F

[
δ{κωi}

]
∗ ... ∗ F

[
δ{κωi}

]
︸ ︷︷ ︸

j−1 convolutions

. (3.50)

The coefficients C(j) can be identified as

C(j) = lim
κ→0

W (j − 1, {κωi}) . (3.51)

The dependence of C(j) on the dimensionless ratios ωi/ωj | (i > j) is strong suppressed. Thus the
extreme far-field limit of the normalized diffractogram, in analogy to Eq. (3.23), reads

lim
κ→0

Fgz
N{κωi}

= 2 sin (σ)
∞∑
k=0

(−1)k

(2k + 1)!S
2k+1C(2k + 1) + 2 cos (σ)

∞∑
k=1

(−1)k

(2k)! S
2kC(2k)

= Ss(S) sin (σ) + Sc cos (σ) .
(3.52)

This proves that an arbitrary phase-map has oscillatory behavior in the far-field. Also, it is conceivable
that Eq.(3.52) has practical implications if phase-maps can be scaled physically, because the phase-map’s
entire shape information is given by C(j). Note that there can be different shaped phase-maps who
exhibit same the same C(j) as we can see by comparing (3.45) to Eq. (3.24).

8This calculation has already been done in [19].
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3.3. Multi-scale objects with broad spectrum (MOBS)

Phase-maps induced by projection through real samples usually contain a huge amount of scales.
Therefore, we investigate multi-scale objects of broad spectrum in this section. We were able to
treat the SOBS- and TOBS-case semi-analytically by performing the non-linearity or the onion-shell
expansions, however we have to resort to a numerical treatment here, which requires the use of a
pixelized field of view.

3.3.1. MOBS diffractograms

We permit arbitrary phase-maps φ(~x⊥) but quantize ~x⊥ =
(
x · 4x
y · 4x

)
with integer x, y and the pixel-size

(edge-size) 4x. We still consider only pure-phase objects, so that the wave field at the exit plane
(z = 0) reads

ψ(~x⊥, z = 0) =
√
I0e

iφ(~x⊥,z=0) . (3.53)

To obtain the intensity at the detector-plane we need to propagate the wave field to the distance z.
This is done by convolution with the Fresnel propagator (for a derivation see Section 2.1.7). The Fresnel
propagator reads

P̄K(z, ~x⊥) = − i

λz
ei

2πz
λ ei

π
λz

(~x⊥)2
, (3.54)

subject to wave length λ.
Because the Fresnel propagator is defined for arbitrarily large |~x⊥|, it is not convenient to perform
the convolution numerically. Instead we exploit the Fourier convolution theorem9. The Fourier
representation of the Fresnel propagator reads

˜̄PK = F(2)
[
P̄K(~x⊥, z)

] (
~ξ, z
)

= ei
2πz
λ e−iπλz

~ξ2
. (3.55)

Because we are only interested in the intensity at z

Iz = ψ∗ψ , (3.56)

we can neglect the constant factor ei
2πz
λ in Eq.(3.55). Therefore, we obtain the intensity at the detector

plane (z) as
Iz(~x⊥) =

∣∣∣F(−2)
D

[
F

(2)
D

[
eiφ(~x⊥,z=0)

] (
~ξ
)
· e−iπλz~ξ2] (~x⊥)

∣∣∣2 , (3.57)

where F
(2)
D , F(−2)

D denote the 2D discrete Fourier transform (DFT) and the 2D inverse discrete Fourier
transform (iDFT), respectively.
We perform the 2D DFT of the intensity contrast gz (defined by gz = I0−Iz

I0
)

Fgz
(
~ξ
)

= F
(2)
D [gz(~x⊥)]

(
~ξ
)
. (3.58)

Note that the DFT is defined for infinite periodical signals, which is not the case for gz. To nevertheless
obtain decent results, it is convenient to frame gz (which is stored as a matrix) with a sufficiently large
number of elements with the value zero (zero-padding).
To obtain the diffractogram, as defined in Section 2.2.4, we perform the angular average, and make the
substitution σ = 2π2z

K
~ξ2

Fgz(σ) = 1
2π

∫ 2π

0
Fgz

~ξ =

√
σ
K

2π2z

(
cosϕ
sinϕ

) dϕ , (3.59)

