

# AS and matter

- quantising gravity is cool, but the real world also has more: **matter**

↑ = everything that isn't gravity

- if your QG theory cannot embed the Standard Model,  
you are doing math, not physics
- if your QG theory includes the SM but isn't  
compatible with measured values of masses, decay rates, ...,  
you are doing math, not physics
- good test for any QG candidate!

also: QG effects are tiny

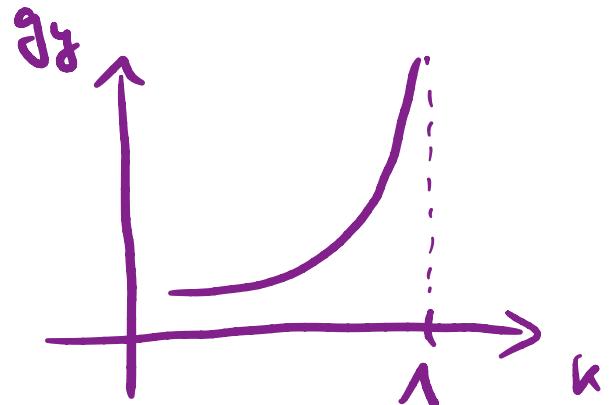
recall correction to  
Newtonian potential &  
exp. constraints on  $R^2 + C^2$   
couplings

in practice: add pieces of SM bit by bit  $\Rightarrow$  the real world

goal: SM

→ three gauge groups:

spin 1  
gauge  
bosons


$U(1)_Y$        $\rightarrow$  Abelian, has Landau pole/  
hypercharge       $\rightarrow$    
drivingly problems

$SU(2)_L$       } non-Abelian, asymptotically free

$SU(3)$

$U(1)_Y$  at one-loop order:

$$\beta_{gg} = \frac{41}{6} \frac{g_Y^3}{16\pi^2} + \dots$$



Scale of Landau pole  $\Lambda \gg M_P$

↳ signals need for new physics  
beyond the Planck scale

→ quarks: spin  $1/2$  → fermions EM charge

|      |         |        |        |
|------|---------|--------|--------|
| up   | charm   | top    | $2/3$  |
| down | strange | bottom | $-1/3$ |

→ charged under everything

→ confinement: there are no free quarks at low energy, only bound states like protons

→ leptons: spin  $1/2 \rightarrow$  fermions

EM charge

|         |           |            |    |
|---------|-----------|------------|----|
| e       | $\mu$     | $\tau$     | -1 |
| $\nu_e$ | $\nu_\mu$ | $\nu_\tau$ | 0  |

→ not charged under strong interaction

→ Higgs      spin 0  $\rightarrow$  scalar

→ charged under weak interaction

→ important for electroweak symmetry breaking

→ Higgs mechanism

$$\hookrightarrow \langle H \rangle \sim 246 \text{ GeV}$$

$\rightsquigarrow \mathcal{L}_{SM} \supset \cdot$  gauge field strength "  $F_{\mu\nu} F^{\mu\nu}$ "

• charged fermions

"  $\bar{\psi} i \not{D} \psi$ "

• Higgs

"  $DH^\dagger D H + H^2 + H^4$ "

• Yukawa coupling

"  $H \bar{\psi} \psi$ "

total no. of  
free parameters

$\sim 25$

with  $\langle H \rangle \neq 0 \rightarrow$  gives fermions  
mass

→ all measured masses can be parameterized  
(by choosing appropriate Yukawa couplings  $g_f$ ),  
but there is no explanation/mechanism

→ "hierarchy problem":  $\langle H \rangle \ll M_A$   
this needs a very special choice of  
mass parameters at the Planck scale

→  $M_H \approx 125 \text{ GeV} \ll M_{Pl}$   
needs quartic Higgs coupling to be  
 $\approx 0$  at Planck scale  $\rightarrow$  why?

assuming that there are no other matter fields  
(or that they couple to the SM very weakly,  
i.e. dark matter)

- a) QG must solve the  $U(1)$  baryonity problem /  
Lantern pole
- b) QG must be compatible with measured values  
of couplings and masses
- c) it would be nice if QG would explain some  
or all of the SM structure

# Status of ASQG with matter

selection!

