SU(2)$_{\text{CMB}}$ at high redshifts and the value of H_0

Steffen Hahn | March 22, 2017 | 5th Winter Workshop on Nonpertubative Quantum Field Theory, IN ΦNI
Outline

1. Motivation
 - tension between H_0 values
 - CMB anomalies

2. H_0 from high-z ΛCDM
 - sound horizon r_s
 - ΛCDM model

3. H_0 from high-z SU(2)$_{\text{CMB}}$
 - differences between SU(2)$_{\text{CMB}}$ and ΛCDM
 - straight-forward calculation of r_s in SU(2)$_{\text{CMB}}$
 - reinterpretation of v_b freeze out condition

4. Speculative interpolation of high- and low-z models
 - Planck-scale axion
 - PSA vortices: percolation/depercolation model

5. Summary and outlook
Motivation

1. Motivation
 - tension between H_0 values
 - CMB anomalies

2. H_0 from high-z ΛCDM
 - sound horizon r_s
 - ΛCDM model

3. H_0 from high-z SU(2)$_{CMB}$
 - differences between SU(2)$_{CMB}$ and ΛCDM
 - straight-forward calculation of r_s in SU(2)$_{CMB}$
 - reinterpretation of ν_b freeze out condition

4. Speculative interpolation of high- and low-z models
 - Planck-scale axion
 - PSA vortices: percolation/depercolation model

5. Summary and outlook
Tension between H_0 values

Figure 1: CMB (red, [AAA$^+16$]) vs. local cosmological observation (gray, [RMH$^+16$]).
Tension between H_0 values

Figure 2: H0LiCOW measurement of H_0 (blue, [BCS$^{+16}$]).
What is H_0?

Definition: Hubble parameter

$$H_0 = \left. \frac{\dot{a}(t)}{a(t)} \right|_{t_0}, \quad ds^2 = dt^2 - a^2(t) \, dr^2 \quad (\text{FLRW metric, } a_0 = a(t_0) = 1) \quad (1)$$

- current expansion rate of the universe
- measure for the age of the universe
- important for cosmologically local distance calibrations

Definition: cosmological redshift

$$z = \frac{1}{a} - 1, \quad z(t_0) = 0, \quad z(0) = \infty \quad (2)$$

- redshift due to cosmological expansion (the earlier the higher)
What is H_0?

Definition: Hubble parameter

\[
H_0 = \frac{\dot{a}(t)}{a(t)} \bigg|_{t_0} , \quad ds^2 = dt^2 - a^2(t) \, dr^2 \quad \text{(FLRW metric, } a_0 = a(t_0) = 1) \quad (1)
\]

- current expansion rate of the universe
- measure for the age of the universe
- important for cosmologically local distance calibrations

Definition: cosmological redshift

\[
z = \frac{1}{a} - 1, \quad z(t_0) = 0, \quad z(0) = \infty \quad (2)
\]

- redshift due to cosmological expansion (the earlier the higher)
Figure 3: Different Rayleigh-Jeans line temperature fits [FKL+11].
CMB anomalies: early reionization

What is reionization?
- late time effect due to non-linear structure growth
- ignition of star-like objects (e.g. quasars...)
- ionizing spectral components of radiation ⇒ reionization

Detection using quasar light
- quasars are very old and have a very high luminosity
- emission during reioniz. implies Gunn-Peterson trough in spectrum
 ⇒ \(z_i \sim 6 \) ([BFW⁺01])

Calculation out of CMB anisotropies
- CMB photons scatter off free electrons (Thomson)
- fit of optical depth to TT angular power spectrum of CMB
 ⇒ \(z_i \sim 8.8 \) ([AAA⁺16]), \(z_i \sim 11 \) ([AAAC⁺14])

Motivation
- \(H_0 \) from high-z \(\Lambda \)CDM
- \(H_0 \) from high-z SU(2)_{CMB}
- Speculative interpolation of high- and low-z models
- Summary and outlook

Steffen Hahn – SU(2)_{CMB} at high redshifts and the value of \(H_0 \)

March 22, 2017
CMB anomalies: early reionization

What is reionization?
- late time effect due to non-linear structure growth
- ignition of star-like objects (e.g. quasars...)
- ionizing spectral components of radiation ⇒ reionization

Detection using quasar light
- quasars are very old and have a very high luminosity
- emission during reioniz. implies Gunn-Peterson trough in spectrum
 \[z_i \sim 6 \] ([BFW+01])

Calculation out of CMB anisotropies
- CMB photons scatter off free electrons (Thomson)
- fit of optical depth to TT angular power spectrum of CMB
 \[z_i \sim 8.8 \] ([AAA+16]), \[z_i \sim 11 \] ([AAAC+14])
CMB anomalies: early reionization

What is reionization?

- late time effect due to non-linear structure growth
- ignition of star-like objects (e.g. quasars...)
- ionizing spectral components of radiation ⇒ reionization

Detection using quasar light

- quasars are very old and have a very high luminosity
- emission during reionization implies Gunn-Peterson trough in spectrum
 ⇒ $z_i \sim 6$ ([BFW+01])

Calculation out of CMB anisotropies

- CMB photons scatter off free electrons (Thomson)
- fit of optical depth to TT angular power spectrum of CMB
 ⇒ $z_i \sim 8.8$ ([AAA+16]), $z_i \sim 11$ ([AAAC+14])
Motivation

H_0 from high-z ΛCDM

H_0 from high-z SU(2)$_{\text{CMB}}$

Speculative interpolation of high- and low-z models

Summary and outlook

Steffen Hahn – SU(2)$_{\text{CMB}}$ at high redshifts and the value of H_0

March 22, 2017

8/43

CMB anomalies: large angles

Figure 4: Large angle suppression in TT(θ) [SH08], [CHSS10]. (Low variance of temperature fluctuations in ecliptic northern hemisphere.)
CMB anomalies: large angles

