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Exercise 11: Avoiding Ostrogradski?

Motivation: In the lecture, we discussed the Ostrogradski problem of quadratic gravity. In this exercise, we will try
to find ways to avoid the negative aspects without sacrificing the positive aspects of the higher-derivative terms.

The spin-two propagator in quadratic gravity has the structural form
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As we discussed in some detail, the fall-off with p
4 for large momenta (together with the fact that

vertices also scale like the fourth power of momentum) make the theory renormalisable, and in
particular asymptotically free. However, the partial fraction decomposition of the propagator,
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indicates that we have a massive ghost. Let us investigate different potential scenarios in how we
could avoid it.

a) First, consider the propagator of a general quartic theory. Does it always propagate a ghost?
Why?

b) [hard question] Suppose now that we start with a propagator that is the sum of two
modes that both come with a positive prefactor, so that we do not propagate a ghost. Try
to reconstruct the action that gives rise to such a propagator. Are there any problems with
such a theory? Is this a local theory? What is its UV behaviour?

c) [hard question] Suppose that instead of quadratic gravity, we now add sixth-order deriva-
tive terms. What is propagated in such a theory? Can we avoid ghosts? If yes, what are the
conditions for this? What are the renormalisation properties of sixth-derivative gravity?

a) Let us consider the most general quartic theory. Such a theory would have a mass term, a
term quadratic in the momentum, and a term quartic in the moment, with (in general) arbitrary
prefactors. The propagator would thus read
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Here, a, b, c are arbitrary real numbers. Let us do a partial fraction decomposition. The poles are
at
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Let us assume that both poles are real (i.e. that the argument of the square root is positive).
Otherwise, we have an imaginary part, which corresponds to a finite width, and thus a finite
lifetime of the particles. The residues at these poles are
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and thus the propagator reads
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We conclude that, completely independent of the coefficients in the action, one of the two modes
is ghostly. We can thus not avoid the instability by a clever choice of coefficients, if at the same
time we want to have stable particles.

b) What if we impose that the propagator is the sum of two “normal” modes? That is, let us assume
a propagator
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What goes wrong with this? Many things. First of all, this propagator does not have an improved
fall-off at high energies:
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This means that we do not counteract loop divergences with such a propagator. Furthermore, if
we invert the propagator to get the second variation of the action, we find
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This is always a rational function, and thus a non-local theory — except if m2

1
= m

2

2
, but then we

do not have different modes in the propagator in the first place! So also here, we do not find a
path around Ostrogradski.

c) Adding sixth-derivative terms gives a flat propagator of the form (ignoring tensor structure)
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Let us briefly think about which terms give a p
6-behaviour. It is certainly not any term that is

cubic in curvature — it must be terms that have two covariant derivatives. This means that we
need to add

R⇤R , R
µ⌫ ⇤Rµ⌫ (11.11)

to the action. A similar term with the Riemann tensor is dependent (see extra material).
Back to the propagator. By construction, we have the massless graviton pole, and then two
additional poles. By the arguments in a), exactly one of them would come with a minus sign,
indicating once again a ghost. Except — if the square root is imaginary. Then, the two extra
modes would correspond to unstable that decay, and thus cannot be asymptotic states.
What are the renormalisation properties of this theory? Convince yourself that it is super-

renormalisable — this means that only finitely many loop diagrams diverge! This is because
the superficial degree of divergence is D = (d� 6)L+4 = 4� 2L, so there are only divergences at
one and two loops.



Extra material 4: Box Riemann

Warning: don’t do the following by hand! There is an interesting identity that simplifies compli-

cates our life. It starts with the differential Bianchi identity:

D[↵Rµ⌫]⇢� = 0 . (11.12)

Let us act with another covariant derivative on this (and multiply by 3) to form

3D↵
D[↵Rµ⌫]⇢� = D

2
Rµ⌫⇢� +D

↵
DµR⌫↵⇢� �D

↵
D⌫Rµ↵⇢� = 0 . (11.13)

Maybe you can already see where this is going. We have two terms that are almost divergences
of the Riemann tensor, that is, terms which (via the contracted Bianchi identity) can be replaced
by covariant derivatives of the Ricci tensor. To bring the two terms into this form, we have to
commute the covariant derivatives, which gives terms that are quadratic in curvature (and without
covariant derivatives). This tells you that we can replace any occurrence of D2

Rµ⌫⇢� by terms
that are either quadratic in curvatures, or covariant derivatives of either the Ricci tensor or the
Ricci scalar. If we then contract this relation with another Riemann tensor, integrate over the
spacetime, and perform partial integrations, we find
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Bonus exercise: with the help of xAct, verify this relation, and compute the right-hand side of
this relation, and [hard question] the boundary terms needed for the unintegrated relation.

Exercise 12: Conformal factor instability

Motivation: This exercise discusses the cliffhanger of last week’s lecture in some more detail: the spin zero part of
the graviton propagator has the wrong sign, that is, it is a ghost. We will now discuss why this is (not?) a problem.

Let use first discuss the sign of the spin zero part in classical GR:

a) Why is the negative sign not a problem classically?

Now, consider the Einstein-Hilbert action for Euclidean Quantum Gravity, i.e., where the signature
of the metric is (+,+,+,+), which is given by
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Consider the conformal transformation that maps gµ⌫ ! g̃µ⌫ with

g̃µ⌫ = ⌦2
gµ⌫ , (12.2)

where ⌦ = ⌦(x). Classically, the Einstein-Hilbert action is not conformally invariant. In the
path integral, you can view the conformal transformation as a transformation of the integration
variable.

b) What is the form of the Einstein-Hilbert action after the conformal transformation, when
you express it in terms of the original metric gµ⌫?



c) Discuss the sign of the kinetic term for the conformal mode ⌦ that you get in b). What
is the effect of the conformal mode in the Euclidean path integral? The Euclidean path
integral would structurally look like:
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a) The underlying reason is gauge invariance: the spin zero is an off-shell degree of freedom, but does
not survive on-shell. It is there to remove the residual gauge degrees of freedom that are also in the
spin two part. At the very end, the spin zero part is like the Faddeev-Popov ghosts — they also
come with a minus sign (that’s why we call them ghosts), but they are there to cancel unphysical
modes.

b) The determinant transforms multiplicatively:

det g = ⌦�8 det g̃ . (12.4)

Let us not be too silly and try to compute the transformation of the Ricci scalar by hand. Rather,
xAct comes to the rescue (see notebook). The result is:
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Combining this and performing a partial integration, we get the transformed action:
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c) The sign of the conformal mode (or rather, ⌦�1, but the inverse is insubstantial as it was a choice
in which direction we transform) is negative, that is, large kinetic energy is not suppressed in the
Euclidean path integral. To see this, note that the flat two-point function is @

2, which is a non-
positive operator. This issue is known as the conformal factor instability. It is simply a reflection
of the ghostly nature of the spin zero mode. However, in Euclidean computations/simulations of
gravity, this mode can destabilise the system.