9Fourier convolution theorem: F[f · g] = F[f ] ∗ F[g].
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Figure 3.22.: MOBS diffractogram |Fgz(~ξ)| and |Fgz(σ)|, simulated with E = 1keV (λ = 1.2nm),
z = 1m, S = 1, and a pixel size ∆x = 1.6µm with 1024× 1024 pixel. (a): Lena phase-map and 2D
diffractogram |Fgz(~ξ)| illustrated by log(1 + |Fgz(~ξ)|). The position of the first minimum is at |ξ| = ξ1.
(b): Angular averaged diffractogram |Fgz(σ)| with the substitution σ/π = λz~ξ2. The diffractogram
has been smoothed by 2D convolution of Fgz(~ξ) with a 2D Gaussian filter (variance of 1 pixel which
equates a variance of σξ = 1

2∆x ) before performing the angular average.

An example of Fgz
(
~ξ
)
and the diffractogram Fgz(σ) for a multi-scale phase-map is given in Figure 3.22.

The Fourier transformed intensity contrast Fgz
(
~ξ
)
contains complex values, therefore we use the abso-

lute value of the diffractogram for their further treatment. This is not the case for the Gaussian-SOBS
and TOBS phase maps, defined in Section 3.1 and 3.2, because these phase-maps are 2D spherical
symmetric. Therefore these SOBS and TOBS phase-maps are even (φ(~x) = φ(−~x)), and thus their
Fourier transform are real [20].

To investigate the scaling behavior of the MOBS diffractogram we normalize and shift the phase-map
so that the maximum φmax = 1 and the minimum φmin = 0, respectively. A typical MOBS phase-map
is the "Lena test pattern" [21] as illustrated in Figure 3.22 (a).

In Figure 3.23 the diffractogram (normalized to its maximum value) is plotted as a function of σ/π for
various S and the propagation distance z = 0.05m (a) respectively z = 20m (b). We can see that the
diffractogram’s shape transmutes in both cases from an oscillatory form at small values of S to a more
damped shape at higher values of S.
Analog to the first regular zero, as mentioned in Section 3.2.1, we define σ1 as the position of the
minimum of |Fgz| near σ = π.
In Figure 3.23 (c) and (d) σ1 is plotted as a function of S. For z = 0.05m (c) we see a small movement
of σ1 until S exceeds a value of around S ≈ 4. For larger values of S we can observe a rapid upward
movement of σ1. This is caused by the transition to an over-damped shape, where the minima caused
by the sine modulation as foreseen by the the zeroth onion-shell (far field situation, recall Eq. 2.82)
disappear. The extent of σ1’s movement before the transition to an over-damped shape is very small in
comparison to the movement of the first regular zero in the Gaussian SOBS case (recall Figure 3.16 (b))
which likely is caused by the huge amount of scales in the phase-map. As we have discussed in Section
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Figure 3.23.: MOBS diffractograms |Fgz(σ)/Fgz, max| and position of first minimum as a function of
S. Simulated with a pixel size of ∆x = 1.6µm with 1024× 1024 pixel and E = 1keV. (a): Near field
z = 0.05m, Note the more damped shape for larger values of S. (b): z = 30m, note the shift of the
first minimum depending on S. (c): Position of the first minimum σ1 as a function of S at z = 0.05m.
(d): Position of the first minimum σ1 as a function of S at z = 30m.

3.2.1 it is possible to construct phase-maps where σ1 moves to lower values for increasing S so it is
likely that complex phase-maps with a large amount of independent scales can suppress this movement.
At z = 30m the movement of σ1 is smoother in S, see Figure 3.23 (d). Larger values of z correspond to
smaller values of Fω in the Gaussian-SOBS case, where we know that a small value of Fω requires a
larger value of S for the diffractogram to be over-damped. This can explain why we do not see the
strong increase of σ1 at S ≈ 4 here. Note that the extent of σ1’s movement is, in this case, also much
smaller than in the Gaussian-SOBS case.