Figure 5: CMB cold spot (non-gaussianity of temperature fluctuations) [Vie10].
CMB anomalies: large angles

Figure 6: Alignment low-\(l\) CMB multipoles [TOCH03, OCTZH04, CHSS06]
H_0 from high-z $Λ$CDM

1. **Motivation**
 - tension between H_0 values
 - CMB anomalies

2. **H_0 from high-z $Λ$CDM**
 - sound horizon r_s
 - $Λ$CDM model

3. **H_0 from high-z SU(2)$_{CMB}$**
 - differences between SU(2)$_{CMB}$ and $Λ$CDM
 - straight-forward calculation of r_s in SU(2)$_{CMB}$
 - reinterpretation of $ν_b$ freeze out condition

4. **Speculative interpolation of high- and low-z models**
 - Planck-scale axion
 - PSA vortices: percolation/depercolation model

5. **Summary and outlook**
Sound horizon r_s

Definition: sound horizon

\[
 r_s(z) = \int_z^{\infty} dz' \frac{c_s(z')}{H(z')}, \quad c_s(z) = \frac{1}{\sqrt{3(1 + R(z))}}
\]

- Computable in high-z model
- c_s sound velocity that propagates baryonic acoustic oscillations

Definition

\[
 R(z) = \frac{3}{4} \frac{\rho_{b,0}}{\rho_{\gamma,0}} \cdot \frac{(z + 1)^3}{(z + 1)^4} = 111.019 \eta_{10} \cdot \frac{(z + 1)^3}{(z + 1)^4}, \quad \eta_{10} = \frac{n_{b,0}}{n_{\gamma,0}} 10^{-10}
\]

- $n_{\gamma,0}$ out of T_0
- η_{10} z-independent in ΛCDM (no longer z-independent if CMB photons subject to SU(2)$_{\text{CMB}}$)

Motivation

- H_0 from high-z ΛCDM
- H_0 from high-z SU(2)$_{\text{CMB}}$
- Speculative interpolation of high- and low-z models
- Summary and outlook

Steffen Hahn – SU(2)$_{\text{CMB}}$ at high redshifts and the value of H_0

March 22, 2017
Sound horizon r_s

Definition: sound horizon

\[
 r_s(z) = \int_{z}^{\infty} \frac{c_s(z')}{H(z')} \, dz', \quad c_s(z) = \frac{1}{\sqrt{3(1 + R(z))}} \tag{3}
\]

- computable in high-z model
- c_s sound velocity that propagates baryonic acoustic oscillations

Definition

\[
 R(z) = \frac{3}{4} \frac{\rho_{b,0}}{\rho_{\gamma,0}} \cdot \frac{(z + 1)^3}{(z + 1)^4} = 111.019 \eta_{10} \cdot \frac{(z + 1)^3}{(z + 1)^4}, \quad \eta_{10} = \frac{n_{b,0}}{n_{\gamma,0}} 10^{-10} \tag{4}
\]

- $n_{\gamma,0}$ out of T_0
- η_{10} z-independent in ΛCDM (no longer z-independent if CMB photons subject to SU(2)$_{\text{CMB}}$)
Nearly model independ. extract. of $r_s H_0$

Figure 7: $r_s - H_0$ relation (yellow) [BVR16].

Steffen Hahn – SU(2)$_{\text{CMB}}$ at high redshifts and the value of H_0

Motivation

H_0 from high-z ΛCDM

H_0 from high-z SU(2)$_{\text{CMB}}$

Speculative interpolation of high- and low-z models

Summary and outlook

March 22, 2017
Which value of decoup. \(z \) determines \(r_s \)?

Definition: optical depth

\[
\tau (z^*) = \int_{t(z^*)}^{t_0} dt \dot{\tau} = \sigma T \int_0^{z^*} dz \frac{\chi_e (z) n_e^b (z)}{(z + 1) H(z)} = 1
\]

- \(\dot{\tau} \) from Thomson scattering (without reionization!)
- decoupling of photons at recombination

Definition: drag depth

\[
\tau_d (z_d) = \int_{t(z_d)}^{t_0} dt \dot{\tau}_d = \sigma T \int_0^{z_d} dz \frac{\chi_e (z) n_e^b (z)}{(z + 1) H(z) R(z)} = 1
\]

- baryon velocity freeze out, end of drag epoch (Compton drag)
- corresponding \(r_s \) visible in today's matter correlation function
Which value of decoup. z determines r_s?

Definition: optical depth

$$
\tau(z_*) = \int_{t(z_*)}^{t_0} dt \frac{\dot{\tau}}{\dot{\tau}} = \sigma_T \int_0^{z_*} dz \frac{\chi_e(z) n^b_e(z)}{(z + 1) H(z)} \equiv 1
$$

- $\dot{\tau}$ from Thomson scattering (without reionization!)
- decoupling of photons at recombination

Definition: drag depth

$$
\tau_d(z_d) = \int_{t(z_d)}^{t_0} dt \frac{\dot{\tau}_d}{\dot{\tau}_d} = \sigma_T \int_0^{z_d} dz \frac{\chi_e(z) n^b_e(z)}{(z + 1) H(z) R(z)} \equiv 1
$$

- baryon velocity freeze out, end of drag epoch (Compton drag)
- corresponding r_s visible in todays matter correlation function
Clarification

Definition: electron number density

\[n_e^b = (1 - Y_p) n_{b,0} (z + 1)^3 \text{ cm}^{-3} \] (7)

- electrons before recombination II (hydrogen)
- \(Y_p \) Helium mass fraction in baryons

Definition: ionization fraction

\[\chi_e (z) = \frac{n_e (z)}{n_e^b} \] (8)

- \(\chi_e \) is computed with the recfast [Sco] (Boltzmann code)
Definition: electron number density

\[n_e^b = (1 - Y_p) n_{b,0} (z + 1)^3 \text{ cm}^{-3} \] (7)

