# Quantum gravity and

the renormalisation group

45min+15mh 67794

lectures: Fr 11:15-13:00 Phil 12 kHS

fubrials: Mo 14:15 - 16:00 Phil 12 E6 059 central question: what is the quantum structure
of spacetime?

how: Functional Renormalisation Group (FRG)

2 "mathematical microscope for quantum
field theories

- prerequisites: . General Relativity (GR)
  - · QFT I (helpful: II) you can try QFT I in pamilled but it will be challenjing

(QFTs)"

also helpful: . QFT on curved spacetimes (Sut optional) . Standard Model / Partick Physics/... . lutro to FRG

- content: perhabite quantisation of 6R and break down of predictivity
  - · quadratic granity and stability dullages
  - · asymphic safety in QFTs
  - · FRG for gravity
  - · advanced topics (maybe: swampland, positivity bounds)

useful makerial: · lecture notes of last year

· Lectures in Quantum Gravity

partial overlap, I [SciPost Phys. Lect. Notes 98, YT recordings le Quantumgravity.

includes many more de hils + ST, quantu BHs, EFT, ...

two great books with many dehils · lubroduction to Covariant Quantum Gravity
and Asymptotic Sekty

[Rescacc: 2017]

· Quantum Gravity and the FRG: The Road
towards Asymptotic safety
[Rector, Seversity 2019]

Handbook of Quantum Gravity [2024]

The Q6 bible, "handbook" = 4300 pages

tudorials: Mo 14:15-16:00 with Fabian Wagner

-> where you rully learn the national

-> weekly exercises + occasional presence exercises

no hand-in "

exercises, lead no under the sould be possed on the course med page

The phys > people > research associates -> BK

· ask all your grestions - there are no shipid question?

· provide feedback if something about the exchient is not ideal for you to bear the makesal

knorr @ Hiphys. uni-heidel duz. de wazuer-f@ -4 -

II Phil 12 3056 (mijht change 5004)

### Why quantum gravity?

-> GR describes classical gravity...

... but mather is quantum!

G Einstein's equations:

functions on spacetime

openhors

note:

We use n-h-1  $v-its_i$ : c=1 t=1 (mosff)

-> mathematical inconsistency

-> physical inconsistency: RHS exhibits

uncertainty (e.g., position vs. unomentum), but LHS
has no uncertainty

=> what is the gravitational field of a

"fizzy" source?

Semiclassical gravity "let's close our eyes and prehad there is no issue here"

idea: maybe gravity couples to expectation value of shess-energy

Thu > < Thu > which shk?

Shushe? shill densor?

G = 8 TG < Tu>

corresponds to: matter described by QFT on

corved spacetime f

granitational field sourced by <>

of energy-momentum

Q: is this enough do consistently describe quantum matter on classical spacetime?

os: does it woul?

spoiles: maybe not

Example: grav. potential of a missive bodg that is in a superposition of states centred about two locations you can use

14(x,+)> = = (S(x-2A) + S(2-2B))

wavepackets if you don't like the S's

> expected position  $\langle \vec{x} \rangle = \frac{\vec{x}_A + \vec{x}_B}{2}$ 

6 gravitational field sourced at <2>

test mass sharps here?

Co Upon measurement, have function collapses

Le either \$\hat{Z}\_A \quad \text{or} \quad \hat{Z}\_B \quad \text{instruction} \text{change} \quad \text{of} \quad \text{gravithboul} \quad \text{feld} \quad \text{?}

this thought experiment suggests that semiclassical gravity breaks down in some siduations

(Page + Geilker 1781 were the first to attempt

an actual experiment — challenging to obtain

See sheet 2

QH superposition of an object that is massive

enough to exert measurable grav. field)

of an object in a supersition is also a superposition of fields

#### Classical curmbre shjulashies

· even GR signals its own breakdown, no QFT needed -> curvature stychnities -> incomplete geodesics black holes, big bang

Example: Schwarzschild BH we use the correct significe "  $ds^{2} = -\left(1 - \frac{2G_{N}^{M}}{r}\right)dt^{2} + \left(1 - \frac{2G_{N}^{M}}{r}\right)^{-1}dr^{2} + r^{2}dJ^{2}$ is a vacuum solution of GR, with Rm= 0 however: Rays #0, and in princely  $K = R_{\mu\nu\beta\delta} R^{\mu\nu\beta\delta} = 48 \frac{6^{8} H^{2}}{r^{6}}$ 

Kretschmann

scalar

#### → in finite curvature at r=0 ⇒ infinite tital forces

similarly, the proper time to of a massive particle to neach the centre when starting at  $\Gamma = \Gamma_0$  is  $T_0 = T \sqrt{\frac{\Gamma_0^3}{8M}} \ \ < \infty$ 

-> geodesias derminate in finite time

-> more complete theory need not be quantum per se, but it is a maximal assumption

everything else is quantum, why not dravidy?

#### Perhobetre QG

. fry what worked for the Standard Model

G quantise free theory (gravitational waves)

by decompose to be gravitans

(similar to photors in QED)

then add intendion probablely

-> learn why we are still working on QG lespile many decades of research

#### Recop of gravitational waves

recall Einskin's equations

Rps-23pm R=8776ptps
highly non-theas in gr

. GW = solutions la lineanised equations

-> use background field method:

we split the metric gru into an artistry background unchic gru and a perturbation how

gro = growthm

-> you can define bachground curvahres, cov. des. volves etc.