44 Master Thesis: Non-local and non-linear aspects of Fresnel diffractograms

3.3.2. Scaling linearity

To analyze the scaling linearity we need to adjust our measurement DS , defined in Eq.(3.27), such that
it is useable for discrete and numerically calculated diffractograms.
To calculate DS , a sufficient number10 N of diffractograms with Sn ranging between S1 and S2 are
needed. We define the derivative as

∂SFgz (Sn′) = Fgz(Sn+1)− Fgz(Sn)
Sn+1 − Sn

, (3.60)

with Sn′ = Sn+Sn+1
2 and Sn+1−Sn = S2−S1

N . The larger the value ofN the better Eq.(3.60) approximates
a derivative. Based on a stack of N diffractograms we therefore obtain a stack of N − 1 derivatives
∂SFgz (Sn′σ).
The standard deviation of the fist derivative reads

StDe(σ) =

√√√√√ 1
N − 2

N−1∑
n′=1

∣∣∣∣∣ 1
N − 1

N−1∑
k=1

∂SFgz(Sk, σ)− ∂SFgz(Sn′ , σ)
∣∣∣∣∣
2

. (3.61)

We normalize StDe(σ) to the mean value of the diffractogram and obtain

DS(σ) = StDe(σ)
1
N

∑N
n=1 Fgz(Sn, σ)

. (3.62)

In the limit N →∞ Eq. (3.62) becomes Eq.(3.27).

We use the "Lena phase-map", see Figure 3.22 (a) and the scaling window S = [0, 1.5]. The phase-map
is normalized and shifted such that its minimum value is φmin = 0 and its maximum φmax = 1 at S = 1.
The diffractogram |Fgz(σ)| and DS for z = 0.2m are plotted in Figure 3.24 (a).
Like the SOBS (Section 3.1.4) and TOBS (Section 3.2.2) cases, we can see that DS gets maximal at
integer values of σ/π, which is where the minima of the diffractogram are. This maximal non-linear
scaling is most likely caused by the movement of the minima in |Fgz(σ)| when changing the value of S.

In analogy to Section 3.1.4, we can identify D-bands where Ds < Dtr. We refer to the bands length as
DB,n with n = 1, 2, . . . .
In Figure 3.24 the length of the first four bands, with Dtr = 0.25, is plotted as a function of the
propagation distance z. Because we can only calculate DS for discrete values of σ, due to the finite
number of pixels, there is an increased uncertainty of DB,n in comparison to the SOBS and TOBS
case. This uncertainty has been estimated and is indicated in the plot.
In the range 0.2m ≤ z ≤ 10m we can not recognize a uniform dependence of DB on z in the way we
saw in the SOBS case (recall Figure 3.11) for DB in dependence of Fω. We also see that the D-bands
are wider in the MOBS than in the SOBS case which is in good agreement with the observation that
the first minimum moves much slower in the MOBS case than the first regular zero in the SOBS case.
This latter observation was discussed in Section 3.3.1.

10Here we use N = 100. In the appendix A.4 an estimate for the convergence of DS in N is given.
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Figure 3.24.: MOBS (Lena phase-map, 1024 × 1024 pixel) diffractogram and DS calculated with
E = 1keV and pixel size ∆x = 1.6µm. (a): |Fgz(σ)| in arbitrary units and DS(σ) at z = 0.2m.
(b): First four D-bands DB,1, DB,2, DB,3, DB,4 for various z (the points are connected for better
visualization).

3.3.3. Modulation contrast transfer of phase retrieval

In Section 2.2.4 we introduced two approaches for phase retrieval. The CTF approach, see Eq. (2.71)
and the TIE approach, see Eq.(2.72). Both approaches require Fgz

(
~ξ = 0

)
= 0 which can not be assured

when we make use of the DFT and finite pixel size. Therefore, we chose a pragmatic regularization [22]
and modify Eq.(2.72) (TIE) as follows

Fφ = Fgz
2σ + α

, (3.63)

with the regularization parameter α� 1. For the following treatment we chose α = 10−2.5.
In the CTF approach poles arise for non-vanishing Fgz(~ξ) at the frequencies ~ξ2λz = σ/π = n (n integer).
Therefore, we modify Eq. (2.71) as

Fφ = Fgz
sgn(sin σ)

2| sin σ|+ α
, (3.64)

where sgn denotes the sign function with sgn(x) = x
|x| for x 6= 0 and sgn(0) = 0.