- electrons before recombination II (hydrogen)
- \(Y_p \) Helium mass fraction in baryons

Definition: ionization fraction

\[\chi_e(z) = \frac{n_e(z)}{n_e^b} \] (8)

- \(\chi_e \) is computed with the recfast [Sco] (Boltzmann code)
Figure 8: χ_e marks recombination epoch.
ΛCDM model

Definition: critical density (today)
\[\rho_{C,0} = \frac{3}{8\pi G} H_0^2 \] \hspace{1cm} (9)

- out of Hubble equation in limit of flat universe
- \(G \) denotes Newton’s constant

Definition: \(z \) dependence of \(H(z) \)
\[\frac{H(z)}{H_0} = \sqrt{\Omega_{\Lambda,0} + (\Omega_{b,0} + \Omega_{DM,0}) (z + 1)^3 + \Omega_{r,0} (z + 1)^4} \] \hspace{1cm} (10)

- \(\Omega_{x,0} \): proportion of stuff \(x \) normalized to critical density \(\rho_{C,0} \)
- matter scaling: \((z + 1)^3\), radiation scaling: \((z + 1)^4\)
ΛCDM model

Definition: critical density (today)

\[
\rho_{C,0} = \frac{3}{8\pi G} H_0^2
\]

- out of Hubble equation in limit of flat universe
- \(G \) denotes Newton’s constant

Definition: \(z \) dependence of \(H(z) \)

\[
\frac{H(z)}{H_0} = \sqrt{\Omega_{\Lambda,0} + (\Omega_{b,0} + \Omega_{DM,0}) (z + 1)^3 + \Omega_{r,0} (z + 1)^4}
\]

- \(\Omega_{x,0} \): proportion of stuff \(x \) normalized to critical density \(\rho_{C,0} \)
- matter scaling: \((z + 1)^3\), radiation scaling: \((z + 1)^4\)
What is $\Omega_{r,0}$? High-z approximation.

Definition: radiative fraction (ΛCDM)

$$\Omega_{r,0} = \Omega_{\gamma,0} + \Omega_{\nu,0} = \left(1 + \frac{7}{8} \left(\frac{4}{11}\right)^{\frac{4}{3}} N_{\text{eff}}\right) \Omega_{\gamma,0} \quad (11)$$

- $7/8$ correction due to neutrinos being Fermions and Photons Bosons
- $4/11$ can be obtained out of entropy conserv. of $e^+ e^-$ annihilation
- N_{eff} fit parameter (represents effective number of massless neutrinos)

High-z approximation

$$\frac{H(z)}{H_0} \approx \sqrt{(\Omega_{b,0} + \Omega_{DM,0}) (z + 1)^3 + \Omega_{r,0} (z + 1)^4} \quad (12)$$

- since $\Omega_{\Lambda,0} < 1$ it can be neglected for $100 < z$
What is $\Omega_{r,0}$? High-z approximation.

Definition: radiative fraction (ΛCDM)

$$\Omega_{r,0} = \Omega_{\gamma,0} + \Omega_{\nu,0} = \left(1 + \frac{7}{8} \left(\frac{4}{11}\right)^{\frac{4}{3}} N_{\text{eff}}\right) \Omega_{\gamma,0}$$ \(11\)

- 7/8 correction due to neutrinos being Fermions and Photons Bosons
- 4/11 can be obtained out of entropy conserv. of e^+e^- annihilation
- N_{eff} fit parameter (represents effective number of massless neutrinos)

High-z approximation

$$\frac{H(z)}{H_0} \approx \sqrt{(\Omega_{b,0} + \Omega_{DM,0})(z + 1)^3 + \Omega_{r,0}(z + 1)^4}$$ \(12\)

- since $\Omega_{\Lambda,0} < 1$ it can be neglected for $100 < z$
Calculation of r_s in ΛCDM

Parameters with errors ([AAA$^+$16])

- $\Omega_{b,0} h^2 = 0.0222 \pm 0.0002$
- $\Omega_{DM,0} h^2 = 0.1199 \pm 0.0022$
- $N_{\text{eff}} = 3.15 \pm 0.23$
- $Y_p = 0.252 \pm 0.041$

Parameters without errors (calculated out of $T_0 = 2.725$ K)

- $\Omega_{\gamma,0} h^2 = 2.468 \times 10^{-5}$

Definition: h

\[H_0 = h \cdot 100 \text{ km/s/Mpc} \quad (13) \]
Calculation of r_s in ΛCDM

Parameters with errors ([AAA+16])

- $\Omega_{b,0} h^2 = 0.0222 \pm 0.0002$
- $\Omega_{DM,0} h^2 = 0.1199 \pm 0.0022$
- $N_{\text{eff}} = 3.15 \pm 0.23$
- $Y_p = 0.252 \pm 0.041$

Parameters without errors (calculated out of $T_0 = 2.725$ K)

- $\Omega_{\gamma,0} h^2 = 2.468 \times 10^{-5}$

Definition: h

$$H_0 = h \cdot 100 \text{ km/s/Mpc} \quad (13)$$

Motivation: H_0 from high-z ΛCDM H_0 from high-z SU(2)$_{\text{CMB}}$ Speculative interpolation of high- and low-z models Summary and outlook

Steffen Hahn – SU(2)$_{\text{CMB}}$ at high redshifts and the value of H_0

March 22, 2017

17/43
Calculation of r_s in ΛCDM

Figure 9: ΛCDM, $r_s(z_*)$ (orange, lower), ΛCDM, $r_s(z_d)$ (green, upper)
Error estimation

1. Generate gaussian distributed random value
 \[\{\Omega^{(i)}_{b,0}, \Omega^{(i)}_{DM,0}, N^{(i)}_{\text{eff}}, Y^{(i)}_p\} \]

