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Exercise 14: Analysing beta functions

Motivation: The purpose of this exercise is to familiarise yourself with the study of beta functions: finding fixed
points, computing critical exponents, and investigating the phase diagram. These are the bread-and-butter (or
margarine/olive oil/whatever you fancy) skills when analysing renormalisation group flows.

In the following, we will consider two different sets of beta functions for two couplings G and ⇤
that depend on a reference scale k. They have mass dimensions �2 and 2, respectively, so that
the dimensionless couplings are given by g = Gk

2 and � = ⇤k�2.a

Consider first the following set of beta functions for the two couplings g,�:
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a) Compute all fixed points of this set of beta functions.

b) Compute the critical exponents at each of these fixed points. If there is an interacting fixed
point, how many relevant parameters does it have? What does that mean for its predictivity?

c) We can actually solve the beta functions implicitly. Show in a first step that g(k) implicitly
defined via
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is a solution to the first beta function, where GN is a constant. What is the meaning of GN?
Hint: For the meaning of GN , it might be helpful to expand to leading order in powers of k.

d) In a second step, show that �(k) defined by
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is a solution to the second beta function. Here, the constant ` can be written as
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with ⇤0 being yet another constant. What is the meaning of ⇤0? Hint: For the meaning of
⇤0, it might be helpful to expand to leading order in powers of k.

e) [hard question] Expand both solutions in powers of 1/k to leading non-trivial order. How
does this relate to part b)? Could you have gotten this result more easily?



f) Instead of using �, it can be useful to use the dimensionless combination ⌧ = G⇤ = g�.
What is the interpretation of this coupling, and what are the potential IR (k ! 0) values
that can be reached from the fixed point(s)?

g) Sketch the phase diagram in terms of g and ⌧ (Mathematica’s StreamPlot might come in
handy, if you don’t want to do it by hand). The phase diagram, or RG flow diagram, is a
plot of the integral curves of the beta functions.
Your phase diagram should contain all fixed points and any potential other global features.
If there are features other than fixed points, explain them.

Let us now briefly analyse a second set of beta functions:
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h) Compute all real fixed points and their critical exponents. Is there anything unusual here?
If so, try to explain what’s going on.

i) [hard question] Sketch the phase diagram. What is the new feature in these beta functions?
Which implications does this have for the admissible IR values of G and ⇤? Can the relevant
fixed point be used as a UV completion? Why/why not?

aGuess what G and ⇤ should represent.

a) These beta functions are taken from arXiv:1507.08859. The equations are partially decoupled,
which means that we can first look for zeros of �g. There are two, located at
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Since �� is linear in �, we can simply solve it and find
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We thus find a Gaussian fixed point (GFP, aka the free theory), and an interacting, or non-Gaussian
fixed point (NGFP).

b) To compute the critical exponents, we need to first compute the stability matrix. For this, we
need
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https://arxiv.org/pdf/1507.08859


We can arrange this into the stability matrix
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and compute its eigenvalues at the fixed points. At the GFP, it reads
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thus the critical exponents are
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In turn, at the NGFP, we have
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so the critical exponents are
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Both are positive, that is we have two relevant directions. This means that we cannot predict one
coupling from the other, rather both correspond to free parameters.

c) To show that the implicit equation for g(k) solves the beta function, we first divide by k
2, then

take a logarithmic k-derivative, and multiply again by k
2. Since GN is a constant by assumption,
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Solving this for kg0(k), we find
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which is the original beta function, so indeed the implicit equation solves it.
Expanding (14.2) in powers of k, we notice that the left-hand side starts at k

2. To be consistent,
the right-hand side has to start at k

2 as well. This directly entails that
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Recalling the definition of the dimensionful coupling G, we find
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so that GN is the IR value of G(k).

d) This is a bit lengthy, but the strategy is the same as for c): take the logarithmic k-derivative of
the solution and compare it with the beta function. After finitely many steps, you will find that
this indeed solves the beta function (I trust your calculus skills).
Expanding the solution in powers of k (and using (14.2)), to leading order we find
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If we now plug in the expression for `, we find

�(k) ⇠
⇤0

k2
+O(k0) , k ! 0 . (14.19)