In Figure 3.25 the phase-map (a) with S = 0.1 is propagated (recall Eq. (3.57)) across the distance
z = 1m using a monochromatic beam with E = 10keV (λ = 0.124nm). The intensity Iz at the
detector-plane is given in Figure 3.25 (b). The retrieved phase-maps are shown in (c) where retrieved
by the TIE approach and (d) by the CTF approach. Differences in the TIE and CTF approach are
barley visible here.
We also recognize that the contrast of the retrieved phase-maps is clearly poorer compared to the
original phase-map. This effect is even stronger in homogeneous regions, implying that the retrieval of
low spatial frequencies suffer from a loss of contrast.

We increase the propagation distance to z = 10m and repeat the phase retrieval, leaving energy,
pixel-size and original phase-map unchanged. The results are given in Figure 3.26, TIE approach in (c)
and CTF in (d). Here we can see that the TIE phase-map clearly is restored with a poorer quality
than the CTF phase-map. Due to the larger propagation distance the linearization in z causes TIE to
become an efficient low-pass filter.
Beside this we recognize that the contrast for lower spatial frequencies is improved in comparison to
the case of z = 1m in Figure 3.25.
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Figure 3.25.: Forward propagation with E = 10keV, z = 1m, phase-map (a) size 4096× 4096 pixel
(Lena 2048× 2048 pixel plus zero-padding), S = 0.1, pixel size ∆x = 1.6µm. (b): Intensity Iz at the
detector plane. (c): Retrieved phase with TIE approach. (d): Retrieved phase with CTF approach.
Note the loss off contrast in comparison to the original phase-map (a).
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Figure 3.26.: Forward propagation with E = 10keV, z = 10m, phase-map (a) size 4096× 4096 pixel
(Lena 2048× 2048 pixel plus zero-padding), S = 0.1, pixel size ∆x = 1.6µm. (b): Intensity Iz at the
detector plane. (c): Retrieved phase with TIE approach. (d): Retrieved phase with CTF approach.
Note the poorer sharpness of the TIE retrieved phase-map in comparison to the CTF approach.
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The observed contrast differences of the TIE and CTF approaches in dependence of spatial resolution and
propagation distance motivates a more systematical investigation. We look at the forward propagation
and phase retrieval as a system with the original phase-map as input and the retrieved phase-map
as output. Here we need a quantity which represents the transfer of contrast (input to output) in
dependence of the spatial frequency. Therefore, we define the phase-map as

φpm(x, y) = S

2

(
sin
(2πf
N
· x
)

+ 1
)
, (3.65)

where S denotes the scaling factor, N the number of pixels in x-direction, and f the number of maxima
in the phase-map (in x direction), defining the spatial frequency ζ as

ζ := f

N ·∆x , (3.66)

where ∆x denotes the pixel size. Such a sine-shape test-pattern is a common method to specify imaging
systems [23].

We define the contrast of the phase map as

Cpm := max(φpm)−min(φpm) = S . (3.67)

Similarly, we define the contrast of the retrieved phase-map φret as

Cret(ζ) := max(φret)(ζ)−min(φret)(ζ) , (3.68)

which depends on ζ.

To classify the retrieval system we define the modulation transfer function (MTF)[24] as

MTF(ζ) := Cret(ζ)
Cpm

. (3.69)

Under the assumption that the phase-map is not deformed by the propagation-retrieval-system, a MTF
value of 1 implies a perfect contrast transfer and a smaller value of MTF a loss of contrast.

In Figure 3.27 MTFs are plotted for S = 0.1 and E = 10keV at the propagation distance z = 1m
(a) and z = 10m (b) for the TIE and CTF approach. At z = 1m we see that MTF rises slowly for
increasing ζ and therefore has a low value for small values of ζ. This illustrates why the larger scales
in Figure 3.25 (c) and (d) are suppressed. Also, the low-pass filter effect of TIE on larger propagation
distances is well illustrated.