2. Calculate \(z^{(i)}_x \)

3. Calculate \(r^{(i)}_s \)

4. Enough values?
 - Yes
 - Use \(\{z_x\}, \{r_s\} \) for histogram, fit gaussian
 - No
 - Repeat \(i \rightarrow (i + 1) \)

Motivation

- \(H_0 \) from high-z ΛCDM
- \(H_0 \) from high-z SU(2)_{CMB}
- Speculative interpolation of high- and low-z models
- Summary and outlook

Steffen Hahn – SU(2)_{CMB} at high redshifts and the value of \(H_0 \)

March 22, 2017

Motivation
- tension between H_0 values
- CMB anomalies

H_0 from high-z ΛCDM
- sound horizon r_s
- ΛCDM model

H_0 from high-z SU(2)$_{\text{CMB}}$
- differences between SU(2)$_{\text{CMB}}$ and ΛCDM
- straight-forward calculation of r_s in SU(2)$_{\text{CMB}}$
- reinterpretation of ν_b freeze out condition

Speculative interpolation of high- and low-z models
- Planck-scale axion
- PSA vortices: percolation/depercolation model

Summary and outlook
Table 1: Cosmological high-z models: ΛCDM versus $SU(2)_{CMB}$.

<table>
<thead>
<tr>
<th></th>
<th>ΛCDM</th>
<th>$SU(2)_{CMB}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T/T_0</td>
<td>$z+1$</td>
<td>$0.63(z+1)$</td>
</tr>
<tr>
<td>Ω_{DM}</td>
<td>Ω_{DM}</td>
<td>0</td>
</tr>
<tr>
<td>N_{ν}</td>
<td>N_{eff}</td>
<td>3</td>
</tr>
<tr>
<td>T_ν/T</td>
<td>$\left(\frac{4}{11}\right)^{1/3}$</td>
<td>$\left(\frac{16}{23}\right)^{1/3}$</td>
</tr>
</tbody>
</table>
Figure 10: ΛCDM behaviour (blue, dashed), SU(2)\textsubscript{CMB} behaviour (red solid, [Hof15])
T(z)-scaling

Definition: high z behaviour

\[
\frac{T(z)}{T_0} \xrightarrow{z \gg 10} 0.63 (z + 1)
\]

1. fundamental different \(T(z)\) scaling (curvature in \(T\) divided by \(z + 1\) which reflects presence of Yang Mills scale \(\Lambda_{\text{CMB}} \sim 1 \times 10^{-4} \text{ eV}\))
2. recovery of linear relation at high \(z\) albeit subject to lower slope
3. \(\text{SU}(2)_{\text{CMB}}\) gas has 8 instead of 2 relativistic degrees of freedom

Today's checks of \(T(z)\)

\[
T(z) = T_0 (z + 1)^{1 - \beta}
\]
T(z)-scaling

Definition: high z behaviour

\[
\frac{T(z)}{T_0} \xrightarrow{z \gg 10} 0.63 (z + 1)
\]

(14)

- fundamental different \(T(z) \) scaling (curvature in \(T \) divided by \(z + 1 \) which reflects presence of Yang Mills scale \(\Lambda_{\text{CMB}} \sim 1 \times 10^{-4} \text{ eV} \))
- recovery of linear relation at high \(z \) albeit subject to lower slope
- \(\text{SU}(2)_{\text{CMB}} \) gas has 8 instead of 2 relativistic degrees of freedom

Today's checks of \(T(z) \)

\[
T(z) = T_0 (z + 1)^{1-\beta}
\]

(15)

- thermal Sunyaev-Zeldovich effect [LGSM\(^+\)15]
- molecular rotation spectra [MBB\(^+\)13]
\[\Delta l_{\text{tSZ}} = \frac{T_0^3}{2\pi^2 (e^x - 1)^2} x^4 e^x \tau (\theta f(x) - v_r + R(x, \theta, v_r)) , x = \omega / T \] (16)

- electrons of hot plasma scatter off CMB photons
- first order approximation (deviation of Planck spectrum)
 \[\Rightarrow \beta \approx 0 !? \]
- adiabatically slow expansion implies that photon spectra depend on one mass scale only: \(T \)
 \[\Rightarrow \omega \text{ scales as } T \text{ does (prejudice of } \omega \text{ implies prejudice of } T) \]
- analogous argumentation for rotation spectra

Motivation
- \(H_0 \) from high- \(z \) \(\Lambda \)CDM
- \(H_0 \) from high- \(z \) \(SU(2)_{\text{CMB}} \)
- Speculative interpolation of high- and low- \(z \) models

Summary and outlook
- Steffen Hahn – \(SU(2)_{\text{CMB}} \) at high redshifts and the value of \(H_0 \)
- March 22, 2017
$T(z)$-scaling?!

Sunyaev-Zeldovich effect

\[
\Delta l_{tSZ} = \frac{T_0^3}{2\pi^2} \frac{x^4 e^x}{(e^x - 1)^2} \tau (\theta f(x) - v_r + R(x, \theta, v_r)) , \quad x = \omega / T
\] (16)

- electrons of hot plasma scatter off CMB photons
- first order approximation (deviation of Planck spectrum)
 \[\Rightarrow \beta \approx 0 !? \]
- adiabatically slow expansion implies that photon spectra depend on one mass scale only: T
 \[\Rightarrow \omega \text{ scales as } T \text{ does} \text{ (prejudice of } \omega \text{ implies prejudice of } T) \]
- analogous argumentation for rotation spectra

Motivation H_0 from high-z ΛCDM H_0 from high-z SU(2)$_{\text{CMB}}$ Speculative interpolation of high- and low-z models Summary and outlook