Eichhorn, Schifffer

2212.07456

Upshot:

- a) evidence that issue is solved
- b) evidence that this is the case
- c). mechanism to predict  $g_t$  and  $g_b$  with  $g_t \gg g_b$ ,  
but not yet quantitatively accurate
  - mechanism to enforce  $\lambda_H \approx 0$  at  $M_{Pl}$
  - no explanation for  $\langle H \rangle \ll M_{Pl}$
  - some hints to explain quark mixing

## Some generalities:

- gravity contributes new terms to  $\beta$  functions of SM couplings
- this includes a term that is **linear** in the respective coupling

example: hypercharge coupling  $g_Y$

$$\beta_{g_Y} = -f_{g_Y} g_Y + \frac{41}{6} \frac{g_Y^3}{16\pi^2} + \dots$$

$$f_{g_Y} = f_{g_Y}(6, 1, \dots) > 0$$

↳ why linear? because everything couples to gravity

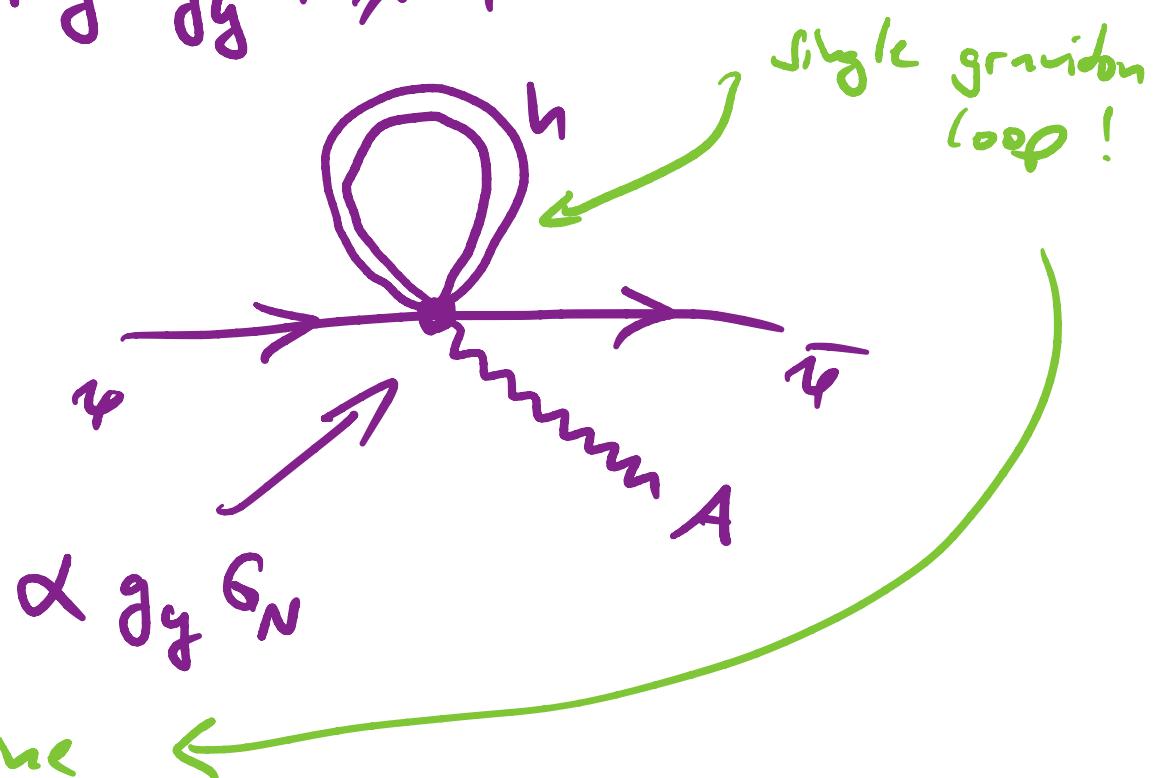
→  $\sqrt{g}$  in front of everything

→ quarks vertices with gravitons

for hypercharge,  $\sim \sqrt{g} i g_y \bar{\psi} \gamma^\mu \psi$

generates diagrams

note: different types of lines:


→ fermion (conventions differ)

