Ballspiele

- 5.1 Erhaltung von Energie und Impuls bei Stößen
- 5.2 Hüpfende Bälle
- 5.3 Der Superball als Bumerang
- 5.4 Kräfte bei der Reflexion eines Balles
- 5.5 Biographie René Descartes

Erhaltungssätze bei elastischen Stößen

Zentrale Stöße auf einer waagerechten Bahn

Erhaltung des Gesamtimpulses : $m_1 \cdot v_1 + m_2 \cdot v_2 = m_1 \cdot v_1^* + m_2 \cdot v_2^*$

Erhaltung der Gesamtenergie : $\frac{1}{2} m_1 \cdot v_1^2 + \frac{1}{2} m_2 \cdot v_2^2 = \frac{1}{2} m_1 \cdot (v_1^*)^2 + \frac{1}{2} m_2 \cdot (v_2^*)^2$

Bei bekannten Massen m_1 und m_2 und Geschwindigkeiten v_1 und v_2 vor dem Stoß lassen sich aus diesen beiden Gleichungen die Geschwindigkeiten v_1^* und v_2^* nach dem Stoß berechnen.

Einfache Beispiele für zentrale elastische Stöße

1. $v_2 = 0$, $v_1 = v$; $m_1 = k m_2$ ($k \ge 1$, d.h. m_1 ist größer oder gleich m_2)

$$k = 1$$

$$V_1^* = 0$$

$$V_{2}^{*} = V$$

$$k = 2$$

$$v_1^* = 1/3 v_1$$

$$v_1^* = 1/3 \text{ V}$$
 $v_2^* = 4/3 \text{ V}$

$$k = 3$$

$$V_1^* = \frac{1}{2} V$$

$$V_1^* = \frac{1}{2} V$$
 $V_2^* = \frac{3}{2} V$

$$k = 4$$

$$V_1^* = \frac{3}{4} V$$

$$v_2^* = 8/5 \text{ v}$$

2. $v_2 = -v_1$, $v_1 = v$; $m_1 = k m_2$ ($k \ge 1$, d.h. m_1 ist größer oder gleich m_2)