-> redicus are misel & lowered with g

variations exist,
for us this is
enough

-> for GW, we consider give 2pm (flat background)

-> as long as |hp | CC | (= grav. field created by

poshibation is small, i.e. self-threadiens can be reglected)

[hearisation should work well

G Inerise Christoffel sy-tol & arvature tensors: shed!

means equality up to tours obside of our atvest

TM dB = \frac{1}{2} 2 \mathbb{P}^{10} (2 \mathbb{A} \mathbb{P}\_{\beta} \tau\_{\beta} + 2 \mathbb{P}\_{\beta} \tau\_{\beta} - 2 \tau\_{\beta} \tau\_{\beta}) \quad \text{defind in contact}

R\_{\beta \beta = \frac{1}{2} \Big[ 2 \mathbb{P}\_{\beta \beta} + 2 \mathbb{P}\_{\beta \beta} + 2 \mathbb{P}\_{\beta \beta} - 2^2 \hat{h}\_{\beta \beta} - 2 \mathbb{P}\_{\beta \beta} \tau\_{\beta} \tag{h}\_{\beta \beta} \tag{h

R ~ 2 p b b - 2 h

note: expanding to higher order gives interaction terms

-> impostand in strong-field regime, c.j. when GWs are created vin black hole mergers

-> in propagation, these subractions are my ligible because the GW amplitudes are small

Gplus into EE:

32 hm - (2, 25hvs + 2, 25hvs) + 2, 2, h + 2, 256 hs - 2, 22h = -167 9, The

Lecturically here 3=2

this can be rewritten by introducing The = her - 2 pm h

$$\Rightarrow 3^{2} \overline{h}_{\mu\nu} - 2 \left[ \frac{1}{2} (S_{\mu}^{d} \partial_{\nu} + S_{\nu}^{d} \partial_{\mu}) - \frac{1}{2} r_{\mu\nu} \partial_{\nu}^{d} \right] \partial_{\nu}^{\mu} \overline{h}_{\mu\nu} = -16\pi G_{\nu}^{\mu} \overline{h}_{\nu}^{\mu}$$

Symmetrisation:  $S_{\mu}^{d} \partial_{\nu} = r_{\mu\nu} \partial_{\nu}^{d} \partial_{\nu}$ 

compere to QED:

$$\partial^2 A_{\mu} - \partial_{\mu} \partial^{\nu} A_{\nu} = J_{\mu}$$

wave equation, Set has javge redundancy (= non-frivial hernel)

An -> An +on h

=> have to gauge-fix, e.g. with Lorenz gauge 2 MA=0

the same is har in gravity: if has is a solution, so is To m = Thu + DEV + DUEN - EN DES for any E => not all modes of how are physical!

5 the "gauge redundancy" 4 gravity is différent philm hvariance i -> physics does not depend on your choice of Compublion: XX -> X/X = XX + EX Coordilaks  $\Rightarrow g_{\mu\nu} \rightarrow \frac{\partial x'^{\prime}}{\partial x^{\mu}} \frac{\partial x'^{\beta}}{\partial x^{\nu}} \frac{\partial x'^{\beta}}{\partial x^{\beta}}$ G hpu -> hpu + 2pEv + 2v Ep + 2(E2)

I heavised diffeo. drafo.

· as in "normal" gange streories, this is not a physical symmetry, but rother a redundancy in our description: how and how are physically Egidnlent x coaditions · to get vid off this, we have to apply, you can have an entire course about gauge-fix e.g. [Showless = impose contition on Typu 1703,05448] can be used to simplify your life

-> rementer Lorent jange in QED

popular choice: de Dondes gauge

2 h hpv = 0

Sanity chech: Is this a valid condition, i.e. con we always find an Ep such that 2th,=0 without restricting physical configurations?

> given some how which does not satisfy orhoso,
search for how = how + 2, Ev + 2, En so that

 $\frac{\partial^{n} \overline{h}_{\mu\nu}}{\partial^{n} h_{\mu\nu}} = 0 \qquad \text{recall } \overline{h}_{\mu\nu} - \frac{1}{2} \epsilon_{\mu\nu} h$   $= \frac{\partial^{n} \left[ h_{\mu\nu}' - \frac{1}{2} \epsilon_{\mu\nu} h \right]}{\partial^{n} h_{\mu\nu}}$ 

Je Donder gruge is an incomplete

gruge fixing: we can still shift

Ev by solutions to the

homogeneous wave eq. QED!

## this happens pretty universally in garge theories, and will evenly come to bite you

· back to linearised EE: in de Donder gruge,

Gwe wanted to grantise the fee field in vaccum

$$\rightarrow$$
 solve  $\partial^2 h_{\mu\nu} = 0$  check why  $\partial^2 h_{\mu\nu} = 0 \iff \partial^2 h_{\mu\nu} = 0$ 

this has a general solution in terms of a soperposition of plane waves

how (x) = Say how (4) e gax xd with q 2=0

we will consider a single Fourier mode with momenta Pa,

how (x) = The eight xxx + The eight xxx

polvisation tensor

shilar L polarisable a vector of the photon

note: p=0 to solve the wave equation

Go gravitous are massless in GR (and in