Steffen Hahn – SU(2)$_{\text{CMB}}$ at high redshifts and the value of H_0
Figure 11: New scaling can be fitted by even function:

\[y \approx 0.2\pi + 0.1x^2 + 0.9x^4 - 1.4x^6 + 1.1x^8 - 0.3x^{10} \] (red solid), checked scaling (cyan, dashed, \(\beta \approx 0.6 \))
With recombination \(T_\ast \sim 3000 \text{ K} \)

\[
1800 \sim z_{\text{dec}}^{(\text{SU}(2)_{\text{CMB}})} > z_{\text{dec}}^{(\Lambda \text{CDM})} \sim 1100
\]

\[
\left(\frac{1100}{1800}\right)^3 \sim \frac{\Omega_{b,0}}{\Omega_{b,0} + \Omega_{\text{DM},0}}
\]

- matter domination, radiation doesn’t play a role at decoupling

\(\Omega_{\text{DM}} \) at high \(z \)
Neutrino N_ν and T_ν

- here not a fit parameter (N_{eff})
- $N_\nu = 3$ (missing width in Z_0 decay)

Conversion neutrino to photon T

$$
\left(\frac{T_\nu}{T} \right)^3 = \frac{g_1}{g_0} = \begin{cases}
\frac{4}{11}, & g_1 = 2, g_0 = 2 + \frac{7}{8}4 & (\Lambda \text{CDM}) \\
\frac{16}{23}, & g_1 = 8, g_0 = 8 + \frac{7}{8}4 & (\text{SU}(2)_{\text{CMB}})
\end{cases}
$$

- change in relativistic degrees of freedom
- g_1 relativistic degrees after, g_0 relativistic degrees before $e^+ e^-$ annihilation
Neutrino N_ν and T_ν

- here not a fit parameter (N_{eff})
- $N_\nu = 3$ (missing width in Z_0 decay)

Conversion neutrino to photon T

$$
\left(\frac{T_\nu}{T} \right)^3 = \frac{g_1}{g_0} = \begin{cases}
\frac{4}{11}, & g_1 = 2, \ g_0 = 2 + \frac{7}{8} 4 \quad (\Lambda \text{CDM}) \\
\frac{16}{23}, & g_1 = 8, \ g_0 = 8 + \frac{7}{8} 4 \quad (\text{SU}(2)_{\text{CMB}})
\end{cases}
$$

- change in relativistic degrees of freedom
- g_1 relativistic degrees after, g_0 relativistic degrees before $e^+ e^-$ annihilation
SU(2)$_{\text{CMB}}$ model

High-z Hubble parameter

$$\frac{H(z)}{H_0} \approx \sqrt{\Omega_{b,0} (z + 1)^3 + \Omega_{\gamma,0} \frac{8}{2} \left(1 + \frac{7}{32} \left(\frac{16}{23}\right)^{\frac{4}{3}} N_{\nu}\right)} (z + 1)^4 \quad (19)$$

Parameters with errors [AAA$^+16$]

- $\Omega_{b,0} h^2 = 0.0222 \pm 0.0002$
- $Y_p = 0.252 \pm 0.041$

Parameters without errors (calculated out of $T_0 = 2.725$ K)

- $\Omega_{\gamma,0} h^2 = 2.468 \times 10^{-5}$, out of $T_0 = 2.725$ K
$$\frac{H(z)}{H_0} \approx \sqrt{\Omega_{b,0} (z + 1)^3 + \Omega_{\gamma,0} \frac{8}{2} \left(1 + \frac{7}{32} \left(\frac{16}{23}\right)^{\frac{4}{3}} N_\nu\right)} (z + 1)^4 \quad (19)$$

Parameters with errors [AAA$^+$16]

- $\Omega_{b,0} h^2 = 0.0222 \pm 0.0002$
- $Y_p = 0.252 \pm 0.041$

Parameters without errors (calculated out of $T_0 = 2.725$ K)

- $\Omega_{\gamma,0} h^2 = 2.468 \times 10^{-5}$, out of $T_0 = 2.725$ K
Straight-forward calc. of \(r_s \) in \(\text{SU}(2)_{\text{CMB}} \)

Figure 12: \(\text{SU}(2)_{\text{CMB}}, r_s(z_\ast) \) (blue, upper), \(\text{SU}(2)_{\text{CMB}}, r_s(z_d) \) (pink, lower)
Look at baryon freeze out

Baryonic Euler equation [PW68, HS96]

\[
\frac{d\nu_b}{dz} = -\frac{1}{a} \frac{da}{dz} \nu_b + \frac{k}{H(z)} \psi + \frac{1}{H(z)} \sigma T n_e^b \chi_e a (\Theta_1 - \nu_b) / R
\]

- describes baryon velocity \(\nu_b \) of perfect baryon-photon fluid
- \(\Theta_1 \) dipole in temperature via Doppler effect
- \(\psi \) gravitational potential
Look at baryon freeze out

Solution: $\psi \approx 0$

$$\frac{\nu_b(z)}{z + 1} \sim \lim_{z \to \infty} \int_z^Z dz' \frac{e^{-\tau_d(z', z)}}{H(z')(z' + 1)} \dot{\tau}_d(z') \Theta_1(z'),$$

justified by absence of dark matter

Definition

$$D_d(z', z) = \frac{e^{-\tau_d(z', z)}}{H(z')(z' + 1)} \dot{\tau}_d(z')$$

analogous in the photon case $\tau_d \to \tau$

Motivation H_0 from high-z ΛCDM H_0 from high-z SU(2)$_{\text{CMB}}$ Speculative interpolation of high- and low-z models Summary and outlook

March 22, 2017
Look at baryon freeze out

Solution: $\Psi \approx 0$

\[
\frac{\nu_b(z)}{z+1} \sim \lim_{z \to \infty} \int_z^Z dz' \frac{e^{-\tau_d(z',z)}}{H(z')(z'+1)} \dot{\tau}_d(z') \Theta_1(z') ,
\]

justified by absence of dark matter

Definition

\[
D_d(z', z) = \frac{e^{-\tau_d(z',z)}}{H(z')(z'+1)} \dot{\tau}_d(z')
\]

analogous in the photon case $\tau_d \to \tau$
Look at baryon freeze out

Figure 13: The lf in $z_{lf,d}$ denotes left flank. Optical depth definition at maximum.
Figure 14: SU(2)_{CMB}, r_s(z_{lf,d}) (cyan).
Figure 15: $z_{lf,d}$ of ΛCDM.
Final result

Figure 16: ΛCMB, $r_s(z_{lf,d})$ (magenta).