↔ photon

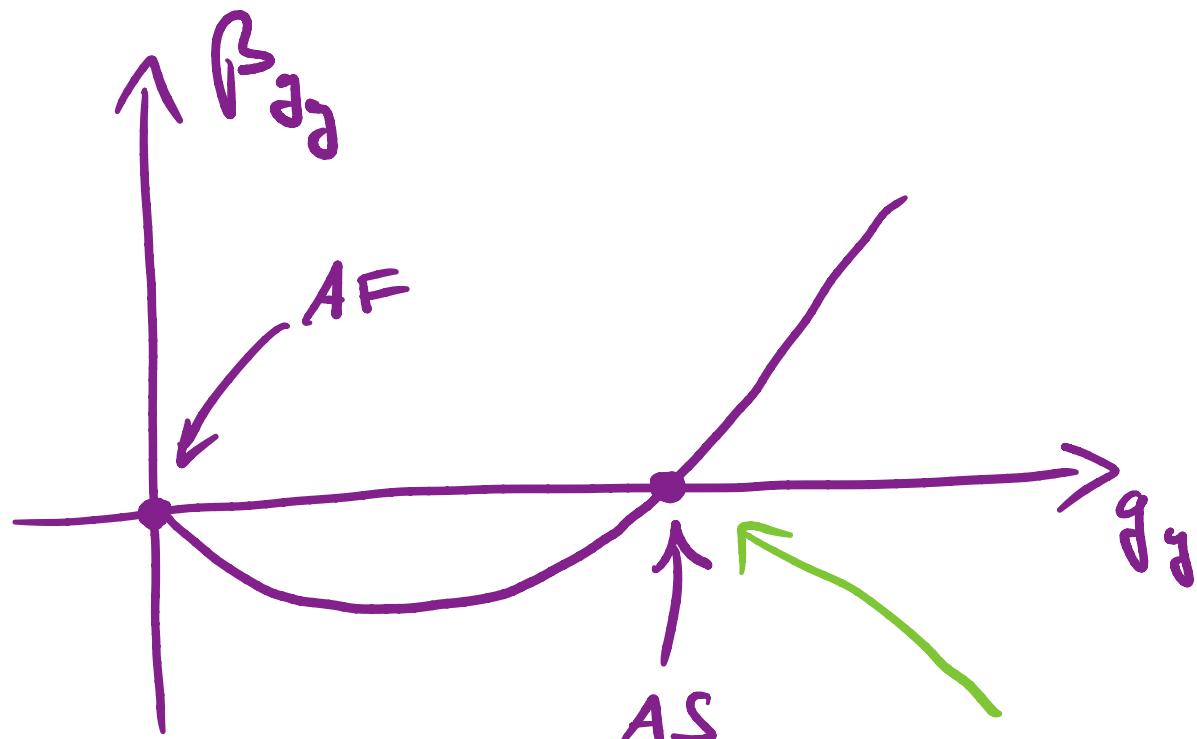
↔ gluon

↔ scalar

↔ graviton ← double line



→ additional factors of the metric or Christoffel symbol (or spin connection for fermions) can also be present, depending on spacetime indices of fields and derivatives of a vertex