In Section 2.2.4 we deduced CTF phase retrieval by expanding eiSφ−e−iSφ+ = 1 +S(φ−−φ+) +O(S2) .
and truncating at linear order. Therefore, CTF is restricted to small values of S. Thus the question
arises how the MTF changes for larger values of S.
In Figure 3.28 the MTF is plotted for S = 0.5 and S = 1, and in the CTF case we see peaks which
increase for larger values of S. At these peaks the MTF can significantly exceed unity. This means
that there are frequencies which are amplified by the CTF retrieval process.
TIE seems to be robust against phase scaling. This is not surprising due to the fact that TIE suppresses
high spatial frequency and for low spatial frequency the diffractogram scales quite linearly (recall the
first D-band for MOBS (Figure 3.24)).
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Figure 3.27.: Modulation transfer function (MTF) for S = 0.1, E = 10keV and the pixel size
∆x = 1.6µm for the TIE (solid) and CTF (dashed) approach. (a): Propagation distance z = 1m. Note
the small MTF at small values of ζ. (b): Propagation distance z = 10m. Note the low MTF in the
TIE approach for high values of ζ.

Figure 3.28.: Modulation transfer function (MTF) for z = 1m, E = 10keV and the pixel size
∆x = 1.6µm for the TIE (solid) and CTF (dashed) approach. (a): S = 0.5. (b): S = 1. Note the
peaks with MTF > 1 in the CTF case.

To investigate the peaks in the MTF for CTF retrieval at S = 1, we examine the first peak where
the MTF exceeds unity exemplary (here at ζ = 0.045 1

µm). In Figure 3.29 (a) |Fgz(~ξ)| is plotted, and
we can see at |ξx| = ξ1, where ξ1 corresponds to σ/π = 1, non-vanishing values of |Fgz(~ξ)|. Due
to the CTF method these frequencies get amplified and lead to higher harmonics of the assumed
base base oscillation in the retrieved phase-map (See Figure 3.29 (b)). This indicates that CTF le-
ads to artifacts in the retrieved phase-map when the original phase-map contains strong phase variations.
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Figure 3.29.: CTF retrieval of sine phase-map at S = 1, E = 10keV, z = 1m and ζ = 0.045 1
µm . (a):

Representation of |Fgzξ1| where ξ1 corresponds to σ/π = 1. Note the high values of |Fgz near |ξx| = ξ1.
(b): Cut through the original phase-map (solid) and CTF retrieved phase-map (dashed) parallel to
the x-Axis. Note that the retrieved phase contains an additional oscillation and therefore is not even
qualitatively correct.

These artifacts in CTF retrieval indicate the need of taking care of non-linear effects for the retrieval of
large phase variations. As we know from previous investigations on scaling-linearity (recall Section
3.1.4, Section 3.2.2 and Section 3.3.2) we know that the most non-linear regions in the diffractogram
are located around σ/π = n with n = 1, 2, . . . .
A pragmatic approach [25] to deal with this issue is to modify the intensity contrast by applying a
filter in Fourier space, such that

Fgz,QP(~ξ) :=
{
Fgz(~ξ) for σ ≤ π

2 ,

Θ (|sin (σ)| − ε) · Fgz(~ξ) for σ > π
2 ,

(3.70)

where Θ denotes the Heaviside step function and 0 ≤ ε ≤ 1 is the threshold parameter for this binary
filter.
We substitute Eq.(3.70) into Eq.(3.64) and obtain the quasiparticle11 approach (QP)[25][22]

Fφ = Fgz,QP
sgn(sin σ)

2| sin σ|+ α
. (3.71)

The MTF for the QP approach with ε = 0.1 is plotted in Figure 3.30. We see that the peaks are suppres-
sed in comparison to CTF in Figure 3.28 (b). Therefore, the artifacts in the QP-reconstructed phase-map
are suppressed, compare the retrieved phase-map at ζ = 0.045 1

µm in Figure 3.30 (b) with Figure 3.29 (b).

The threshold parameter ε determines how well the peaks in the MTF, and therefore artifacts in the
reconstructed phase-map, are suppress at the expense of sharpness. In Figure 3.31 the MTF of QP is
plotted for ε = 0 (CTF), ε = 0.2 and ε = 0.4. We see stronger suppression of the peaks and loss of
wider frequency bands at higher values of ε.
An exemplary visualization of a phase-map (Lena), retrieved by QP, is given in Figure 3.32. Note the sup-
pression of artifacts for larger values of ε and also the significant loss of resolution and details at ε = 0.99.