We can once again compare with the dimensionful coupling, and find in complete analogy to c)
that
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So the meaning of ⇤0 is that it is the IR value of ⇤(k).

e) Let us first consider the equation for g(k). When k ! 1, the left-hand side diverges. How can
we achieve the same on the right-hand side? One way would be to have g(k) ! 1 since the
right-hand side scales as g(k)2/29 in this limit, however that is not too interesting. The other
possibility is to have a zero of the denominator. Let us thus make the ansatz
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where c1,2 are constants and c2 > 0. We notice that this is actually an expansion about the fixed
point! If we insert this into the solution, we get
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Here we only kept the leading-order term. Matching both sides, we find

c2 =
58

27
, c1 =

✓
144⇡

145GN

◆29/27

. (14.23)

The value for c2 is simply the critical exponent! This should not surprise you — after all, we
expanded the solution about the interacting fixed point. This is just an explicit confirmation that
we indeed get the right asymptotic behaviour.
Throwing this into the solution for �(k) and expanding, we find
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Did you expect a k
�4 now? Ha, gotcha! Let us explain what is going on here, by going back to

the linear analysis around a fixed point.
Recall that to compute the stability matrix, we expanded the vector of beta functions around a
fixed point:
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The stability matrix is the gradient of the vector of beta functions with respect to all couplings
evaluated at the fixed point,
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We can now solve the linearised beta functions, which amounts to a solution close to the fixed
point. It is a set of linear differential equations, solved by
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In this, the ci are the integration constants, and ~ei is the i-th eigenvector of Mstab with eigenvalue
✓i. Convince yourself that this is indeed the solution to the linearised equation.
Now let us come back to our system. From b), we know that the critical exponents are ✓1 = 4
and ✓2 = 58/27. Let us also compute the eigenvectors. For ✓1, the eigenvector is (0, 1), that is, it
points purely into the �-direction. By contrast, an eigenvector for ✓2 is (60⇡, 49) (for simplicity,
we don’t normalise it – this is not necessary since we anyhow have the free parameters ci). This
means that, close to the NGFP, we can write the general solution as
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In this, we coloured the eigenvectors red. For large enough k, the k�4-term is sub-leading compared
to the k�58/27-term – this explains the above asymptotic expansion, we simply didn’t go far enough
in the expansion. We can furthermore check that the ratio of the sub-leading terms in the two
couplings came out right:
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f) This coupling, in the context of gravity, would correspond to the value of the cosmological constant
in Planck units. The potential IR values lie on the whole real line, since there are no restrictions
on GN and ⇤0 in the above solutions.

g) For this, let us first write down the beta function for ⌧ . By definition,
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In terms of ⌧ and g, the phase diagram has the following features:

– There is a fixed line at g = 0, i.e., every point on the ⌧ -axis is a fixed point. How does this fit
to the idea that we only found two fixed points for g and �? To understand this, look at the
expansion of � for small k: in almost all cases, it actually diverges like k

�2! For ⌧ however,
the flow reaches a finite value as k ! 0. This is what typically happens with positive mass
dimension terms (think: mass terms) – if you want to have a finite physical mass when k ! 0,
you need the dimensionless mass to diverge.

– Then there is the NGFP that we have found above. Actually, since our equations partially
decouple, the line g = g

NGFP

⇤ splits the phase diagram into a weak-gravity regime g < g⇤,
where trajectories start at the NGFP and flow down towards a finite value of ⌧ as k ! 0.
On the line, only ⌧ is flowing, not g. Above the line, we go away from a sensible IR limit.