Motivation

H_0 from high-z ΛCDM

H_0 from high-z SU(2)$_{\text{CMB}}$

Speculative interpolation of high- and low-z models

Summary and outlook

Steffen Hahn – SU(2)$_{\text{CMB}}$ at high redshifts and the value of H_0

March 22, 2017
Speculative interpolation of high- and low-z models

1. Motivation
 - tension between H_0 values
 - CMB anomalies

2. H_0 from high-z ΛCDM
 - sound horizon r_s
 - ΛCDM model

3. H_0 from high-z SU(2)$_{\text{CMB}}$
 - differences between SU(2)$_{\text{CMB}}$ and ΛCDM
 - straight-forward calculation of r_s in SU(2)$_{\text{CMB}}$
 - reinterpretation of ν_b freeze out condition

4. Speculative interpolation of high- and low-z models
 - Planck-scale axion
 - PSA vortices: percolation/depercolation model

5. Summary and outlook
Planck-scale axion

Definition: axion energy density, axion pressure

\[\rho_\phi = \frac{1}{2} \dot{\phi}^2 + V(\phi), \quad p_\phi = \frac{1}{2} \dot{\phi}^2 - V(\phi) \quad (23) \]

- dynamical chiral symmetry breakdown induced by gravitational torsion at Planck scale ([FHSW95, GH07, GHN08])

Axion potential (Peccei-Quinn)

\[V(\phi) = (\kappa \Lambda_{\text{CMB}})^4 \cdot \left(1 - \cos \left(\frac{\phi}{m_P}\right)\right), \quad m_P = \frac{1}{\sqrt{8\pi G}} \quad (24) \]

- anomalous breaking of symmetry $U_A(1) \rightarrow 1$ induced by thermal ground states of Yang Mills theories
- κ: dimensionless fudge factor, $\Lambda_{\text{CMB}} \sim 10^{-4}\text{eV}$
- spatially homogeneous field: frozen to slope of V at high z, damped oscillations at low z
Planck-scale axion

Definition: axion energy density, axion pressure

\[\rho_\phi = \frac{1}{2} \dot{\phi}^2 + V(\phi), \quad p_\phi = \frac{1}{2} \dot{\phi}^2 - V(\phi) \]

- Dynamical chiral symmetry breakdown induced by gravitational torsion at Planck scale ([FHSW95, GH07, GHN08])

Axion potential (Peccei-Quinn)

\[V(\phi) = (\kappa \Lambda_{\text{CMB}})^4 \cdot \left(1 - \cos \left(\frac{\phi}{m_P} \right) \right), \quad m_P = \frac{1}{\sqrt{8\pi G}} \]

- Anomalous breaking of symmetry \(U_A(1) \rightarrow 1 \) induced by thermal ground states of Yang Mills theories
- \(\kappa \): dimensionless fudge factor, \(\Lambda_{\text{CMB}} \sim 10^{-4}\text{eV} \)
- Spatially homogeneous field: frozen to slope of \(V \) at high \(z \), damped oscillations at low \(z \)
The Planck-scale axion (PSA)

Definition: equation of motion (minimal coupling to gravity)

\[\ddot{\phi} + 3H \dot{\phi} + \frac{d}{d\phi} V(\phi) = 0 \]

Definition

\[H^2 = \frac{8\pi G}{3} \left(\frac{1}{2} \dot{\phi}^2 + V(\phi) + \rho_{\text{DM},e} + \rho_b + \rho_r \right) \]

- 3H \dot{\phi} damping "force"
- \(\frac{d}{d\phi} V(\phi) \) driving "force"

\[\rho_{\text{DM},0} = \lim_{z \to 0} \left(\dot{\phi}^2 + \rho_{\text{DM},e} \right) \]

\[\Omega_{\Lambda,0} \rho_{C,0} = \lim_{z \to 0} \left(V(\phi) - \frac{1}{2} \dot{\phi}^2 \right) \]

- not conserved separately

Motivation \(H_0 \) from high-z ΛCDM \(H_0 \) from high-z SU(2)\text{CMB} Speculative interpolation of high- and low-z models Summary and outlook

Steffen Hahn – SU(2)\text{CMB} at high redshifts and the value of \(H_0 \)

March 22, 2017 36/43
The Planck-scale axion (PSA)

Definition: equation of motion (minimal coupling to gravity)

\[\ddot{\phi} + 3H\dot{\phi} + \frac{d}{d\phi} V(\phi) = 0 \] (25)

- \(3H\dot{\phi} \) damping "force"
- \(\frac{d}{d\phi} V(\phi) \) driving "force"

Definition

\[H^2 = \frac{8\pi G}{3} \left(\frac{1}{2} \dot{\phi}^2 + V(\phi) + \rho_{\text{DM},e} + \rho_b + \rho_r \right) \] (26)

- \(\rho_{\text{DM},0} = \lim_{z \to 0} \left(\dot{\phi}^2 + \rho_{\text{DM},e} \right) \)
- \(\Omega_{\Lambda,0} \rho_{\text{C},0} = \lim_{z \to 0} \left(V(\phi) - \frac{1}{2} \dot{\phi}^2 \right) \)
- not conserved separately

Motivation

\(H_0 \) from high-z \(\Lambda \)CDM

\(H_0 \) from high-z SU(2)\(_{\text{CMB}}\)

