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Quantum Gravity and the Renormalization Group
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Exercise 19: Heat kernel, part 2

Motivation: This is part 2 of the heat kernel. Are you exhausted yet? Good, it’s going to become much worse. :)

At the end of the last sheet, you should have obtained the following recursion relation for the
coeflicients A,,:

<n - g + % (D% (x, y))) An(z,y) + (D"o(z,y)) (DpAn(z,y)) — D*Ana(z,y) =0,  (19.1)
with
Ag(z,z) =Ag =1, A_y(x,y)=0, n>0. (19.2)

From now on, we will drop the position arguments. The goal of this sheet is to compute the
coincidence limit of the first heat kernel coefficient, A;.

a) Set n = 11n (19.1) and take the coincidence limit to understand which ingredients you need
to compute A;. Beware: the coincidence limit does not commute with covariant derivatives,

i.e. D2A, # D?A!

b) One of the ingredients to compute A; is D2A,. Derive an equation for the latter by acting
with D? on (19.1) and taking the coincidence limit.

At this point you should get worried about the recursion, but maybe there is some hope after all.
Instead of focussing on different derivatives of the A,,, let us switch our focus and try to compute
coincidence limits of derivatives of the world function. Recall that

1

5(D"o(@,y))(Duo(@,y)) = o(z,y), (19.3)

for any x,y, i.e. even away from the coincidence limit.

c¢) [hard question] Use (19.3) to compute &, D,o, D,D,o, D,D,D,o and D,D,D,D,o.
Hints: take successive covariant derivatives of (19.3). Then take the coincidence limit of
these equations and solve iteratively. You might have to commute covariant derivatives.
Think about what you can pull out of the coincidence limit.

If you succeeded, you should feel relieved now if you look back at the equations for A; and D2 A,.
d) Use your results from c¢) to compute D2 Ay, and from there compute A;.

This illustrates the general procedure, and you can follow the same recipe to compute the A, for
larger n. It goes without saying that once again, this should not be done by hand.




a)

Taking n = 1 and the coincidence limit, we find

(1 - g + % (%)) A1 + (Do) (DyAy) — D?Ag = 0. (19.4)

To compute A; from this, we thus need D2g, Dto, but also D2A, and in particular D,A;. The
latter seems to break the recursion.

We act with D? on the recursion relation and find

2 2
+(D"D%o(x,y)) (DuAn(z,y)) + (D*Do(2,y)) (DuAn(z,9)) + (Do (2,y)) (D*DyAn(,y))
+2 (D" D"o(x,y)) (D,D,A,(z,y)) — D*D*A,,_1(z,y) = 0.

(n ~ 4L Lo, y>)> D*A,(x,y) + % (D*D*(x,y)) Aulz,y)

(19.5)
Taking the coincidence limit and n = 0, we find
d 1 /—\\=+— 1 /=—\—
(—5 + 5 <D20'>) D2A() + 5 <D2D2O'> AO
(19.6)

+ (D"D%) (D, A) + (D?Dio ) (DyAg) + (Do) (DD, A )
+2 (DvD#o) (D,D,Ay) = 0.

This means that in order to compute D?Aj, we also need D?D, A, once again breaking the
recursion. Is this all nonsense?

Maybe the world function saves the day. First of all, we already know that
g=0. (19.7)

Using this when taking the coincidence limit of the funny property of the world function (19.3),
we can directly conclude that

Dto Do =0 = D,oc=0. (19.8)

Aha! This already kicks out some of the worrisome terms above. Let us now take a derivative of
(19.3):
(DaDyo(z,y)) (D*o(, ) = Dac(z,y) (19.9)

Taking the coincidence limit, we do not learn anything new, so another derivative it is:
(DsDaDyo(e,y)) (D'o(x,)) + (DaDyo(x,)) (DsDo(x,y)) = DsDao(a,y).  (19.10)

In the coincidence limit, the first term on the left-hand side vanishes, and we find

D.D,o DgDto = DgD,0 . (19.11)

This means that the coincidence limit of the second covariant derivative of the world function
is idempotent. Which geometric quantities have this property? Exactly, only the metric, so we
conclude

DBDQO' = 9Bc - (1912)



Convince yourself that this property makes sense in a flat manifold. As a special case, we have

D% =d. (19.13)

Let us press on and take yet another derivative. We find

(DyDgDoDyo(x,y)) (D*o(z,y)) + (DsDaDyo(z,y)) (D, Do (z,y))
(D, DaDyor(2,)) (DsD 0 (2, 1)) + (DaDyor(,9)) (D3 Ds D (2, 3)) = Dy DyDacr(i,y)
(19.14)
Upon taking the coincidence limit and using our previous results, we get some simplifications, and
arrive at

DyDoD-0 + DyDoDyo + DyDsDao = Dy DD (19.15)

or

DsDoDyo + D DyDyo = 0. (19.16)

How do we solve this equation? We have to commute derivatives. For this, we note that the world
function is a bi-scalar (a scalar at both = and y). Thus,

D,DoD30 = DyDDoo + Dy [Da, Dglo = DyDsDao . (19.17)

With this, we can write

DD Doo + DyDsDao = 0. (19.18)

To get all derivatives into the same order, we have to also commute Dz and D, in the first term,
but this time, we get a non-trivial commutator:

DgD,Doo = DyDgDyo + [Dg, Dy| Doo = D, DgDoo + Ry, "Dyo

(19.19)
= D,yDﬁDaO' + Rﬁwan DHO' = DWDﬁDaU.