11This name has been chosen in analogy to the quasiparticle concept [26] in the quantum theory of condensed-matter
physics and quantum field theory. There a free dispersion law is altered by strong interactions yielding a free quasi
particle. [25]
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Figure 3.30.: (a): MTF for quasiparticle approach (QP) (ε = 0.1) at z = 1m, E = 10keV, ∆x = 1.6µm,
S = 1. Note that the spikes are suppressed in comparison to CTF in Figure 3.28 (b). (b): Cut through
phase-map and QP reconstructed phase map parallel to x-axis for ζ = 0.045 1

µm . Note the qualitative
improvement in comparison to Figure 3.29 (b).

Figure 3.31.: MTF for CTF and quasiparticle approach (QP) (ε = 0.2, ε = 0.4) at z = 1m, E = 10keV,
∆x = 1.6µm, S = 1.

Recall the D-bands in the MOBS case (see Figure 3.24), here we see that DB,n/π ≥ 0.75 for n > 1
so that the extent of the non-linear region is approximately σ̄non-lin ≈ 0.25. Cutting out this region
σ̄non-lin = 0.25, which is associated with the threshold parameter ε = 0.38, gives good suppression of
MTF peaks and therefore suggests a reasonable QP phase-retrieval.
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Figure 3.32.: Retrieved Lena phase-map (zoomed in) with quasiparticle approach. Propagation
parameter: propagation distance z = 10m, energy E = 10keV, pixel size ∆x = 1.6µm, S = 1. (a):
ε = 0 which is equivalent to CTF. (b): ε = 0.2. (c): ε = 0.4. (d): ε = 0.99.



4. Conclusion

In this thesis we have investigated systematically the dependencies of a diffractogram (intensity-contrast
spectrum) on propagated, initially phase-modulated wave fields, the associated propagation distance z
and the strength of the phase variation. The main motivation for this was that in commonly applied
single-distance phase-retrieval approaches (TIE and CTF) small phase variations and/or small values
of z are assumed. For real objects this is not always guaranteed. In case of TIE a short propagation
distance z is required, which in real experiments leads to a poor signal to noise ratio [27].

Shape of the diffractogram
In the local case, which occures in the far-field regime and for small phase variations, the diffractogram
exhibits oscillatory behavior which arises due to sinusoidal contrast transfer. We have shown for
Gaussian phase-maps, that in the near-field regime (large Fresnel number) and/or large phase variation
the diffractogram transmutes critically into an over-damped shape. This behavior could also be
identified for two-scale and multi-scale objects (e.g. as seen in the experimental data of [17]).
We also have investigated the movement of the first regular CTF zero σ1 in the diffractogram under
scaling of the phase variation strength. While for Gaussian phase-maps σ1 moves to higher values under
increases of the phase variation, we could construct two-scale phase maps, where σ1 moves into the
opposite direction. For multi-scale objects, we saw, that this effect is suppressed until the diffractogram
(critically) assumes an over-damped shape.

Scaling linearity
We investigated the scaling linearity of diffractograms. For Gaussian phase-maps a single physical
frequency modulus was identified where the diffractogram scales in a maximally linear way.
We also identified frequency bands DB where the diffractogram exhibits good scaling linearity. We
demonstrated for single-scale and two-scale phase-maps that the width of these bands depends on the
shape of the phase-map and the Fresnel number. We also saw, independently of the phase-map, that
the maximally non-linear scaling behavior occurs around the zeros/minima of the diffractogram (at
integer values of σ/π). This is caused by the slightly movement of the zeros/minima compared to the
CTF case.

53
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Consequences for the phase-retrieval approaches
We compared TIE and CTF in dependence of the propagation distance and the phase-scaling. We
showed that both approaches suffer from poor contrast in the retrieved phase-map for low spatial
frequencies at small propagation distances. This can be explained by the fact that both approaches
assume locality. But in fact, non-local effects are non-negligible in the near field and even can dominate
the spectrum there (recall the transmutation into an over-damped shape of the diffractogram).
At larger propagation distances, the low frequency contrast improves, but TIE suffers from poor
resolution. This is because for TIE, due to the expansion in powers of a small propagation distance,
the high spatial frequencies are suppressed in the retrieved phase-map.
For stronger phase variation CTF causes artifacts due to an amplification of frequencies which are
associated with non-linear scaling. This problem can be mitigated by the quasiparticle (QP) approach.
We demonstrated that the bands of linear scaling DB introduce a good binary threshold filter for QP
phase-retrieval.
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A. Error estimations

This chapter contains the estimation of numerical uncertainties in Chapter 3.