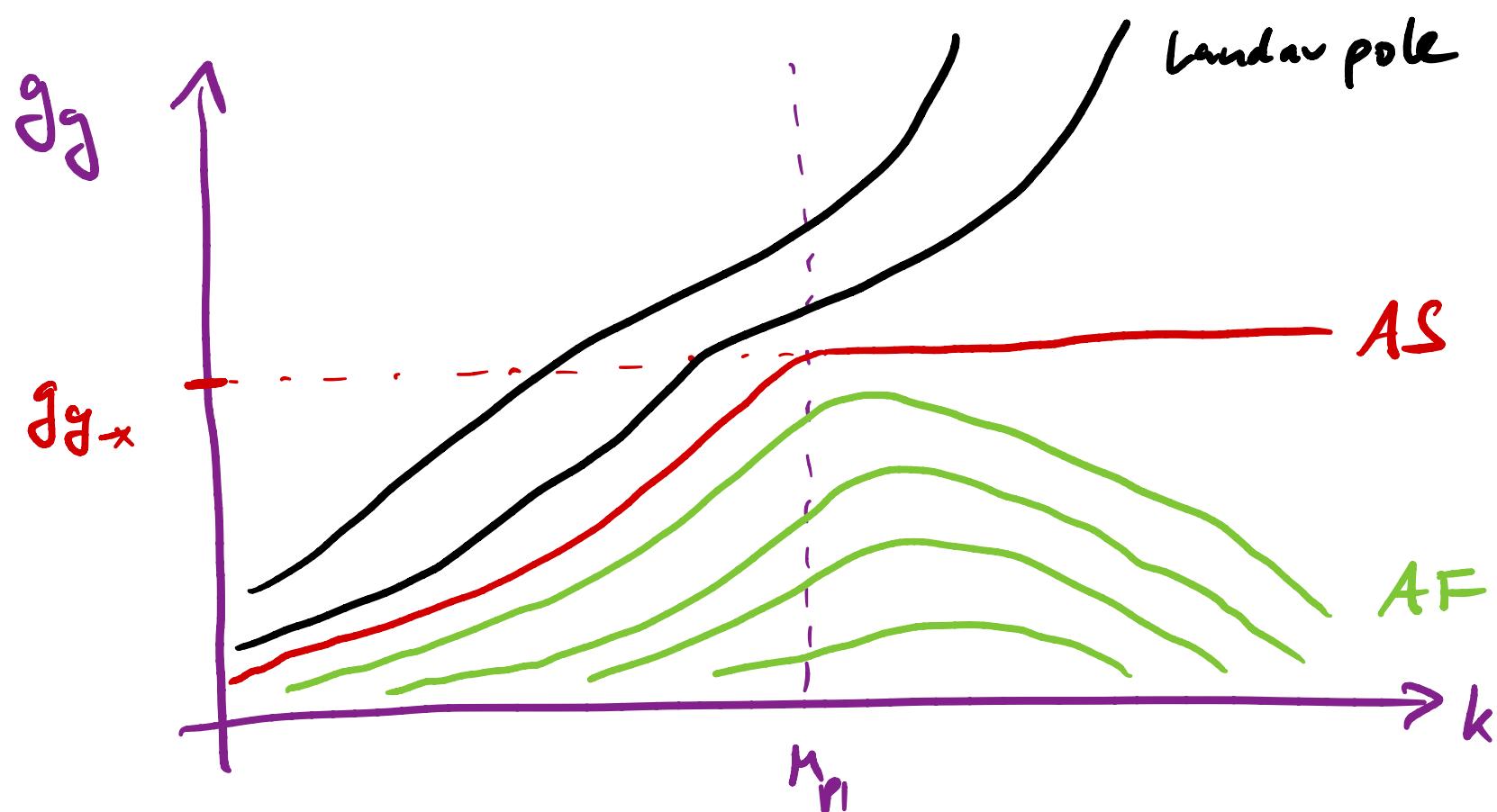

→ gravity is blind to internal symmetries

⇒ gravity depends on spacetime structure only  
⇒ couples to stress-energy only

e.g. gauge / Dirac / ...

Consequence:  $f_{gg}$  is the same for weak and strong coupling!

↳ what is the effect on  $g_g$ ?



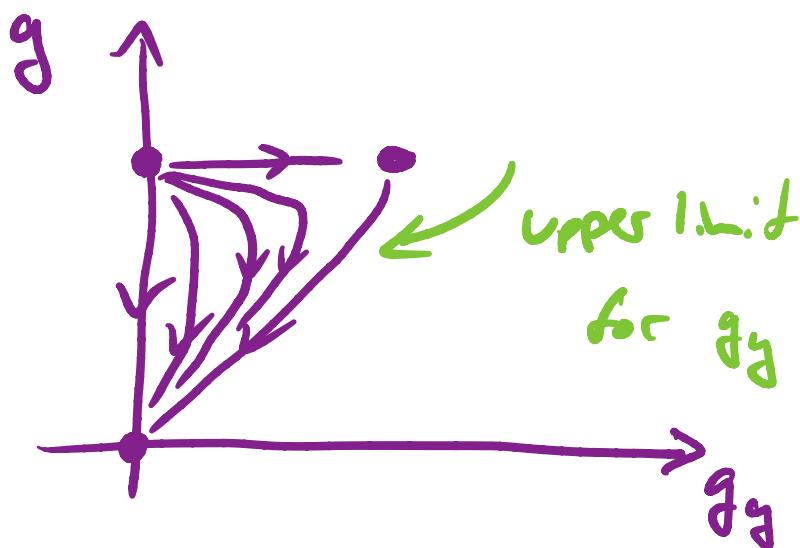

$$\partial g_x = 4\pi \sqrt{\frac{6}{41} f_{gg}}$$

AF FP:  $\Theta = f_g > 0$  relevant

AS FP:  $\Theta = -2f_g < 0$  irrelevant

what does this mean? sketch trajectories:




$\Rightarrow$  Landau pole problem can be solved if hypercharge coupling is below critical value

↳ upper bound on  $g_y$  in AS

is the experimental value below this bound?

likely yes!

rough sketch  
of phase diagram:



## Yukawa sector

we focus on top and bottom quarks  $\rightarrow y_t, y_b$

they are the largest in the SM

$$\beta_{y_{t/b}} = -f_y y_{t/b} + \frac{y_{t/b}}{16\pi^2} \left[ \frac{3}{2} y_{b/t}^2 + \frac{9}{2} y_{t/b}^2 + \text{weak/strong} \right]$$

$$- \frac{3}{16\pi^2} y_{t/b} g_y^2 \times \left\{ \begin{array}{l} \frac{17}{36} \\ \frac{5}{36} \end{array} \right. \begin{array}{l} \text{top} \\ \text{bottom} \end{array}$$

↑  
due to charge  
+ :  $2/3$   
b :  $-1/3$

if  $g_y$  is AF: no distinction between  $t$  &  $b$

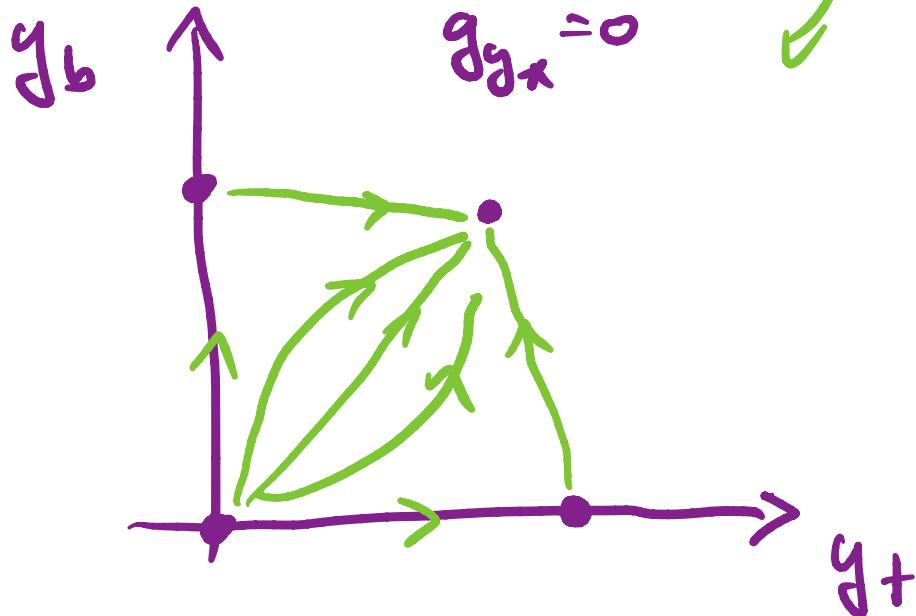
$$\beta_{g_t} = \beta_{g_b} \quad (\text{at FP!})$$

if  $g_y$  is AS: also Yukawa have AS FP!