$$k = 1$$

$$V_1^* = - V$$

$$V_{2}^{*} = V$$

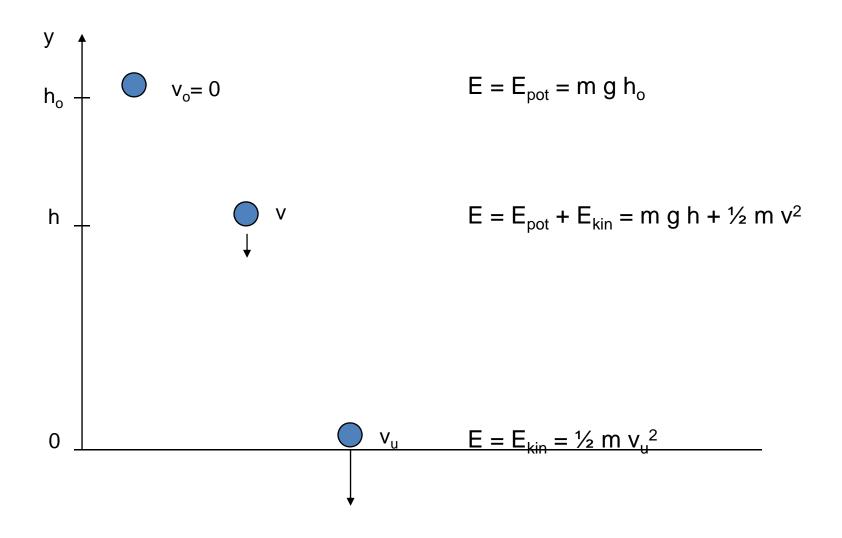
$$k = 2$$

$$v_1^* = -1/3 \text{ V}$$
 $v_2^* = 5/3 \text{ V}$

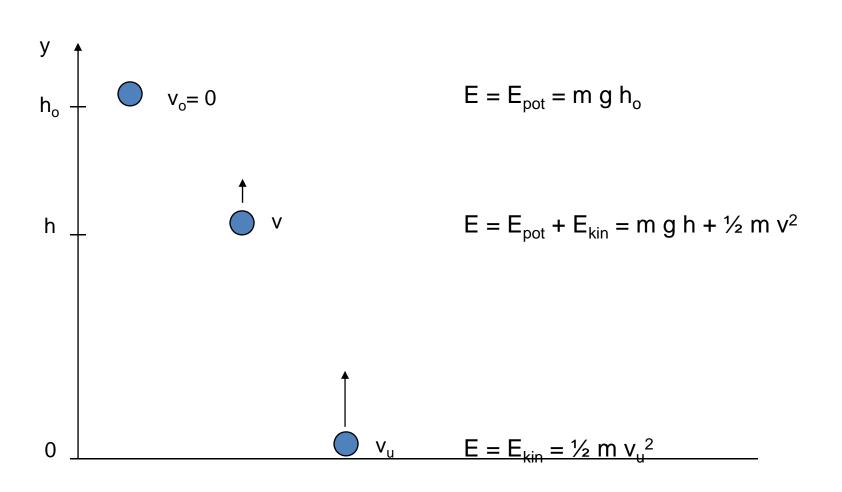
$$v_2^* = 5/3 \text{ v}$$

$$k = 3$$

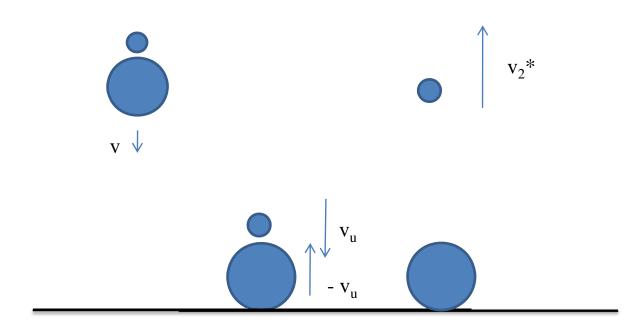
$$v_1^* = 0$$


$$v_2^* = 2 v$$

$$k = 4$$


$$V_1^* = 1/5 V_1$$

$$v_1^* = 1/5 v$$
 $v_2^* = 11/5 v$


Energieerhaltung beim freien Fall

Energieerhaltung nach der Reflexion am Boden

Ballpyramide

Einfluss des Dralls bei der Reflexion

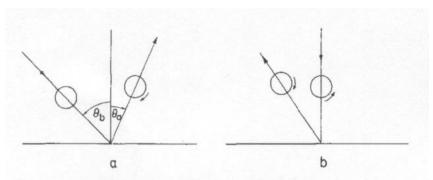
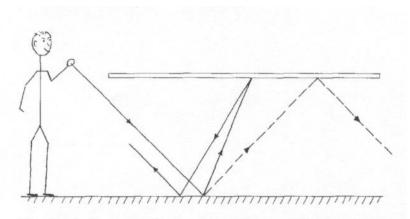
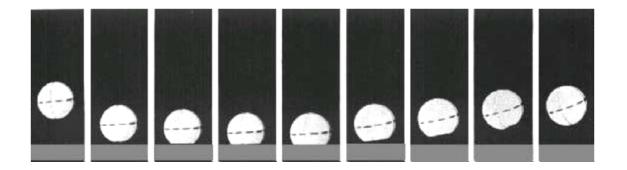
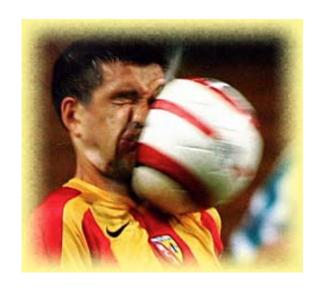
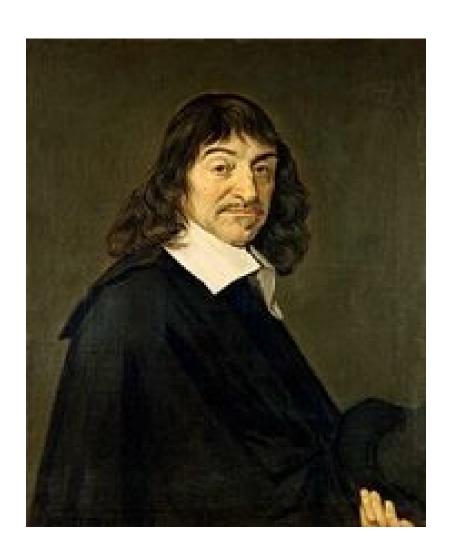
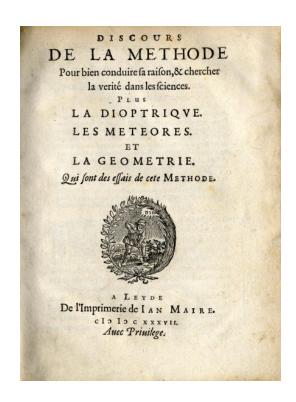


