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Exercise 17: Computing an RG flow

Motivation: Stu! is getting real now – we will derive the beta function for the potential that you saw in Exercise
16 to learn how the Wetterich equation works in practice. We will also introduce some general concepts that will
come in handy when going back to gravity.

In this exercise, we will learn how to evaluate the right-hand side of the Wetterich equation:

kωk!k =
1

2
STr

[(
!(2)

k +Rk

)→1

· kωkRk

]
. (17.34)

Here, we used the “supertrace” (STr) to indicate a generalisation of the loop momentum integral
that we will explain soon. This will be important later when we look at gravity.
Our system will be the O(N)-symmetric vector model in three dimensions. Our ansatz for the
e!ective average action !k is the same as in Exercise 16:

!k →

∫
d3x

[
1

2
(ωµ”a)(ω

µ”a) + Vk(ε)

]
. (17.35)

Recall that ε = ”a”a/2. The goal is to plug this ansatz into (17.34) and find the expression for
kωkVk.

a) Let us start with the easiest bit – the left-hand side. Evaluate the left-hand side of (17.34)
for the ansatz (17.35).

Next, let us construct the right-hand side step by step. We will be very careful in the notation
at every step – only once you have understood what is going on, you can become sloppy (like
everybody working on it)!

b) The first ingredient that we need is the second variation of the e!ective average action.
Compute

ϑ2!k

ϑ”a(x) ϑ”b(y)
. (17.36)

For this, recall that by definition,

ϑ”a(x)

ϑ”b(y)
= ϑ a

b ϑ(x↑ y) . (17.37)

Here, the delta function is three-dimensional.

Next, we have to choose some form of regularisation. Recall that in the path integral, we added
a term to the action in the form of

#Sk =
1

2

∫
d3p

(2ϖ)3
”̃a(↑p)Rk,ab(p

2) ”̃b(p) . (17.38)



This is in momentum space. Often, we actually work in position space, and then this reads

#Sk =
1

2

∫
d3x”a Rk,ab(↑ω2)”b . (17.39)

Note how the regulator Rk actually needs to carry (O(N)) indices, since the field also carries
indices. In our case, we can choose the regulator diagonal in field space,

Rk,ab(↑ω2) = ϑab Rk(↑ω2) . (17.40)

Now, Rk is a simple function (that happens to have an operator as its argument). Note the
di!erent type setting to make the di!erence (the literature often does not di!erentiate this).

c) Compute how the above regulator gets added to the two-point function !(2)

k by taking the
second variation of #Sk in position space.

d) In the same language, what do we actually mean by the kωkRk in (17.34)?

The easy part is over now – the next step is to invert the regularised two-point function. First,
we discuss some conceptual aspects, then the actual computation.

e) The two-point function found in b) depends on two points x and y. You should have found
however that it is local, that is, it can be written as

(
!(2)

k +Rk

)
(x, y) = O(x) ϑ(x↑ y) . (17.41)

Here, O(x) is some di!erential operator. The “local” refers to the delta function. Now, its
inverse – the propagator Gk(x, y) – is defined by

∫
d3y Gk(x, y)

(
!(2)

k +Rk

)
(y, z) = ϑ(x↑ z) . (17.42)

From this definition, argue that the propagator must also be local in the above sense, and
in particular formally of the structure

Gk(x, y) = [O(x)]→1 ϑ(x↑ y) . (17.43)

Our next task is thus to find O
→1. For this, we need an expansion scheme, since we will not be

able to do this without approximations. To decide on what we really need, consider again a).
We really only need terms that contribute to the potential – terms with derivatives acting on
fields contribute to other couplings. An expansion in derivatives like this is called . . . wait for it
. . . derivative expansion. In going forward, we will thus assume that we can neglect ωµ”a

→ 0.

f) In the lowest order derivative expansion where we set ωµ”a
→ 0 (that is, ”a is approximately

constant, ”a(x) → ”a), compute the regularised propagator. Hints: Write the regularised
two-point function in the form

(
!(2)

k +Rk

)

ab
(x, y) =

{
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(
ϑab ↑

”a”b

”2

)
+B(↑ω2,”2)

”a”b

”2

}
ϑ(x↑ y) , (17.44)



and determine the functions A,B. Do the two operators multiplying A and B look somewhat
familiar? (Try to take their sum and products!) Conclude that you can also write the
propagator as

Gab(x, y) =

{(
ϑab ↑

”a”b

”2

)
C(↑ω2,”2) +

”a”b

”2
D(↑ω2,”2)

}
ϑ(x↑ y) , (17.45)

and compute C and D from A and B.

The last step is to make sense out of the STr. First of all, you might have noticed the · that I
slipped into (17.34). Since both the propagator and the (k-derivative of the) regulator depend on
two points, what we once again mean by this is

(
!(2)

k +Rk

)→1

· kωkRk ↓

∫
d3y

(
!(2)

k +Rk

)→1

(x, y) kωkRk(y, z) . (17.46)

g) Reinstate the O(N) indices and compute (17.46) by using the results of the previous parts.

Last but not least, we define the supertrace via the integral over the coincidence limit, plus taking
any “standard” index trace (tr):

STrF (x, y) =

∫
d3x tr lim

y↑x
F (x, y) . (17.47)

This of course is more complicated in gravity, where all hell breaks lose, but this is a problem for
future-you, not present-you.

h) Use the definition of the supertrace to finally evaluate the right-hand side of the flow equa-
tion! Hints: It could be helpful to represent the delta function in terms of its Fourier
representation,

ϑ(x↑ y) =

∫
d3ϱ

(2ϖ)3
e→i ω·(x→y) . (17.48)

Use this to convert any ↑ω2 into momenta, and take the continuum limit. Finally, the tr
is the trace (aka contraction) over the two remaining O(N) indices. Recall for this that
ϑ a
a = N .

Don’t perform the momentum integrals yet (you can’t anyway without specifying the shape
of the regulator). Rather, your result should look like

kωkVk(ε) = (N ↑ 1)I1(ε) + I2(ε) , (17.49)

where I1,2 are two di!erent integrals.

i) To evaluate the integrals, use the Litim regulator,

Rk(z) = (k2
↑ z) ς

(
1↑

z

k2

)
, (17.50)

where ς is the Heaviside function.



j) As the very last step, let us reproduce (16.25). For this, we rescale the field and the potential
via

”a
↔↗ c

↘

N ”̂a , V (ε) ↔↗ c2 N V̂ (ε̂) , (17.51)

for a suitable constant c. Then take a ε-derivative of the flow equation (since (16.25) is the
flow for the derivative of the potential) and take the limit N ↗ ≃. What is the right value
for c to achieve a match?

k) [hard question] Think about systematic extensions of our approximation. You can take
the following questions as an orientation:

– Where does the statement come from that the Wetterich equation generates all terms
compatible with symmetries?

– Related to this, how can we systematically extend our approximation? For example,
how would we take into account terms that include factors of ωµ”a, and which beta
functions would we be able to compute by keeping these terms?

– Do you think everything is going through in the same way with gravity? If not, what
could go wrong?


