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Exercise 19: Heat kernel, part 2

Motivation: This is part 2 of the heat kernel. Are you exhausted yet? Good, it’s going to become much worse. :)

At the end of the last sheet, you should have obtained the following recursion relation for the
coe!cients An:
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))
An(x, y) + (Dµω(x, y)) (DµAn(x, y))→D2An→1(x, y) = 0 , (19.1)

with
A0(x, x) ↑ A0 = 1 , A→1(x, y) = 0 , n ↓ 0 . (19.2)

From now on, we will drop the position arguments. The goal of this sheet is to compute the
coincidence limit of the first heat kernel coe!cient, A1.

a) Set n = 1 in (19.1) and take the coincidence limit to understand which ingredients you need
to compute A1. Beware: the coincidence limit does not commute with covariant derivatives,
i.e. D2A0 ↔= D2A0!

b) One of the ingredients to compute A1 is D2A0. Derive an equation for the latter by acting
with D2 on (19.1) and taking the coincidence limit.

At this point you should get worried about the recursion, but maybe there is some hope after all.
Instead of focussing on di"erent derivatives of the An, let us switch our focus and try to compute
coincidence limits of derivatives of the world function. Recall that

1

2
(Dµω(x, y))(Dµω(x, y)) = ω(x, y) , (19.3)

for any x, y, i.e. even away from the coincidence limit.

c) [hard question] Use (19.3) to compute ω, Dµω, DµDωω, DµDωDεω and DµDωDεDϑω.
Hints: take successive covariant derivatives of (19.3). Then take the coincidence limit of
these equations and solve iteratively. You might have to commute covariant derivatives.
Think about what you can pull out of the coincidence limit.

If you succeeded, you should feel relieved now if you look back at the equations for A1 and D2A0.

d) Use your results from c) to compute D2A0, and from there compute A1.

This illustrates the general procedure, and you can follow the same recipe to compute the An for
larger n. It goes without saying that once again, this should not be done by hand.



Exercise 20: Heat kernel, part 3, or the inverse Laplace transform

Motivation: This is part 3 of the heat kernel – I lied that there would be only two parts. Remember where we
started? Good, we have to actually come back and compute the original supertrace.

The starting point of the heat kernel exercises was that we originally wanted to compute

STrW (!) , (20.1)

for some general function W . We spent a lot of time to compute the supertrace for an exponential,
but in general we will not deal with only exponential functions, so we still need a recipe to connect
the two.
For this, suppose we could write something like

W (!) =

∫ ↑

0

ds W̃ (s) e→s! , (20.2)

for some new function W̃ . Wouldn’t this be great? We could simply use this equation and use all
previous results:

STrW (!) = STr
∫ ↑

0

ds W̃ (s) e→s! =

∫ ↑

0

ds W̃ (s) STr e→s!
︸ ︷︷ ︸
we did this!

. (20.3)

The only thing left to do would be to actually compute W̃ and perform the integrals over s, and
we would be done. Also, we assumed that we can exchange the integral with the supertrace, but
shhhhhhh.
Let us give some substance to this idea. The integral transform (20.2) is called the inverse Laplace

transform. You can think of it like this: the original function W is the Laplace transform of some
(a priori unknown) function W̃ . Of course, there are some conditions on its existence, but let’s
simply assume for the moment that it exists. In the two previous exercises, we computed the
supertrace of the exponential in an expansion in powers of s, so that

STrW (!) ↗

∫ ↑

0

ds W̃ (s)

(
1

4εs

)d/2 ∑

n↓0

sn
∫

ddx
↘
g An . (20.4)

We thus have to deal with integrals over W̃ multiplying either negative (small n) or positive (large
n) powers of s. Do we now really have to compute W̃? Actually, no.

a) Negative powers: show that for n > 0,
∫ ↑

0

ds W̃ (s) s→n =
1

”(n)

∫ ↑

0

dz zn→1 W (z) . (20.5)

This means that one can map these integrals over W̃ to integrals over the original function
W ! The integral over z has the interpretation of the integral over the loop momentum.

b) Non-negative powers: show that for n ↓ 0,
∫ ↑

0

ds W̃ (s) sn = (→1)n W (n)(0) , (20.6)

that is, these integrals can be mapped to derivatives of the original function at vanishing
argument.



c) [hard question] Use your combined knowledge to compute

STrW (!) (20.7)

up to linear order in curvature, in arbitrary dimension, for W taken from Exercise 18. To
evaluate the integrals, use the Litim regulator. What exactly did you just compute?


