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Exercise 6: Superficial degree of divergence

Motivation: In this exercise, we discuss the superficial degree of divergence of a scalar theory that mimics the diver-
gence count of General Relativity. The goal is to reinforce your understanding of why the perturbative quantisation
fails.

As we have discussed in the lecture, General Relativity generates new divergences at every loop
order. This concretely means that the loop divergences that are created come in a form that cannot

be absorbed by a renormalisation of the Einstein-Hilbert terms in the action. To understand this
in more depth, we will first consider a scalar toy model, and then we’ll try to translate what we
understand to the case of gravity.
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At a structural level, i.e. without explicitly calculating/evaluating any diagram, argue what
the superficial degree of divergence is of the loop diagrams contributing to the renormalisa-
tion of the four-scalar-vertex. Argue that at every loop order, you can absorb the divergences
in a renormalisation of the coupling � (and potentially a wave-function renormalisation of
the field and a mass term).

b) Now consider �
6 theory, also in four-dimensional Minkowski space, with the microscopic
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Once again at a structural level, discuss the superficial degree of divergence for the four-
and six-scalar vertex at one-loop order. Can this theory be renormalised perturbatively?

c) [hard question] Next, consider a scalar field theory with a derivative interaction:
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What is the one-loop divergence structure in this case? Can you absorb all divergences of
the four-scalar vertex?

d) [hard question] Finally, let us discuss the degree of divergence in General Relativity. In a
similar way as for the scalar field theories above, argue what the divergence structure is at
one and two loops. For this, consider the divergences of the two-graviton vertex. Can the
divergences be absorbed, or do we have to introduce structurally new counterterms? If the
latter, how do they look like?



a) Let us first argue what the number of vertices, propagators and loop integrals is for an N -loop
Feynman diagram that contributes to the four-point vertex. By construction, an N -loop diagram
will have N loop integrals, and thus comes with an integration of the form
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where `k is the k-th loop momentum, and we indicated that we introduced an ultraviolet cutoff
⇤UV that indicates the divergence when we send it to infinity. Next, an N -loop diagram in our
theory will have N + 1 vertices (this can be shown by induction, convince yourself of this!). This
means that we have a total number of 4(N + 1) legs, four of which are the external legs. This
means that there are 4N internal legs that have to be connected via propagators. Since each
propagator links two legs, we get 2N propagators.
What is the superficial degree of divergence of any of these diagrams? For this, we have to
understand how loop momenta are distributed over propagators. Each propagator carries a linear
combination of at least one loop momentum (potentially more), and optionally external momenta.
Note now that we can always assign loop momenta such that they only appear around their own
loop, that is, they do not “leak” into other loops. For this, proceed iteratively: pick one propagator
and assign it the first loop momentum. Go around the loop and impose momentum conservation
at each vertex. This way, the loop momentum cannot appear outside of the loop.
The next step is to realise that for “interesting” diagrams (that is, those that are not bubble
diagrams, which are set to zero in dimreg/play no important role in renormalisation), each loop
momentum appears in at least two propagators.
Finally, to investigate the superficial degree of divergence, we perform an inductive argument and
integrate over one loop momentum at a time. Let us first discuss the generic one-loop diagram.
This is a self-energy-type diagram, and comes with two propagators. The vertices are momentum-
independent, and thus the divergence structure reads
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where P is a combination of external momenta. We can now use the Feynman parameterisation
to write this integral as
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In the first two steps, we simply wrote out the terms and rearranged them suggestively. We then
shifted the loop momentum to eliminate the linear term. Next, we exchanged the integrals and
performed the loop integral (the factor d⌦ is the angular integral). We then took the leading term
as ⇤UV ! 1 and performed the remaining integral. Note that one could also perform the integral
first and then take the limit – the same result comes out. The bottom line of this computation
is that the divergence is logarithmic and not power law. This means that the divergence can be
absorbed by a renormalisation of �4.
Let us now reduce higher order loop integrals to effective lower order loop integrals. For this, we
have to consider that for any given loop, there could be more than two propagators. We also note
that generally, propagators depend on more than one loop momentum. Let us now consider a loop
with k + 1 > 2 propagators. This entails that the corresponding loop integral reads
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where the Pi are linear combinations of external and other loop momenta. We once again use the
Feynman parameterisation, shift the loop momentum and swap integrals (note the convention for
the Feynman parameter integral in the info box below!):
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Here we abbreviated the square of the linear combination of the Pi by X, and the modification of
it due to the loop momentum shift by X̃. Now since k > 1 by assumption, this integral is finite
when we send ⇤UV ! 1. This entails that only the lower integral limit contributes, and the above
integral evaluates to
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The detailed dependence on the Feynman parameters and remaining momenta is not important
– we can use this expression with a generalised Feynman parameterisation. The key point is that
by performing one loop integral, we have reduced the total number of propagators by two. To
finish the argument, we can now come back to our initial counting: an N -loop diagram contains
2N propagators. Performing N � 1 loop integrals successively as above, we end up with the
same divergence structure as for the one-loop diagram. This means that we can absorb all loop
divergences by renormalising �4.
Convince yourself that all remaining divergences appear only in the two-point function, and that
these can be absorbed by a mass term and a wave-function renormalisation factor in front of the
kinetic term (plus an overall constant term, which has no physical meaning in the absence of
gravity).