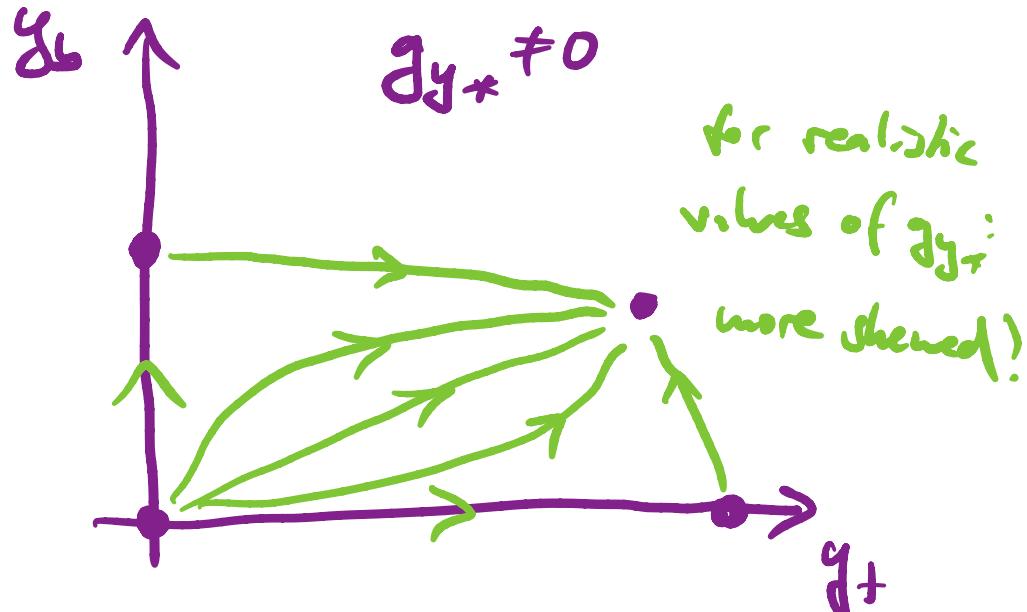
check:  $g_{g_\pi}^2 = 16\pi^2 \frac{6}{41} f_y \Rightarrow f_y = \frac{41}{6} \frac{g_{g_\pi}^2}{16\pi^2}$

$$\rightarrow \beta_{g_{t/b}} = \frac{g_{t/b}}{16\pi^2} \left[ -\frac{41}{6} g_{g_\pi}^2 + \frac{3}{2} g_{b/t}^2 + \frac{9}{2} g_{t/b}^2 - \frac{1}{2} \left\{ \frac{17}{12} g_{g_\pi}^2 + \frac{1}{2} g_{b/t}^2 \right\} \right] = 0$$

$$t-b: \frac{3}{2} [g_b^2 - g_t^2] + \frac{9}{2} [g_t^2 - g_b^2] - g_{g_\pi}^2 = 0$$


$$\Rightarrow y_{+*}^2 - y_{b*}^2 = \frac{1}{3} g_{y*}^2$$

can also compare  
+ b to  
fix FP completely


at this FP,  $y_+ \gg y_b$  automatically!

consistent with  
SR pheno!

phase diagrams:



symmetric along diagonal



Some remarks:

- computations sensitive to top mass  
→ if  $m_t$  is too large by 5-10 GeV, no agreement with SM anymore

**But:** systematic errors unknown

- Yukawas of other generations cannot be neglected at high scales:

→ other Yukawas small, but CKM mixing

→ CKM elements also run, diggering some changes

↗ at VERY high energies  $\sim 10^{10}$  GeV

Alkofer, Eichhorn, Held, Nicro, Peracci, Schöfl  
2003, 08401

Eichhorn, Gyftopoulos, Held 2507.18304

## Higgs sector

- Higgs vev is relevant

⇒ can choose it such that

$$\langle H \rangle = 246 \text{ GeV}$$

↳ no dynamical explanation why this value

• quartic coupling  $\lambda$ :

Yukawa & gauge couplings



$$\beta_\lambda = f_\lambda \lambda + \frac{3}{2\pi^2} \lambda^2 + \dots$$

Steposhnikov, Wetterski 0912.0208  $\leftarrow$  before measurement of Higgs!

if gauge couplings and Yukawa are AF

and  $f_\lambda > 0$ , then  $\lambda_* = 0$

this FP is IR-attractive  $\Rightarrow$  QG fluctuations

ensure that  $\lambda @ M_{Pl} \approx 0$

LHC fact: this is needed to obtain

measured Higgs mass !

estimate by Shaposhnikov & Wetterski: 129 GeV  
close !

how: below Planck scale,  $\lambda$  is governed by  
gravity and (mostly) top quark fluctuations  
 $\rightarrow$  unique mapping of  $\lambda(M_{Pl}) \approx 0$   
to precise value at EW scale  
 $\Rightarrow$  determines ratio of Higgs mass and vev

$$\lambda(k_{EW}) = \frac{1}{2} \left( \frac{m_H}{\langle H \rangle} \right)^2$$

note: mechanism is independent of value of  $f_\lambda$ ,  
only sign matters

- there is evidence that  $f_\lambda > 0$  ! ☺

other possibility: ASFP for  $g_Y + y_+ \Rightarrow \lambda_* \neq 0$

→ depends also on value of  $f_\lambda$

→ indications that this scenario is  
incompatible with observations if there  
is no new physics beyond the SM