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Institut f ür Synchrotronstrahlung (KIT) and
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plan
◮ Maxwell’s equations in vacuum:

U(1) gauge symmetry

◮ black-body radiation: Planck’s radiation law

◮ exp. and theor. problems with U(1) gauge symmetry

◮ What if SU(2)→ U(1)?
(mod. black-body rad. at low temp.→ implications)

◮ Subleties in falsifying/confirming low-T BB anomaly
(thermal ground state: external fields)

◮ Proposed principal experimental set-up
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Maxwell’s equations in vacuum

(units: c = 1)
∂µFµν = 0 , ∂µǫµνκλ Fκλ = 0 (Bianchi) , (1)

whereFµν = ∂µAν − ∂νAµ , Fij = ǫijkBk , F0i = Ei .

– (1) possesses gauge symmetry:Aµ → Aµ + ∂µφ ,
real-valued scalar functionφ parameterizes
U(1) group element

U = exp(iφ) ⇒ Aµ → Aµ − iU †∂µU

⇒ U(1) gauge group of electromagnetism.Really?
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Black-body Radiation

– Planck’s radiation law (SI units):

IU(1)(ω) =
~

2π2c2

ω3

exp((~ω)/(kBT ) − 1
. (2)

– total radiated powerP :

P ∝ T 4 (Stefan-Boltzmann). (3)

– discovery of new constant of Nature

h = 6.6260693 × 10−34 Js= 4.13566743 × 10−15 eV s.
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Cosmic Microwave Background

– black-body shape (ω > 1 cm−1, COBE-FIRAS 1992-94):

moduloδT/T ∼ 10−2: T̄ = 2.725 Kelvin
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Universe’s radiation history
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Angular power spectrum
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Angular correlation anomaly
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[Copi, Huterer, Schwarz, and Starkman, MNRAS 2008]
Low frequency and low temperatureblack-body anomaly – p.8/28



CMB line temperatures
– balloon-borne and ground-based measurements of

CMB line temperatures at low frequencies
⇒ UEGE
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Theor. problem with U(1):
– quantum electrodynamics (QED) predicts rise of

the coupling with increasing momentum transferQ2

e e −− γ

γ ext

α(Q2) =
α0

1 − α0

3π
log Q2

Q2

0

. (4)

(more of naked charge is seen for largerQ2;

Landau unhappy: asymptotic slavery)
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Observ. problem with U(1):
– naive estimate of ground-state energy densityρgs

⇒ 10120 times the measured value of

ρgs
exp ∼ (10−3 eV)4 . (5)

⇒ U(1) based QED represents both:

biggest success(e− anomalous magnetic moment) and
biggest failure (cosmological constant)

of ascientific theory.
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What if SU(2)→ U(1)?
– consider pure gauge theory subject to

nonabeliangauge symmetry SU(2)⇒

propagating modes (naively: 3 photons)

φ

nonpropagating field configs. (ground state)

massivemassless

   homogeneous

spatial coarse−
graining

– SU(2)dynamically broken to U(1)
(thermal ground state)

[RH, IJMPA 2005]
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SU(2): Phase diagram

confining preconfining

ground state:

condensate of 
magnetic 
monopoles, 
collapsing center−
vortex loops,
negative pressure

excitations: massless and massive gauge modes

ground state: interacting calorons and anticalorons, negative pressure

power−like approach to Stefan Boltzmann limit

deconfining

2nd order likeHagedorn

excitations:

massive dual 
gauge modes

Cooper−pair condensate
of single center−

ground state:

vortex loops, pressure
precisely zero

excitations:

massless (single) 
and massive (self−
intersecting) center−
vortex loops 
(spin−1/2 fermions)

T
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Modified γ dispersion law
(c = ~ = kB = 1)

– ω2 = |~p|2 → ω2 = |~p|2 + G(|~p|, T ); G computable as:

�e, λ

c, ρ

f , κ

d, σ

p

p − k

k

p
µ, a = 3 ν, b = 3 �c, ρ d, σ

p p

k

µ, a = 3 ν, b = 3

A B

– result forG[IJMPA 2007, AdP 2008]:
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What is Tc?
– atTc : γ starts to acquire aMeissner massmγ

(monopole condensate)⇒

for ω ≤ mγ: γ is evanescent.