Extra material 3: Recap — Feynman parameterisation

Let us do a quick recap of the Feynman parameterisation (and a small generalisation). It is a
clever rewriting of a product of n propagators into a nested integral over the n-th power of a single
propagator, which is easier to perform. The underlying trick is the Schwinger parameterisation of
the propagator. For any X > 0, we have
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Let us do this for a product of n propagators:
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Let us now shift the integration variables in the following way:
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Note here that the integral over the ↵i is constrained so that their sum is less than one,
P
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We can perform the integration over ↵, and get
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This can also be written as (also resolving the above-mentioned constraint on the integration
range)
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A related formula can be derived that is useful for the inductive argument that we have used:
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This equation can be proven in a similar way as the above formula, using that
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b) At one-loop order, there are no “interesting” diagrams – the only diagram that exists is a bubble
diagram that contributes to the four-point function, which vanishes in dimreg. Is this theory
renormalisable then? Actually not. For this, we can consider the two-loop diagram that contributes
to the six-point function (it is a self-energy-type diagram as for �

4 at one loop). The structure is
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where P is the sum of some external momenta. You can now go through the same steps as above,
and you will find that this integral has two kinds of divergences: a quadratic divergence ⇠ ⇤2

UV
and

a logarithmic divergence ⇠ P
2 ln⇤UV. These indicate that the theory cannot be perturbatively

renormalised without introducing a new term of the form �
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c) Compared to standard �
4-theory, the vertex has changed and receives some momentum depen-

dence. Before we derive the Feynman rule, let us rewrite the interaction term:
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We can neglect the last term since it is a total derivative. We thus conclude that the four-vertex
is proportional to
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where the pi are the (all-incoming) momenta of the four fields.
We now consider once again the self-energy-type diagram contributing to the four-point function.
This time, the diagram is proportional to
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This diagram is badly divergent: repeating the same calculation as above (or having an informed
guess based on the mass dimension), the divergent part must structurally be of the form
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where p generically stands for one of the external momenta (or a combination thereof). This can
clearly not be absorbed in the original coupling, so once again we have to deal with a perturbatively
non-renormalisable theory.

d) Now the fun part starts – gravity. But actually, the argument is very much similar to part c), with
small modifications. Starting with the action for General Relativity, we find that all n-graviton
vertices have two momenta. If we then consider a standard self-energy diagram at one-loop (and
neglect all the complications that come from indices, but which are irrelevant for the argument),
we find a very similar divergence structure as in c), namely
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Here, the ci are constants that we shall not compute now. What is the divergence structure?
Literally the same as in c)! The only difference is that our action has terms up to quadratic order
in momenta, so the “only” bad divergence is the p

4 term. Such a term can be absorbed by terms
quadratic in curvature.



What happens at two loops? Practically the same, with one more propagator and one more loop
integral. One diagram at two loops is the same as the one-loop diagram, with an extra line joining
the vertices: Z
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Here, we didn’t write out the full structure of the five-point vertices involved. In short, we added
a loop integral, so `

4, but only one propagator, `�2, so that the overall divergence increases by two
powers of momenta. This makes it necessary to introduce yet more terms, this time with either
three curvatures (this is for the three-point function), or two curvatures and two derivatives.
Basically, this is the reason why you are in this course, and not in a course “QFT III: Quantum
Gravity”.

Exercise 7: [Presence] Computing the one-loop divergence in gravity with xAct

Motivation: In this exercise, we will explicitly compute the one-loop divergence in General Relativity with the help
of xAct. You do not have to bring your own laptop, the Mathematica file will be sent around afterwards.