Speculative interpolation of high- and low-z models

Summary and outlook

Steffen Hahn – SU(2)\(_{\text{CMB}}\) at high redshifts and the value of \(H_0 \)

March 22, 2017
36/43
Fitting:

1. critical density $\rho_{C,0}$
2. dark energy $\Omega_\Lambda = 0.7$
3. zero of deceleration parameter q_0 at $z_q \sim 0.7$

- 3 fits to local cosmological data (parameters $\Omega_{DM,e,0}, \kappa, \phi_{in}$)
- q_0 out of supernovae Ia, luminosity distance redshift relation, standard ruler
- spatially homogeneous PSA model falsified by $z_q > 1$
PSA vortices: percolation/depercolation model

Definition: Ansatz

\[
\frac{H(z)}{H_0} = \sqrt{\Omega_{DS}(z) + \Omega_{b,0}(z + 1)^3 + \Omega_{r,0}(z + 1)^4}
\]

(27)

- \(\Omega_{r,0}\) is the radiation part in SU(2)\(_{\text{CMB}}\)
- \(\Omega_{DS}\) represents dark sector composed of percolated/depercolated PSA vortices
- Presumably PSA vortices abundantly generated across Hagedorn phase transitions in early universe due to Yang Mills theories going confining
- Perculation of these PSA vortices in the sense of Kosterlitz-Thouless transition
- \(\Omega_{DM,0} + \Omega_{\Lambda,0} = \Omega_{DS,0}\) equals the \(\Lambda\)CDM
- Deperculation at \(0 < z_p < z_\ast\)
Fitting of z_p

Definition: instantaneous phase transition

$$\Omega_{DS}(z) = \Omega_{\Lambda,0} + \Omega_{DM,0} \left[(z + 1)^3 \theta (z_p - z) + (z_p + 1)^3 \theta (z - z_p) \right]$$ \hspace{1cm} (28)

Definition: angular size of sound horizon

$$\theta_* = \frac{r_s \left(z_{\text{lf},*} \right)}{\int_{0}^{z_{\text{lf},*}} \frac{dz}{H(z)}}$$ \hspace{1cm} (29)

- angle of first acoustic peak in TT angular power spectrum
Fitting of \(z_p \)

Definition: instantaneous phase transition

\[
\Omega_{DS}(z) = \Omega_{\Lambda,0} + \Omega_{DM,0} \left[(z + 1)^3 \theta(z_p - z) + (z_p + 1)^3 \theta(z - z_p) \right]
\] (28)

Definition: angular size of sound horizon

\[
\theta_* = \frac{r_s(z_{lf,*})}{\int_0^{z_{lf,*}} \frac{dz}{H(z)}}
\] (29)

- angle of first acoustic peak in TT angular power spectrum
Figure 17: Angle of first peak for different peculation redshifts (solid). Horizontal line (dashed) represents real value.
Selfconsistency of $SU(2)_{\text{CMB}}$ high-z model

\[
1 \gg \frac{\Omega_{\text{DM},0}}{\Omega_{b,0}} \frac{(z_p + 1)^3}{(z_{l_{f,*}} + 1)^3}
\]

(30)

<table>
<thead>
<tr>
<th>Motivation</th>
<th>H_0 from high-z LCDM</th>
<th>H_0 from high-z SU(2)$_{\text{CMB}}$</th>
<th>Speculative interpolation of high- and low-z models</th>
<th>Summary and outlook</th>
</tr>
</thead>
</table>

Yes.

\[
\frac{\Omega_{\text{DM},0}}{\Omega_{b,0}} \frac{(z_p + 1)^3}{(z_{l_{f,*}} + 1)^3} \sim 0.6\% \ll 1
\]

(31)
Summary and outlook

1. Motivation
 - tension between H_0 values
 - CMB anomalies

2. H_0 from high-z ΛCDM
 - sound horizon r_s
 - ΛCDM model

3. H_0 from high-z SU(2)$_{\text{CMB}}$
 - differences between SU(2)$_{\text{CMB}}$ and ΛCDM
 - straight-forward calculation of r_s in SU(2)$_{\text{CMB}}$
 - reinterpretation of ν_b freeze out condition

4. Speculative interpolation of high- and low-z models
 - Planck-scale axion
 - PSA vortices: percolation/depercolation model

5. Summary and outlook
Summary and outlook

Motivation: H_0 from high-z ΛCDM

H_0 from high-z $SU(2)_{CMB}$

Speculative interpolation of high- and low-z models

Steffen Hahn – $SU(2)_{CMB}$ at high redshifts and the value of H_0

March 22, 2017
Summary and outlook

Motivation H_0 from high-z ΛCDM H_0 from high-z SU(2)$_{CMB}$ Speculative interpolation of high- and low-z models

Steffen Hahn – SU(2)$_{CMB}$ at high redshifts and the value of H_0

March 22, 2017
Motivation

- H_0 from high-z ΛCDM
- H_0 from high-z SU(2)$_{\text{CMB}}$
- Speculative interpolation of high- and low-z models

Summary and outlook

Sufficiently high redshifts and the value of H_0
Summary and outlook

Motivation

H_0 from high-z ΛCDM

H_0 from high-z SU(2)$_{\text{CMB}}$

Speculative interpolation of high- and low-z models

Steffen Hahn – SU(2)$_{\text{CMB}}$ at high redshifts and the value of H_0

Summary and outlook

$r_s (\text{Mpc})$

ΛCDM, $r_s(z_d)$

ΛCDM, $r_s(z_*)$

SU(2)$_{\text{CMB}}$, $r_s(z_*)$

SU(2)$_{\text{CMB}}$, $r_s(z_d)$

H_0 (Mpc$^{-1}$km/s)

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
Summary and outlook

[Graph showing the relationship between H_0 (Mpc$^{-1}$ km/s) and r_s (Mpc) for different models: ΛCDM, SU(2)\textsubscript{CMB}, and SU(2)\textsubscript{CMB'} at high redshifts ($z_{d,lf}$).]