– CMB observational situation at lowω

(ground based: radiofrequency surveys 1980ies;

balloon-borne: Arcade2 2004-2008):

T (ω) = 2.725 K + 1.19 K
( ω

1 GHz

)−2.62

. (6)
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Unexpl. Extragal. Emission

calibrator at T=100T c

c

I γ /Τc
3

y= ω/Tc

calibrator at T=10T c

calibrator at T=1000T c

evanescent fields

calibrator at T=3T c

calibrator at T=T c

CMB−photons at T=T 

(extracted value:mγ ∼ 100 MHz)

[RH, AdP 2009]
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Modified BB spectrum
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[Schwarz, RH, Giacosa; Ludescher and RH; Falquez, RH, Baumbach (prep.)]

Low frequency and low temperatureblack-body anomaly – p.17/28



Implication I:
– Cold, dilute, old, and stable H1 clouds:

location, long. extent:outer edge of Milky way, 10 kPc
age:5 × 107 y; composition: mainly H1;
density: ∼ 1 cm−3

[Brunt and Knee, Nature 2001] Low frequency and low temperatureblack-body anomaly – p.18/28



Implication II:
– dynamical component to CMB dipole:

puzzle: rel. Doppler effect⇒ vrel-CMB in contradiction
to gravitationally inferred infall velocity
of Local GrouptowardsVirgo Cluster
discrepancy:gradient to CMBT profile⇒
Dipole possesses dynamic component (BB anomaly)

[Szopa and RH, JCAP 2008; Ludescher and RH, arXiv 2009]
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Implication III:
– Primordial nucleosynthesis:

atTfreeze-out∼ 1 MeV for fixed ratio neutrons/protons:

H = Γweak. (7)

SU(2)⇒ 6 add. rel. dof’s⇒ GF 10% larger⇒
EW symmetrynot broken by Higgs sectorin SM!

[Schwarz, RH, Giacosa, JHEP 2008]Low frequency and low temperatureblack-body anomaly – p.20/28



Subleties of a measurement
The problem of external fields:

Tada et. al[M. Tada et al, PLA 2006]
measure BB line temperature at:
2.527 GHz forT = 67...1000 mK .
result:no deviation from Planck radiation law ?!

resolution:strayE-field of | ~E| ∼25 mV/cm in cavity
⇒ external energy densityρE = 172 MeV/m3

but: internal energy densityρg.s. =
T
Tc

× 463 keV/m3.

⇒ ρE ∼ 170 × ρg.s. for T ∼ 2Tc

⇒ Teff is Teff ∼ 350Tc

⇒ SU(2) shows perfect U(1) behavior.
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Effect of external E-field on thermal ground state:

E−field

(iii)
(ii) by collisions dissipation of external field energy 

virialization generates an effective ground state temperature disparate   
to temperature of massless excitations

(i) monopole−antimonopole acceleration and separation
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lesson:

– externalE-fields screened well below
| ~E| ∼ 0.6 mV/cm (criterion:ρE ≤ 0.1 ρg.s.)

– Rydberg-atom single photon counting experiment
by Tada et al. not a valid SU(2) test

– photon mass extractions at
external energy densities aboveρg.s.

nothing to do with prediction atT , say, 5 K

– static externalB-fields
not expected to have a large effect;
to be safe, however, screen magnetic

energy density to well belowρg.s.
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Proposed experiment
A: fixed frequency, line-temperature difference:

SU(2) nulled by U(1) intensity
in dep. of SU(2) wall temp.

B: fixed frequency, intensity difference:

diff. SU(2) and U(1) intensity

in dep. of common wall temp.
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Sketch of set-up

H
E

M
T

identical horn antennas
optimzed to 22 GHz

(geo)magnetic shielding 

electric shielding

E−field, 25 mV/cm

BB cavity wall warm amplification 

U(1) half cavitySU(2) half cavity

BB cavity separation wall

Cryo enrironment plus wall temperature diagnostics  
SU(2) half

cold amplification

T=5 ... 20 K

Cryo enrironment plus wall temperature diagnostics  

U(1) half (T independently adjustable from SU(2) half)

T=5 ... 30 K

Principal set−up proposed to measure U(1) line temperature of SU(2) intensity at fixed frequency as 
function of SU(2) temperature.

The static electric field in the U(1) half cavity lifts the thermal ground state to an effective  temperature  
where photons no longer  experience SU(2) effects. 
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Proposed experiment A:
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Proposed experiment B:
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Summary
– gauge principle for electrodynamics

– problems with U(1)

– nonperturbative SU(2) as alternative

– critical temperature

– prediction of BB anomaly at lowT and lowω

– cosm., astroph., and particle-physics implications

– prediction for U(1) line temperature
as function of BB temperature

+ principal proposed experimental set-up

Thank you.
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