Going to the second line, we pulled the Riemann tensor out of the coincidence limit. This works
since the Riemann tensor is just a tensor, not a bi-tensor. Coming back to the above, we thus
conclude

D.,DgD,o =0. (19.20)

Boooo, boring. What about four derivatives? Let’s see:

(D5D7DﬂDaD U( 7y)) ( (.T, y)) + (D’YDIBD&D#U(x7 y)) (DISD#O-(‘T: y))
+(DsD3DaDyo(e,y)) (D, D¥o(z,y)) + (DsDaDyo(e,y)) (DsDy Do (e, y))
+(DsDyDaDyo(x, ) (DgDPo(x,y)) + (Dy DaDyo(a,y)) (DsDs Do, y)
T (DsDaDyo(2,y)) (D, DD o(2,y) + (DaDyo(2,y)) (DsDy DsD¥a(e,y)) = DsD,DsDac (e y)
(19.21)
Taking the coincidence limit, many terms drop out, and we get
D,YDBDO[D(;O' + D(;DﬁDaD,YO' + D(;D,YDaDﬁo' + D(;D,yDgDaO' = D(;D,},DﬁDaO', (1922)
that is,
D.,DgD.Dso + DsDgD.D.o + DsD,D,Dgo = 0. (19.23)

Once again, we have to sort covariant derivatives. In a first step, we have

DD3DyDo0 + DsDsDy Do + DyDyDyDoo = 0. (19.24)



Next, we commute the second and third derivative in the first two terms:

DWD(;DﬁDaO' + D7 [Dﬁ, D(;] DaJ + D(;D,YD/BDO[O' -+ D5 [Dﬁ, DW] DaU + D(sD,yDﬁDaO' =0. (1925)

Both commutators give a single Riemann tensor. Note that the derivative to the left acts on both
the Riemann tensor and the world function! We thus have

0 =D,DsD3D0 + D, Rys, " Dyo + DsR

BA/O/{D,QO' + QD(;D,YD[;DQO'
= DyDsD5D00 + (D Rys,") Dot + Ry, Dy Do
Y yLvgs gsa Ly (19.26)

+ (DsRyyo") Deo + Ry, DsDe + 205D DDac
= D’yDéDﬁDaU + Rﬁ&ow + R57a5 + QDgDvDﬁDaJ .

Here, we once again used the coincidence limits of one and two derivatives acting on the world
function. One final commutator is left:

D(;D,yDﬂDQO' + [ny, Dg] DBDQU + Rﬁéa'y + R/B'yoaé + 2D5D7D,3Da0 =0 (1927)

Expanding this gives

0= RW;BKDNDQJ + Rﬁﬂ;a”DgD,{a + Rgsor + Rgvas + 3DsD,DgDyo
= Rys6a + Rosas + Rasay + Rpyas + 305D, DsDoo (19.28)
= Rﬂ&w + Rﬂvacs + 3m-
Finally a non-trivial result! We read off
DsD, D000 = 5 (Rasy + Rines) - (19.20)
As a special case, we need

—_— 2
D2D?%0 = —gR. (19.30)

We can finally go back to the heat kernel coefficients. First, we compute D?A, from (19.6).
Inserting all the above information, we find that most terms cancel, and we get

0= % (D°D%) A, + 2 (DFD¥) (D, D, Ao)

5 (19.31)
(—§R> +2D?%Ay,

1
T2
or

D2A, = éR. (19.32)
All “dangerous” terms in the recursion, that is those that could break the bootstrap, drop out due
to the coincidence limits of the world function. Finally, throwing everything into (19.4), we find

— —— 1
Ay = DA, = <R. (19.33)
Going back to our (semi-)starting point, we thus find
A 1\ d S
Tre 2 ~ [ — [1 5 } . 19.34
STre <47TS) tr/d:c\/§ +6R ) s—=0 (19.34)

Note how the heat kernel coefficients that we computed are independent of the dimension d. This
is actually true also for all higher orders in the small-s expansion (also called early time expansion).
The only dependence on the dimension comes from the prefactor!



Exercise 20: Heat kernel, part 3, or the inverse Laplace transform

Motivation: This is part 8 of the heat kernel — I lied that there would be only two parts. Remember where we

started? Good, we have to actually come back and compute the original supertrace.

The starting point of the heat kernel exercises was that we originally wanted to compute
STrW(A), (20.1)

for some general function W. We spent a lot of time to compute the supertrace for an exponential,
but in general we will not deal with only exponential functions, so we still need a recipe to connect
the two.

For this, suppose we could write something like

W(A) = /0 T dsW(s)e 2, (20.2)

for some new function W. Wouldn’t this be great? We could simply use this equation and use all
previous results:

STriV(A) = STr/ ds W (s)e 2 :/ ds W (s) STre 2 . (20.3)
0 N—

Y i Al (i

The only thing left to do would be to actually compute W and perform the integrals over s, and
we would be done. Also, we assumed that we can exchange the integral with the supertrace, but
shhhhhhh.

