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Exercise 13: Extra modes in higher derivative gravity

Motivation: In this exercise, we will make the extra degrees of freedom that the curvature-squared terms introduce
explicit. The general idea is the following: we first write down an action with an auxiliary (that is, non-dynamical)
field, making sure that the equations of motion are equivalent to higher-derivative gravity. We then perform a shift
of the metric to bring the action into a form of GR plus “extra stuff”. For the R2-term, we can do this exactly,
whereas for the Rµ⌫Rµ⌫-term, we will restrict ourselves to the kinetic term of the new field.

Consider the following “weird” action:
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Here, ↵ is a constant and � is a scalar field.

a) Derive the equations of motion, both for the auxiliary field � and for the metric. Plug the
solution for the scalar field into the equation of motion for the metric. What is this equation
of motion equivalent to? Also, plug the solution into the action. What do you get?

b) Perform a conformal transformation on S
weird (as in exercise 12 — don’t insert any solution

to the equations of motion here!), this time with
gµ⌫ 7! ��1

g̃µ⌫ . (13.2)
How does the action look like?

c) Finally, reparameterise the scalar field by

� = e
c �̃

, (13.3)
where c is a suitable constant. Compute the action as a function of g̃ and �̃ and choose the
constant c cleverly (you will see what this means). What is this theory? What do we learn
from this whole computation?

d) [hard question] Try to generalise this to f(R) gravity. Does the same method go through?
If so, how does the scalar potential look like?

Now shift your attention to this “super-weird” action:
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Here, fµ⌫ is a symmetric rank-two tensor field, and � is a constant.

e) [hard question] Perform the same tasks as in a), but now for the action S
super-weird.

f) [hard question] Now shift the metric in S
super-weird in the following way:

gµ⌫ 7! g̃µ⌫ + c fµ⌫ . (13.5)
Doing so, only keep terms up to second order in f , and fix c such that there is no kinetic
mixing — that is, ensure that there is no term that is linear in both curvature and f . Once
again, what is this theory, and what do we learn from this?



a) The equation of motion for � is
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This is simply a constraint, and the solution is

� = 1 + 2↵R . (13.7)

For the metric equation of motion, we can recycle the linearisations computed in exercise 2, namely
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Inserting this into the action, taking the term linear in h and performing partial integrations, we
get
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ḡ
µ⌫ +

�
D̄

µ
D̄

⌫�� ḡ
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Thus, the metric equation of motion is
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If we now plug in the solution for �, we get
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These is just the equation of motion that we derived for R +R
2 gravity (exercise 4)!

Similarly, plugging the solution for � into S
weird, we find
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The weird action is thus simply a reformulation of the Starobinsky theory. Note that, for simplicity,
we have used Planck units here (16⇡GN = 1).

b) Here, we can recycle the results of the previous exercise by identifying � = ⌦2. This gives the
action:
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c) The suitable constant is c = 1/
p
3, and we get
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This is a scalar-tensor theory: gravity coupled to a scalar field with a potential
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We have thus shown that R + R
2 gravity is equivalent to GR coupled to a scalar field with this

specific potential! In other words, we have made the extra scalar degree of freedom (that originates
from the R

2 term) visible.
The potential is interesting for cosmology, as it implements the so-called slow-roll condition: the
potential has a minimum at �̃ = 0, it grows quickly for negative �̃, and flattens out for positive
�̃. For inflation modelling, this is interesting as the scalar field can slowly roll down the potential
(giving an exponential expansion), and then settling in the minimum (the end of inflation). Below
is a plot of the potential for ↵ = 1.
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d) Let us consider a generalisation of the weird action by introducing a general potential for the scalar
field:
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The equations of motion are
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Let us compare this to the equations of motion of an f(R) theory. For this, we have
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This gives the equation of motion
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Comparing with the above, we would need

� = f
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This looks like a Legendre transform! Indeed, � and R are the conjugate variables, and the
potential is the Legendre transform of the function f . This also means that the equivalence only
holds under the assumptions of the Legendre transform (convexity etc.). Going forward, we will
assume that these assumptions are met.
We can do another conformal transformation of the metric. Skipping the intermediate steps (which
mirror the previous parts), we finally arrive at
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where
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e) Fun incoming. The equation of motion for fµ⌫ reads
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We want to solve this for fµ⌫ , but the trace comes into way, so let us first consider the traced
equation of motion:
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Inserting this and solving for the full tensor, we find
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To insert this into the action, we have to compute
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We thus get
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Now, you might wonder why there is an R
2-term. The answer is that the above combination is

equivalent to (half of) the square of the Weyl tensor upon subtracting a multiple of the Gauss-
Bonnet term. With a lengthy computation (cough use xAct if you want to do that cough), one
finds that (in flat spacetime) R2 only contributes to spin zero, whereas C2 only contributes to spin
two. The more you know.
Feel free to check that deriving the metric equations of motion and inserting the solution for fµ⌫ ,
you get the equations of motion of this action.

f) If by now, you are still doing this by hand, it is your fault ;) The theory gives rise to a kinetic term
with the wrong sign and a mass term for the spin two (transverse traceless) part of fµ⌫ . This is
related to the so-called Fierz-Pauli action for the massive spin-two field, in case you want to read
more about it.


