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Exercise 16: Fixed functions – an infinite number of couplings

Motivation: So far we have studied finite sets of beta functions. However, the non-perturbative RG flow generates
infinitely many terms that have to be accounted for. The purpose of this exercise is to learn how to deal with some
of the complications that are added in such a case.

For this exercise, we will briefly leave the realm of gravity, and instead study a vector field !a

that lives in three Euclidean dimensions and has an O(N) symmetry (you can think of this as a
special case of a theory with N scalar fields – the “vector” he refers to the O(N) group, not to
spacetime; the case N = 1 is related to the well-known Ising model). We will look at the following
approximation for the e!ective average action:

”k →

∫
d3
x

[
1

2
(ωµ!a)(ω

µ!a) + Vk(ε)

]
. (16.22)

For convenience, we introduced ε = !a!a
/2. The arbitrary k-dependent potential Vk contains in

general infinitely many interaction terms. If you want, you can think of it in terms of a Taylor
expansion:

Vk(ε) =
∑

n→1

cn,k ε
n
. (16.23)

In this, the cn,k are the infinitely many k-dependent couplings.

a) What are the mass dimensions of the field !a, the potential Vk, and the coupling constants
cn,k?

b) Given an expression for the RG flow of Vk(ε), i.e. kωkVk(ε), how would the flow of the
corresponding dimensionless potential look like? Hints: To arrive at this, you could assume
the above Taylor expansion, convert the couplings cn,k to their dimensionless counterparts,
and then try to go back to the potential. It might also be useful to introduce a dimensionless
version of ε. If we call vk the dimensionless version of Vk, and ε̄ the dimensionless version
of ε, you should get a relation of the form

kωkVk(ε) = a1 kωkvk(ε̄) + a2 vk(ε̄) + a3 ε̄ v
↑
k(ε̄) , (16.24)

where a1,2,3 are field-independent coe"cients that you need to determine.

We will now study the large-N limit of this theory, in which an exact solution can be obtained.
This allows us to focus on the concepts while keeping analytic control. It will be useful to focus
on the derivative of the dimensionless potential, u(ε̄) ↑ v

↑
k(ε̄), where we now suppress the index

k to simplify notation. This is commonly done in the literature.
Suppose that in such a limit, the k-dependence of the dimensionless derivative of the potential is
given by

kωku(ε̄) = ↓2u(ε̄) + ε̄u
↑(ε̄)↓

1

2

u
↑(ε̄)

(1 + u(ε̄))2
. (16.25)

We will first focus on obtaining the fixed point solution, so we will try to solve the above di!erential
equation for kωku = 0, i.e. the fixed point equation.



c) Let us first do some structural analysis: given that the above fixed point equation for u

is a first-order di!erential equation, how many integration constants do you expect? Does
it make sense that a fixed point solution has integration constants? If not, what could fix
these?

d) Let us now try to get some more feeling for the solution. We first try a Taylor expansion.
Assume that

u↓(ε̄) =
N∑

n=0

dn↓ ε̄
n
. (16.26)

Plug this ansatz into the fixed point equation, and compute the fixed point couplings dn↓ for
a reasonable number N by expanding the equation in powers of ε̄ as well (do this however
far you want to, maybe something like N = 4). You should be able to solve for N ↓ n0

couplings, where n0 is the number of free integration constants found in c).
[hard question] Think about what could be done to fix the integration constants. Hint:

A commonly used technique is to set the highest retained coupling to zero, thus imposing
another condition on the fixed point couplings. One then increases N systematically and
checks for the convergence of any candidate solution.

e) [hard question] The fixed point equation admits an implicit solution: instead of u↓(ε̄), one
can solve for ε̄(u↓). Show that indeed,

ε̄ = q
↔
u↓ +

3

4
+

3

4

↔
u↓ arctan

↔
u↓ ↓

1

4

1

1 + u↓
(16.27)

is the general solution, where q is an integration constant. Hint: Assume from the start that
u↓(ε̄) can be inverted so that you can write ε̄(u↓). Then express u↑

↓(ε̄) in terms of ε̄↑(u↓) and
solve the fixed point equation for ε̄(u↓).

f) Let us now try to fix the integration constant q. For this, we can argue in the following way:
the function u↓(ε̄) should be real and well-defined for all ε̄ ↗ 0. Does this already fix the
integration constant? Also plot the resulting function u↓(ε̄) for this value of q.

g) Check that your polynomial solution from d) is consistent with the solution in e). Also
compute the right value of your integration constant in the Taylor solution from f).

Now that we have a fixed point function, we can compute the critical exponents! How can we do
so? Let us take a step back and remember how we compute critical exponents for a finite set of
beta functions. We expand the beta functions to linear order about the fixed point:

ϑϖ(ϑd) → ϑϖ(ϑd↓)︸ ︷︷ ︸
=0

+
ωϑϖ

ωϑd

∣∣∣∣∣
ωd=ωd→

(ϑd↓ ϑd↓) , (16.28)

where we combined our above couplings d in a vector, ϑd = {d0, d1, . . . }. The solution to this
linearised di!erential equation is

ϑd → ϑd↓ +
∑

i

ci ϑei k
↔εi , (16.29)

where ci are integration constants, and the ϑei are the eigenvectors of the stability matrix with
eigenvalue ϱi.



Let us try to generalise this to the case of a full function. For this, we insert the linearised solution
into u:

u(ε̄) = ϑd · {1, ε̄, ε̄2, . . . } = ϑd↓ · {1, ε̄, ε̄
2
, . . . }︸ ︷︷ ︸

u→(ϑ̄)

+
∑

i

ci

[
ϑei · {1, ε̄, ε̄

2
, . . . }

]
k
↔εi . (16.30)

Here, we simply wrote the sum as a vector product of the coupling vector with the vector of
all powers of ε̄. What is this expression? The first terms is clearly just the fixed function
u↓. The second is a sum of di!erent eigenfunctions that are in one-to-one correspondence with
the eigenvectors of the stability matrix. This motivates the following way to compute critical
exponents. Assume that

u(ε̄) → u↓(ε̄) + ςu(ε̄) k↔ε
. (16.31)

We plug this into the RG equation (16.25) and expand to linear order in perturbations ςu. This
gives a linear di!erential equation for the perturbations ςu, and ϱ plays the role of an eigenvalue
of a di!erential operator. We will try to put this into practice now.

h) [hard question] Show that the eigenvalue equation for the linear perturbation ςu reads

↓ϱςu(ε̄) = ↓2ςu(ε̄) + ε̄ ςu
↑(ε̄) +

u
↑
↓(ε̄)

(1 + u↓(ε̄))3
ςu(ε̄)↓

1
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1

(1 + u↓(ε̄))2
ςu

↑(ε̄) . (16.32)

i) [hard question] Use the fixed point equation to replace u
↑
↓(ε̄) in terms of u↓(ε̄) and ε̄, and

then perform a variable transform with the implicit fixed point solution ε̄(u↓) to derive an
equation for ςu(u↓).

j) [hard question] Solve this di!erential equation for ςu(u↓). This should look rather ugly.
To make it nicer, recall that ςu is actually the ε̄-derivative of the corresponding perturbation
of the potential, ςv. From this, derive the perturbations ςv(u↓). You should get

ςv(u↓) = c u

3↑ω
2

↓ , (16.33)

with c being (yet another) normalisation constant. Can you find an argument that would
restrict (reasonable) perturbations which would also fix the “allowed” critical exponents?