Most of the explanations are in the Mathematica notebook. Some things that we use are collected
here. The two-point diagrams that we evaluated have terms where the external indices are carried by
loop momenta, which we first have to simplify. If we have a single loop momentum that has an open
index (and all other indices are carried by either metrics or external momenta, that we can pull out of
the integral), we can write Z
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There are simply no other terms with one index that this integral could produce. To compute A1(p2),
we contract the above equation with p, divide by p

2, and get:
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In a somewhat sloppy way, we can thus identify the replacement rule
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This is to be understood that it can only be used if there is a single loop momentum with an open index!
Going on with two loop momenta with open indices. This time, it can be proportional to either the

metric, or two external momenta:
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This time, we can contract the equation with either a metric, or two external momenta, and we get a
linear system of equations for B1,2(p2):
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Solving this, we find
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We can again extract a sloppy rule from that:
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Once again caution, this rule is only to be used if there are exactly two loop momenta with open indices!
On to three loop momenta. What are allowed structures? Note that the expression is completely

symmetric in the indices. This means that once again only two structures can appear:
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We can contract with one metric and one momentum, or three momenta. Skipping intermediate steps,
the result is
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The sloppy rule for three momenta is
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Last but not least, we have four loop momenta. Once again, the expression is completely symmetric,
but now we can have three terms:
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This time we can form three contractions. The solution is given by
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Finally, the sloppy rule for four loop momenta is
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Exercise 8: [Presence] Counting degrees of freedom

Motivation: In this exercise, we will go into some more detail on how we can count the number of physical degrees
of freedom in a gauge theory.

There is the slogan “The gauge symmetry always hits twice.” — meaning that usually (but not
always), each gauge symmetry produces two Hamiltonian constraints. In electrodynamics, there is
a single gauge condition, e.g. @

µ
Aµ = 0, and it reduces the four components of Aµ down to two

polarisations. In the same way in gravity, the metric has 10 components, the gauge condition has four
components, reducing things once again to two polarisations. We will discuss a very simple mechanical
toy model to illustrate how the extra constraint can appear. The example is taken from [A. Golovnev,
Universe 9 (2023) 2, 101].

Consider the Lagrange function
L =

1

2
(ẋ+ y)2 , (8.1)

with dynamical variables x and y. A priori, we would think that this model has two (mechanical) degrees
of freedom. However, the Lagrangian is invariant under the “gauge” symmetry
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So naively, we should be left with one degree of freedom, right? Wrong – the gauge symmetry “hits
twice”, meaning it reduces the system to zero degrees of freedom, or a trivial theory. How do we see
that?

Let us go to the Hamiltonian picture. We first compute the momenta:
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Aha – the conjugate momentum ⇡y vanishes, that is, we have a primary constraint. In defining the
Hamiltonian, we thus have to add it with a Lagrange multiplier �:
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We now get four equations of motion and a constraint equation:
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⇡y = 0 .
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We can see that the primary constraint ⇡y = 0 induces a secondary constraint ⇡x = 0 (this is the “hitting
twice”)! What is the solution to this dynamical system? Well, given any arbitrary x(t), y is given by
a constraint equation y = �ẋ, so we do not have to specify any initial data – the system is trivial and
has no dynamical degrees of freedom. In the Lagrangian picture, the physical combination of variables
ẋ+ y is fully constrained to vanish on any solution of the equations of motion.

https://inspirehep.net/files/2f979ec1ef376af5a7d6e0cfb300d1f5
https://inspirehep.net/files/2f979ec1ef376af5a7d6e0cfb300d1f5


A similar story carries over to actual gauge theories like electrodynamics and gravity. For example in
electrodynamics, the Lagrangian does not depend on Ȧ0, which gives a primary constraint much as for
the above model. This then induces once again a secondary constraint, reducing the number of degrees
of freedom to two. In gravity, one would often use so-called ADM variables (basically a 3 + 1-split of
the metric) to carry out the analysis.

A standard reference for all this is [M. Henneaux, C. Teitelboim, Quantization of gauge systems].

https://press.princeton.edu/books/paperback/9780691037691/quantization-of-gauge-systems?srsltid=AfmBOoqKo13TkVtguQhroAaKWjqaIeqEAH1ekoxiAbV9eIPWjRF89pR4