Let us give some substance to this idea. The integral transform (20.2) is called the inverse Laplace
transform. You can think of it like this: the original function W is the Laplace transform of some
(a priori unknown) function W. Of course, there are some conditions on its existence, but let’s
simply assume for the moment that it exists. In the two previous exercises, we computed the
supertrace of the exponential in an expansion in powers of s, so that

STr W(A) ~ / " ds W (s) ( ! )Mzsn / diz /5 A (20.4)

; 4rs
We thus have to deal with integrals over W multiplying either negative (small n) or positive (large

n) powers of s. Do we now really have to compute W? Actually, no.

a) Negative powers: show that for n > 0,

/000 dsW(s)s™" = ﬁ /OO dz 2" 1 W(z). (20.5)

0

This means that one can map these integrals over W to integrals over the original function
W! The integral over z has the interpretation of the integral over the loop momentum.

b) Non-negative powers: show that for n > 0,
/ dsW(s) s™ = (=1)"W™(0), (20.6)
0

that is, these integrals can be mapped to derivatives of the original function at vanishing
argument.




¢) [hard question] Use your combined knowledge to compute
STr W (A) (20.7)

up to linear order in curvature, in arbitrary dimension, for W taken from Exercise 18. To
evaluate the integrals, use the Litim regulator. What exactly did you just compute?

a) There are at least two different ways to prove this equation. The easier one is “backwards”, i.e. we
start with the right-hand side, insert the inverse Laplace transform, commute the integrals, and
perform the integral over z:

ﬁ/o dz 2 W (2) = L/wdzz” 1/ ds T/ (s) e
/ ds/ dz 2" T (s)
‘W/o ds W (s) s~ T(n)
:/OoodsW(s)s_

For the integral over z to converge, we need n > 0, in agreement with the requirement. If you do
not like this way since you need to know the result in advance, we can also prove it in the other
direction. For this, we use the representation of s~ in terms of its inverse Laplace transform,

(20.8)

1

s = —— dz 2" te =, (20.9)
I'(n) /0

Inserting this on the left-hand side and once again commuting integrals, we have

o0 ~ oo ~ 1 o0
ds W (s s":/ ds W (s / dz 2"t ems?
[ e = [Cawerggs |
1

= o) /000 dz 2! /000 ds W (s) e ** (20.10)
1

= m/ooo dz 2" W (z).

In the last step, we used the definition of the inverse Laplace transform.

b) For this case, we pull out some tricks:

/ dsW(s)s”:/ ds W (s)s"e™*
0 0 2=0

carer [Tasiis e

= [(=1)"0X W (2)]].—
= (=1)" W™ (0).

(20.11)

z=0

Convince yourself that this trick indeed only works for non-negative n.



c) Let us put everything together. From (18.14), we had
kOp R
W(z) = FORF(2) :
2+ Ri(2)
We just showed that we do not need to compute its inverse Laplace transform in order to evaluate

the supertrace. Next, we use the inverse Laplace transform and the formula for the heat kernel to
write

(20.12)

STrW(A) = STr/ ds W (s)e 2
0

:/ dSVNV(s)STre_SA (20.13)
0

N/OoodsW(s) <ﬁ)d/2/ddx\/§ [1+2R] .

Next, assuming that d > 2, we can use the formulas from a) and write

STrW(A) ~ <%)d/2/d%\/§ [ﬁ /Ooo dzzi—1W(z)+§ﬁ/om dzzi—QW(z)] .
(20.14)

The ultimate step is now to evaluate the threshold integrals. Recall from Exercise 17 that for the
scale derivative of the Litim regulator, we can drop the delta function, so that effectively

kO Ry (2) ~ 2k20 (1 - %) . (20.15)
Inserting this, we have

[ee] u 00 4 2 2 1_%
/ dzz2 P W (2) :/ dzz2? Ko (1 5)
0 0 Z+(k32—2)0<1—§>

k2 2 k2
:/ dz 2271 2]% = 2/ dz 2271 (20.16)
0 0
= 2k¢ /1d:r:rg_1:4—kd
0 d

Here, we rescaled z to make it dimensionless, z = k*x. In the same way, we can compute the
second threshold integral:

oo 00 2 I
/ dz 222 W(z) = / dz 222 2% (1~ )
0 0 Z+(k32—2)0(1—i)

L2
k2 2 k2
—/ dzz%’z% = 2/ dzz%’2 (20.17)
0 k2 0
1 4 d—2
— 2k4-2 / dx x%_Q = K
0 d—2
Finally, finally, finally, we have
1\"? 4kt R 4k
STrW(A) ~ | — d? + = . 20.18
rW(A) <4W) / x\@[df(g) 6 - (1=1) (20.18)

You can see how the powers of k£ appear in the way required by mass dimension. So what did we
compute? This is the contribution of the quantum fluctuations of a free scalar field to the beta
functions of the cosmological constant and Newton’s constant.