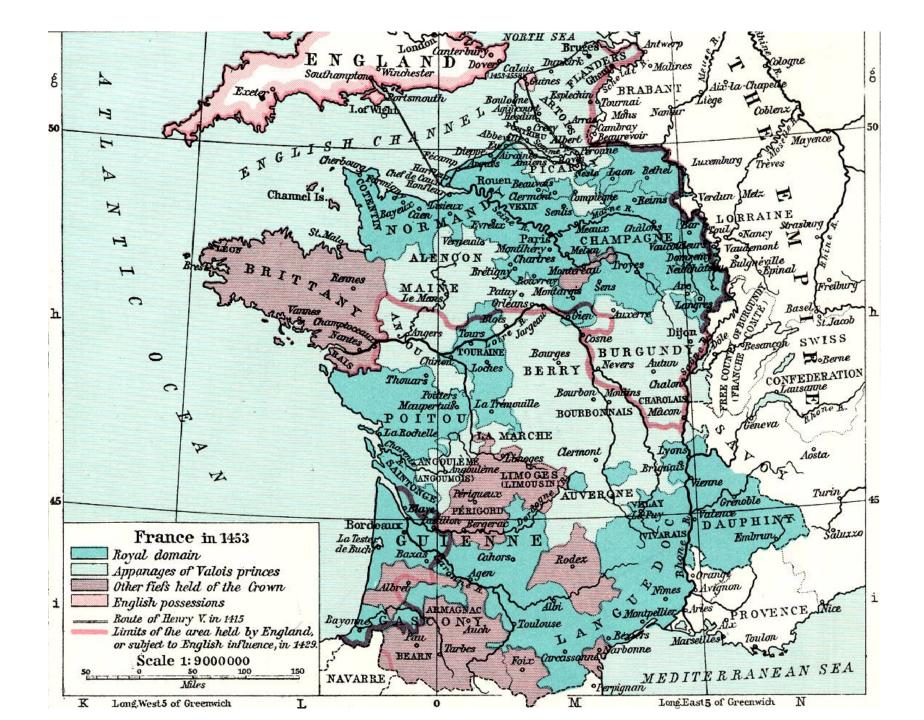
Fig. 3. (a) A Super Ball with zero spin bounces from a wall with $\tan \theta_a = 3/7 \tan \theta_b$ and with spin velocity 10/7 of its initial horizontal velocity. (b) A ball with initial spin has its spin velocity reduced to 3/7 and reversed, and acquires transverse velocity as shown.

Bumerangeffekt beim Superball


Fig. 1. A Super Ball seems to return to the hand after bouncing against the underside of a table, while the expectation is for it to continue bouncing between the floor and the table as shown by the dotted line.


Verformung eines Balles bei der Reflexion



René Descartes (1596 – 1650)

"Er war ein Philosoph, dessen Werk "La géometrie" die Anwendung der Algebra auf die Geometrie eröffnete und uns die Analytische Geometrie schenkte."

René Descartes – Stationen seines Lebens

1596	Geboren in der Touraine
	Mit 8 Jahren Internatsschüler in einem Jesuiten-
	kolleg im Anjou
1616	Abschluss seines Jurastudiums in Poitier
	Durch Studien in der Medizin und die Entdeckun-
	gen Galileis Zweifel an der überkommenen Naturwissenschaft
	Im gleichen Jahr wurde er Soldat in Holland bei dem berühmten
	Feldherrn Moritz von Nassau. Hier wurde er für die Physik begeistert.
1619	Nach Reisen durch Dänemark und Deutschland wurde er erneut
	Soldat bei Herzog Maximilian von Bayern und nahm im 30-jährigen
	Krieg u.a. an der Eroberung von Prag teil.
	Idee von der "universellen Methode zur Erforschung der Wahrheit"
Ab 1620	Ausgedehnte Reisen durch Deutschland, Holland, die Schweiz und
	Italien
1625	Er lässt sich in Paris nieder, wo er zunehmend an Ansehen gewann.
1629 – 1649	Zurückgezogenes Leben in Holland, wo er seine wesentlichen Werke
	anfertigt, u.a. "Discours de la methode" (1637)
1649 - 1650	Gast der schwedischen Königin Christine in Stockholm, wo er an
	einer Lungenentzündung starb.