– Furthermore, there is a divergent line at g = 72⇡/5. This is a pole in the beta functions, and
marks where our approximation that was used to derive the beta functions breaks down. The
trajectories that emanate upward from the NGFP end in this divergent line at a finite scale.

g) These beta functions are taken from arXiv:1205.4218. They have multiple complex fixed points,
but once again only two real ones. As always, there is the GFP, with the same critical exponents
as before. The NGFP is now at
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https://arxiv.org/pdf/1205.4218


The critical exponents are
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Huh, we get a complex-conjugate pair of critical exponents! What does that mean? For this, let us
recall that the critical exponents determine the power law running of couplings close to the fixed
point. An imaginary part in the exponent then means an oscillation – and since the real part of
the critical exponents is positive, it is a damped oscillation. The two couplings thus approach the
fixed point in a spiral. To show that, we have to realise that the couplings have to stay real, and
thus the two integration constants must be complex-conjugate as well (since also the eigenvectors
are complex-conjugates). In particular, for our system this means around the NGFP
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where we normalised the eigenvalues to have unit strength in �-direction, c is the complex integra-
tion constant, and z is the g-component of the eigenvector. Since we have a complex integration
constant, this is equivalent to two real integration constants, as expected from the real parts of
the critical exponents.

h) The new feature in this phase diagram is that there is a limit cycle around the NGFP which is
IR-attractive. The limit cycle is a closed curve in the phase diagram. This means that trajectories
emanating from the NGFP will approach this limit cycle, so that the dimensionless couplings will
be (approximately) cyclic; in particular, they stay finite for all k. This immediately means that
the dimensionful Newton’s coupling G diverges for k ! 0, so we do not get a sensible IR limit.
This means that such a fixed point is unsuitable to serve as a UV completion.

Exercise 15: [Presence] Analysing beta functions, part 2

Motivation: Let us study yet another set of beta functions.

Consider two coupling G,GC3 with dimensionless couplings g = Gk
2 and gC3 = GC3k

4. For these,
look at the following set of beta functions:
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Find fixed points and critical exponents. Solve the differential equations to get g(k) and gC3(k)
– you should get two free parameters for the general solution. Fix one of them by requiring
g(k) ⇠ GNk

2 as k ! 0. Can you fix the other constant by requiring that you hit the fixed point
as k ! 1?
Investigate the IR limit (k ! 0) of gC3(k) – is there anything unusual here? If so, explain!

The fixed points can simply be read off. We will skip the GFP and go right to the NGFP:
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The critical exponents are
✓1 = 2 , ✓2 = �4 . (15.3)

So we finally have an irrelevant direction, and we can fix a coupling!
We will look at this analytically.1 The solution for g reads
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With this, we can solve the second equation, and get
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Let us fix the constants. For small k, we want
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With this, we can write
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This has the nice interpretation that we measure k
2 in units of GN (i.e., Planck units if GN is Newton’s

constant). Inserting this into the solution for gC3 , we have
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For large k, gC3 behaves as
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Aha! Here we see that if we want to hit the fixed point when k ! 1, we have to choose
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This is precisely how a coupling is predicted from an irrelevant direction: for any other choice of c2, the
trajectory will diverge away from the fixed point as k ! 1. Only for the above choice, we are on the
safe trajectory. This trajectory is given by

gC3(k) =
(GNk

2)2

3780


1

1 + 4

3
GNk

2
+ ln

✓
4

3

GNk
2

1 + 4

3
GNk

2

◆�
. (15.11)

We can even express this as
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1This is not the standard way to do this – we can do it here because the system is so simple that it admits analytic
solutions. Usually, you have to 1) find the fixed point, 2) compute the critical exponents and eigenvectors, 3) set to zero
the integration constants attached to irrelevant directions, 4) pick values for the remaining free parameters to fix initial
conditions to solve the RG flow numerically.



It doesn’t get more explicit than this, that we can express one coupling in terms of the other. In this
case, it works at all k, which is unusual.

Now, we can just take this and read off the IR value (k ! 0) of GC3 , right? Right??? Let’s expand:
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Welcome to the world of IR divergences originating from ultrasoft graviton radiation. So what in the
everpresent Lambda is going on? The short story is that massless particles SU. . . are more difficult to
handle than massive particles. The problem is that in any scattering process, one can radiate a large
number of infinitely soft massless particles “for free”, that is, without impacting momentum conservation.
This leads to IR divergences that pop up everywhere, and it is a complete mess. However, as soon as you
compute an actual observable, that is a gauge-invariant expression, this stuff should drop out, leaving
behind a finite expression. At least that’s the theory. If you want to read a bit more about this, then
the Weinberg soft graviton theorem is a good starting point.