Motivation

H_0 from high-z ΛCDM

H_0 from high-z SU(2)\textsubscript{CMB}

Speculative interpolation of high- and low-z models

Steffen Hahn – SU(2)\textsubscript{CMB} at high redshifts and the value of H_0

March 22, 2017 43/43
Interpolating model: high-\(z\) SU(2)$_{\text{CMB}}$ with low-\(z\) ΛCDM

- slow-roll dynamics of Planck-scale axion field falsified (\(z_q\) too high)
- however percolation/depercolation model for PSA vortices is promising: self consistent computation of angular size of sound horizon

Outlook

- Can such a model reproduce TT angular power spectrum?
- Can PSA interpolating model be made responsible for anomalous rotation curves in spiral galaxies (Tully-Fisher relation, elliptical galaxies, etc. ...)?
- Can radiative effects in SU(2)$_{\text{CMB}}$ explain large angle anomalies?
[AAA⁺16] Ade, PAR; Aghanim, N; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, AJ; Barreiro, RB; Bartlett, JG; Bartolo, N u. a.:
Planck 2015 results-XIII. Cosmological parameters.
In: Astronomy & Astrophysics 594 (2016), S. A13

[AAAC⁺14] Ade, Peter A.; Aghanim, N; Armitage-Caplan, C; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, Anthony J.; Barreiro, RB u. a.:
Planck 2013 results. XVI. Cosmological parameters.
In: Astronomy & Astrophysics 571 (2014), S. A16

[BCS⁺16] Bonvin, V; Courbin, F; Suyu, SH; Marshall, PJ; Rusu, CE; Sluse, D; Tewes, M; Wong, KC; Collett, T; Fassnacht, CD u. a.:
H0LiCOW V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8% precision from strong lensing in a flat ΛCDM model.

[BFW⁺01] Becker, Robert H.; Fan, Xiaohui; White, Richard L.; Strauss, Michael A.; Narayanan, Vijay K.; Lupton, Robert H.; Gunn, James E.; Annis, James; Bahcall, Neta A.; Brinkmann, J u. a.:
Evidence for Reionization at z 6: Detection of a Gunn-Peterson Trough in az= 6.28 Quasar.
In: The Astronomical Journal 122 (2001), Nr. 6, S. 2850

[BVR16] Bernal, José Luis; Verde, Licia; Riess, Adam G.:
The trouble with H0.
In: Journal of Cosmology and Astroparticle Physics 2016 (2016), Nr. 10, S. 019

[CHSS06] Copi, Craig J.; Huterer, Dragan; Schwarz, Dominik J.; Starkman, Glenn D.:
On the large-angle anomalies of the microwave sky.

[FKL+11] FIXSEN, DJ; KOGUT, A; LEVIN, S; LIMON, M; LUBIN, P; MIREL, P; SEIFFERT, M; SINGAL, Jack; WOLLACK, E; VILLELA, T u. a.: ARCADE 2 measurement of the absolute sky brightness at 3-90 GHz. In: The Astrophysical Journal 734 (2011), Nr. 1, S. 5

Bibliography III

[HS96] HU, Wayne ; Sugiyama, Naoshi:
Small-Scale Cosmological Perturbations: An Analytic Approach.
http://stacks.iop.org/0004-637X/471/i=2/a=542

[LGSM+15] Luzzi, G ; Génoa-Santos, RT ; Martins, CJAP ; de Petris, M ; Lamagna, Luca:
Constraining the evolution of the CMB temperature with SZ measurements from Planck data.
In: Journal of Cosmology and Astroparticle Physics 2015 (2015), Nr. 09, S. 011

[MBB+13] Muller, Sebastien ; Beelen, A ; Black, John H. ; Curran, SJ ; Horello, Cathy ; Aalto, Susanne ; Combes, F ;
Guélin, M ; Henkel, C:
A precise and accurate determination of the cosmic microwave background temperature at z = 0.89.
In: Astronomy & Astrophysics 551 (2013), S. A109

[OCTZH04] Oliveira-Costa, Angelica de ; Tegmark, Max ; Zaldarriaga, Matias ; Hamilton, Andrew:
Significance of the largest scale CMB fluctuations in WMAP.
In: Physical Review D 69 (2004), Nr. 6, S. 063516

[PW68] Peebles, PJE ; Wilkinson, David T.:
Comment on the anisotropy of the primeval fireball.
In: Physical Review 174 (1968), Nr. 5, S. 2168

[RMH+16] Riess, Adam G. ; Macri, Lucas M. ; Hoffmann, Samantha L. ; Scolnic, Dan ; Casertano, Stefano ; Filippenko,
Alexei V. ; Tucker, Brad E. ; Reid, Mark J. ; Jones, David O. ; Silverman, Jeffrey M. u. a.:
A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT Based on observations with the
NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.
In: The Astrophysical Journal 826 (2016), Nr. 1, S. 56
[Sco] SCOTT, Douglas:
recfast.
http://www.astro.ubc.ca/people/scott/recfast.html.–
accessed: November 17, 2016

[SH08] SZOPA, Michal; HOFMANN, Ralf:
A model for CMB anisotropies on large angular scales.
In: Journal of Cosmology and Astroparticle Physics 2008 (2008), Nr. 03, S. 001

[TOCH03] TEGMARK, Max; OLIVEIRA-COSTA, Angelica de; HAMILTON, Andrew J.:
High resolution foreground cleaned CMB map from WMAP.
In: Physical Review D 68 (2003), Nr. 12, S. 123523

[Vie10] VIELVA, Patricio:
A comprehensive overview of the cold spot.
In: Advances in Astronomy 2010 (2010)