A.1. Onion-shell expansion for Gaussian phase-map - error estimation

The onion-shell expansion contains an infinite summation in l see Eq. (2.80) and an infinite summations
in k see Eq. (2.81). For numerical evaluation both of them need to be truncated at finite order.
Therefore, we introduce the truncation L and c and thus obtain

Fgz =
L∑
l=0

S2l 1
(l!)2 (1− δ0,l)F

[
(φ−φ+)l

]
+ 2S2lF

[
(φ−φ+)l

]
∗
(

sin σ
c∑
k=l

(−1k+l)S2(k−l)+1

(2k + 1− l)!l! F
[
φ2(k−l)+1

])

+ 2S2lF
[
(φ−φ+)l

]
∗

cosσ
c∑

k=l+1

(−1k+l)S2(k−l)

(2k − l)!l! F
[
φ2(k−l)

] .

(A.1)

To estimate how fast Eq. (A.1) converges, with respect to L, we calculate Fgz,L+1−Fgz,L
Fgz,L

.
In Figure A.1 Fgz,L+1−Fgz,L

Fgz,L
, for Gaussian phase-maps, is plotted as a function of σ for various Fω. We

see, that the gained numerical accuracy which we obtain by adding the ninth onion-shell never exceeds
10−7, 10−12 for σ/π > 0.1, respectively.

The second expansion we need to truncate is k at the order c. Two examples of the gained accuracy
when increasing c by one are given in Figure A.2.

In the Sections 3.1.1 and 3.1.3, for numerical evaluations of diffractograms with Fω 6= 0 the first ten
(zeroth to ninth) onion-shells (L = 9) and c = 39 was used. For the evaluations with Fω = 0, the zeroth
onion-shell (L = 0) and c = 39 was used. Because of the good convergence we neglected an explicit
error treatment for further going evaluations, as for example the description of the transition form
damped to oscillatory behavior in Section 3.1.3.

A.2. Non linearity expansion for Gaussian phase-map - error estimation

For the determination of scaling linearity in Section 3.1.4 a non-linearity expansion (see Eq. (2.75)) has
been performed and substituted into Eq.(3.27), using the phase-map Eq. 3.1. An onion-shell expansion
would have been possible, too, but the numerigac evaluation for the non-linearity expansion is faster
and the accuracy sufficient as we demonstrate in this section.
This non linearity expansion has one infinite sum, which needs to be truncated finite order c

eiSφ−e−iSφ+ =
c∑

n=0

(iS)n

n!

n∑
j=0

(−1)jn!
(n− j)!j!φ

n−j
− φj+ . (A.2)
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Figure A.1.: Accuracy estimation for numerical SOBS evaluation using the onion-shell expansion.
Difference by adding the next onion-shell to a certain cut in l. All plots are functions of σ with S = 1,
c = 40 at Fω = 0.01, Fω = 0.1 and Fω = 0.5. (a): Fgz,2−Fgz,1

Fgz,1
, note the fast convergence at Fω for

larger values of σ. (b): Fgz,3−Fgz,2
Fgz,2

. (c): Fgz,6−Fgz,5
Fgz,5

. (d): Fgz,9−Fgz,8
Fgz,8

.

Figure A.2.: Accuracy estimation for numerical SOBS evaluation using the onion-shell expansion.
Difference by increasing c by one. All plots are a function of σ with S = 1, L = 9 and at Fω = 0.01,
Fω = 0.1 and Fω = 0.5. (a): |Fgz,c=10−Fgz,c=9

Fgz,c=9
|. (b): |Fgz,c=11−Fgz,c=10

Fgz,c=10
|.
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Figure A.3.: Accuracy estimation for numerical SOBS evaluation using the non-linearity expansion by
investigating the difference in Fgz when increasing c by one. (a):

∣∣∣Fgz,c=10−Fgz,c=9
Fgz,c=9

∣∣∣ (b): ∣∣∣Fgz,c=15−Fgz,c=14
Fgz,c=14

∣∣∣

Figure A.4.: Accuracy estimation of DS (Gaussian SOBS) by investigating the difference in DS when
increasing c by one. (a):

∣∣∣DS,c=10−DS,c=9
DS,c=9

∣∣∣ (b): ∣∣∣DS,c=15−DS,c=14
DS,c=14

∣∣∣
In Figure A.3 the difference of

∣∣∣Fgz,c−Fgz,c−1
Fgz,c−1

∣∣∣ for c = 10 (a) and c = 15(b) is plotted as a function
of σ. This also is done for DS (for definition see Eq.(3.27)) in Figure A.4. In Section 3.1.4 we used
c = 15. We can see in Figure A.3 and Figure A.4 that a high precision precision is archived due to this
truncation and therefore we can neglect further error treatment here.
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Figure A.5.: Accuracy estimation of Fgz (TOBS) by investigating the difference in Fgz when increasing
c = 14 to c = 15

(∣∣∣Fgz,c=15−Fgz,c=14
Fgz,c=14

∣∣∣) . (a): Plus-case at Fω = 0.01. (b): Plus-case at Fω = 0.1. (c):
Minus-case at Fω = 0.01. (d): Minus-case at Fω = 0.1. All cases are plotted for Ω = 0.05, 0.25, 0.75.

A.3. Non-linearity expansion for TOBS - error estimation
For the numerical evaluation of TOBS the non-linearity expansion Eq. (3.34) has been used with a
truncation at the order c = 15. To estimate the accuracy of this truncation we investigated the gain in
accuracy when increasing c = 14 to c = 15 (analogue to Section A.2).

In Figure A.5 the difference of
∣∣∣Fgz,c=15−Fgz,c=14

Fgz,c=14

∣∣∣ is plotted for the plus- and minus-case and the second
scale factor Ω = [0.05, 0.25, 0.75]. We see that the gained accuracy never exceeds 10−5. In Section 3.2
C = 15 is used and therefore, it justifiable to neglect further error treatment due to this truncation.

Analog
∣∣∣Dz,c=15−Dz,c=14

Dz,c=14

∣∣∣ is plotted in Figure A.6. The gained accuracy never exceeds 1 · 10−3, so we can
assume sufficient accuracy for c = 15, which we used in Section 3.2.

A.4. DS-function (MOBS) - error estimation
In Section 3.3.2 DS is introduced for discrete and numerical calculated diffractograms. The accuracy
of DS is determined by the number N , and therefore determining the scaling steps δS = S2−S1

N , of
diffractograms used to calculate the derivatives. For the evaluations of MOBS DS in this thesis N = 100
has been used.
To estimate the N -dependence DS,N=200(σ)−DS,N=100(σ)

DS,N=100
(σ) is plotted in Figure A.7. We see, that the

improved accuracy by doubling N to N = 200 never exceeds 0.03. This implies good convergence of
DS in N and justifies the use of N = 100 in our evaluations.
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Figure A.6.: Accuracy estimation of DS (TOBS) by investigating the difference in DS when increasing
c = 14 to c = 15

(∣∣∣DS,c=15−DS,c=14
DS,c=14

∣∣∣) . (a): Plus-case at Fω = 0.01. (b): Plus-case at Fω = 0.1. (c):
Minus-case at Fω = 0.01. (d): Minus-case at Fω = 0.1. All cases are plotted for Ω = 0.05, 0.25, 0.75.

Figure A.7.: Accuracy estimation of DS (MOBS). The diffractograms of Lena phase-map (1024×1024
pixel) with E = 1keV, z = 1m and ∆x = 1.6µm in the scaling-window S = [0, 1.5] was used to calculate
DS . Here the normalized difference of DS under the change from N = 100 to N = 200 is plotted
(DS,N=200−DS,N=100

DS,N=100
). Note that max

(
DS,N=200(σ)−DS,N=100(σ)

DS,N=100
(σ)
)
−min

(
DS,N=200(σ)−DS,N=100(σ)

DS,N=100
(σ)
)

does not exceed 0.03. Therefore implies sufficient convergence.
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